You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1000 lines
						
					
					
						
							28 KiB
						
					
					
				
			
		
		
	
	
							1000 lines
						
					
					
						
							28 KiB
						
					
					
				/**
 | 
						|
 * Supported cipher modes.
 | 
						|
 *
 | 
						|
 * @author Dave Longley
 | 
						|
 *
 | 
						|
 * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 | 
						|
 */
 | 
						|
var forge = require('./forge');
 | 
						|
require('./util');
 | 
						|
 | 
						|
forge.cipher = forge.cipher || {};
 | 
						|
 | 
						|
// supported cipher modes
 | 
						|
var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};
 | 
						|
 | 
						|
/** Electronic codebook (ECB) (Don't use this; it's not secure) **/
 | 
						|
 | 
						|
modes.ecb = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'ECB';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = new Array(this._ints);
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
};
 | 
						|
 | 
						|
modes.ecb.prototype.start = function(options) {};
 | 
						|
 | 
						|
modes.ecb.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // get next block
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._inBlock[i] = input.getInt32();
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // write output
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    output.putInt32(this._outBlock[i]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.ecb.prototype.decrypt = function(input, output, finish) {
 | 
						|
  // not enough input to decrypt
 | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // get next block
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._inBlock[i] = input.getInt32();
 | 
						|
  }
 | 
						|
 | 
						|
  // decrypt block
 | 
						|
  this.cipher.decrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // write output
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    output.putInt32(this._outBlock[i]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.ecb.prototype.pad = function(input, options) {
 | 
						|
  // add PKCS#7 padding to block (each pad byte is the
 | 
						|
  // value of the number of pad bytes)
 | 
						|
  var padding = (input.length() === this.blockSize ?
 | 
						|
    this.blockSize : (this.blockSize - input.length()));
 | 
						|
  input.fillWithByte(padding, padding);
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
modes.ecb.prototype.unpad = function(output, options) {
 | 
						|
  // check for error: input data not a multiple of blockSize
 | 
						|
  if(options.overflow > 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // ensure padding byte count is valid
 | 
						|
  var len = output.length();
 | 
						|
  var count = output.at(len - 1);
 | 
						|
  if(count > (this.blockSize << 2)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // trim off padding bytes
 | 
						|
  output.truncate(count);
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
/** Cipher-block Chaining (CBC) **/
 | 
						|
 | 
						|
modes.cbc = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'CBC';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = new Array(this._ints);
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
};
 | 
						|
 | 
						|
modes.cbc.prototype.start = function(options) {
 | 
						|
  // Note: legacy support for using IV residue (has security flaws)
 | 
						|
  // if IV is null, reuse block from previous processing
 | 
						|
  if(options.iv === null) {
 | 
						|
    // must have a previous block
 | 
						|
    if(!this._prev) {
 | 
						|
      throw new Error('Invalid IV parameter.');
 | 
						|
    }
 | 
						|
    this._iv = this._prev.slice(0);
 | 
						|
  } else if(!('iv' in options)) {
 | 
						|
    throw new Error('Invalid IV parameter.');
 | 
						|
  } else {
 | 
						|
    // save IV as "previous" block
 | 
						|
    this._iv = transformIV(options.iv, this.blockSize);
 | 
						|
    this._prev = this._iv.slice(0);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.cbc.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // get next block
 | 
						|
  // CBC XOR's IV (or previous block) with plaintext
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._inBlock[i] = this._prev[i] ^ input.getInt32();
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // write output, save previous block
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    output.putInt32(this._outBlock[i]);
 | 
						|
  }
 | 
						|
  this._prev = this._outBlock;
 | 
						|
};
 | 
						|
 | 
						|
modes.cbc.prototype.decrypt = function(input, output, finish) {
 | 
						|
  // not enough input to decrypt
 | 
						|
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // get next block
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._inBlock[i] = input.getInt32();
 | 
						|
  }
 | 
						|
 | 
						|
  // decrypt block
 | 
						|
  this.cipher.decrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // write output, save previous ciphered block
 | 
						|
  // CBC XOR's IV (or previous block) with ciphertext
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    output.putInt32(this._prev[i] ^ this._outBlock[i]);
 | 
						|
  }
 | 
						|
  this._prev = this._inBlock.slice(0);
 | 
						|
};
 | 
						|
 | 
						|
modes.cbc.prototype.pad = function(input, options) {
 | 
						|
  // add PKCS#7 padding to block (each pad byte is the
 | 
						|
  // value of the number of pad bytes)
 | 
						|
  var padding = (input.length() === this.blockSize ?
 | 
						|
    this.blockSize : (this.blockSize - input.length()));
 | 
						|
  input.fillWithByte(padding, padding);
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
modes.cbc.prototype.unpad = function(output, options) {
 | 
						|
  // check for error: input data not a multiple of blockSize
 | 
						|
  if(options.overflow > 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // ensure padding byte count is valid
 | 
						|
  var len = output.length();
 | 
						|
  var count = output.at(len - 1);
 | 
						|
  if(count > (this.blockSize << 2)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // trim off padding bytes
 | 
						|
  output.truncate(count);
 | 
						|
  return true;
 | 
						|
};
 | 
						|
 | 
						|
/** Cipher feedback (CFB) **/
 | 
						|
 | 
						|
modes.cfb = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'CFB';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = null;
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
  this._partialBlock = new Array(this._ints);
 | 
						|
  this._partialOutput = forge.util.createBuffer();
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.cfb.prototype.start = function(options) {
 | 
						|
  if(!('iv' in options)) {
 | 
						|
    throw new Error('Invalid IV parameter.');
 | 
						|
  }
 | 
						|
  // use IV as first input
 | 
						|
  this._iv = transformIV(options.iv, this.blockSize);
 | 
						|
  this._inBlock = this._iv.slice(0);
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.cfb.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(inputLength === 0) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // handle full block
 | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | 
						|
    // XOR input with output, write input as output
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
 | 
						|
      output.putInt32(this._inBlock[i]);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // handle partial block
 | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    partialBytes = this.blockSize - partialBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // XOR input with output, write input as partial output
 | 
						|
  this._partialOutput.clear();
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
 | 
						|
    this._partialOutput.putInt32(this._partialBlock[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    // block still incomplete, restore input buffer
 | 
						|
    input.read -= this.blockSize;
 | 
						|
  } else {
 | 
						|
    // block complete, update input block
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._inBlock[i] = this._partialBlock[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // skip any previous partial bytes
 | 
						|
  if(this._partialBytes > 0) {
 | 
						|
    this._partialOutput.getBytes(this._partialBytes);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) {
 | 
						|
    output.putBytes(this._partialOutput.getBytes(
 | 
						|
      partialBytes - this._partialBytes));
 | 
						|
    this._partialBytes = partialBytes;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes(
 | 
						|
    inputLength - this._partialBytes));
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.cfb.prototype.decrypt = function(input, output, finish) {
 | 
						|
  // not enough input to decrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(inputLength === 0) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block (CFB always uses encryption mode)
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // handle full block
 | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | 
						|
    // XOR input with output, write input as output
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._inBlock[i] = input.getInt32();
 | 
						|
      output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // handle partial block
 | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    partialBytes = this.blockSize - partialBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // XOR input with output, write input as partial output
 | 
						|
  this._partialOutput.clear();
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._partialBlock[i] = input.getInt32();
 | 
						|
    this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    // block still incomplete, restore input buffer
 | 
						|
    input.read -= this.blockSize;
 | 
						|
  } else {
 | 
						|
    // block complete, update input block
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._inBlock[i] = this._partialBlock[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // skip any previous partial bytes
 | 
						|
  if(this._partialBytes > 0) {
 | 
						|
    this._partialOutput.getBytes(this._partialBytes);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) {
 | 
						|
    output.putBytes(this._partialOutput.getBytes(
 | 
						|
      partialBytes - this._partialBytes));
 | 
						|
    this._partialBytes = partialBytes;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes(
 | 
						|
    inputLength - this._partialBytes));
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
/** Output feedback (OFB) **/
 | 
						|
 | 
						|
modes.ofb = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'OFB';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = null;
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
  this._partialOutput = forge.util.createBuffer();
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.ofb.prototype.start = function(options) {
 | 
						|
  if(!('iv' in options)) {
 | 
						|
    throw new Error('Invalid IV parameter.');
 | 
						|
  }
 | 
						|
  // use IV as first input
 | 
						|
  this._iv = transformIV(options.iv, this.blockSize);
 | 
						|
  this._inBlock = this._iv.slice(0);
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.ofb.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(input.length() === 0) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block (OFB always uses encryption mode)
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // handle full block
 | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | 
						|
    // XOR input with output and update next input
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      output.putInt32(input.getInt32() ^ this._outBlock[i]);
 | 
						|
      this._inBlock[i] = this._outBlock[i];
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // handle partial block
 | 
						|
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    partialBytes = this.blockSize - partialBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // XOR input with output
 | 
						|
  this._partialOutput.clear();
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0) {
 | 
						|
    // block still incomplete, restore input buffer
 | 
						|
    input.read -= this.blockSize;
 | 
						|
  } else {
 | 
						|
    // block complete, update input block
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._inBlock[i] = this._outBlock[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // skip any previous partial bytes
 | 
						|
  if(this._partialBytes > 0) {
 | 
						|
    this._partialOutput.getBytes(this._partialBytes);
 | 
						|
  }
 | 
						|
 | 
						|
  if(partialBytes > 0 && !finish) {
 | 
						|
    output.putBytes(this._partialOutput.getBytes(
 | 
						|
      partialBytes - this._partialBytes));
 | 
						|
    this._partialBytes = partialBytes;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  output.putBytes(this._partialOutput.getBytes(
 | 
						|
    inputLength - this._partialBytes));
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
 | 
						|
 | 
						|
/** Counter (CTR) **/
 | 
						|
 | 
						|
modes.ctr = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'CTR';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = null;
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
  this._partialOutput = forge.util.createBuffer();
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.ctr.prototype.start = function(options) {
 | 
						|
  if(!('iv' in options)) {
 | 
						|
    throw new Error('Invalid IV parameter.');
 | 
						|
  }
 | 
						|
  // use IV as first input
 | 
						|
  this._iv = transformIV(options.iv, this.blockSize);
 | 
						|
  this._inBlock = this._iv.slice(0);
 | 
						|
  this._partialBytes = 0;
 | 
						|
};
 | 
						|
 | 
						|
modes.ctr.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(inputLength === 0) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block (CTR always uses encryption mode)
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // handle full block
 | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | 
						|
    // XOR input with output
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      output.putInt32(input.getInt32() ^ this._outBlock[i]);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // handle partial block
 | 
						|
    var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | 
						|
    if(partialBytes > 0) {
 | 
						|
      partialBytes = this.blockSize - partialBytes;
 | 
						|
    }
 | 
						|
 | 
						|
    // XOR input with output
 | 
						|
    this._partialOutput.clear();
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    if(partialBytes > 0) {
 | 
						|
      // block still incomplete, restore input buffer
 | 
						|
      input.read -= this.blockSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // skip any previous partial bytes
 | 
						|
    if(this._partialBytes > 0) {
 | 
						|
      this._partialOutput.getBytes(this._partialBytes);
 | 
						|
    }
 | 
						|
 | 
						|
    if(partialBytes > 0 && !finish) {
 | 
						|
      output.putBytes(this._partialOutput.getBytes(
 | 
						|
        partialBytes - this._partialBytes));
 | 
						|
      this._partialBytes = partialBytes;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    output.putBytes(this._partialOutput.getBytes(
 | 
						|
      inputLength - this._partialBytes));
 | 
						|
    this._partialBytes = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // block complete, increment counter (input block)
 | 
						|
  inc32(this._inBlock);
 | 
						|
};
 | 
						|
 | 
						|
modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
 | 
						|
 | 
						|
/** Galois/Counter Mode (GCM) **/
 | 
						|
 | 
						|
modes.gcm = function(options) {
 | 
						|
  options = options || {};
 | 
						|
  this.name = 'GCM';
 | 
						|
  this.cipher = options.cipher;
 | 
						|
  this.blockSize = options.blockSize || 16;
 | 
						|
  this._ints = this.blockSize / 4;
 | 
						|
  this._inBlock = new Array(this._ints);
 | 
						|
  this._outBlock = new Array(this._ints);
 | 
						|
  this._partialOutput = forge.util.createBuffer();
 | 
						|
  this._partialBytes = 0;
 | 
						|
 | 
						|
  // R is actually this value concatenated with 120 more zero bits, but
 | 
						|
  // we only XOR against R so the other zeros have no effect -- we just
 | 
						|
  // apply this value to the first integer in a block
 | 
						|
  this._R = 0xE1000000;
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.start = function(options) {
 | 
						|
  if(!('iv' in options)) {
 | 
						|
    throw new Error('Invalid IV parameter.');
 | 
						|
  }
 | 
						|
  // ensure IV is a byte buffer
 | 
						|
  var iv = forge.util.createBuffer(options.iv);
 | 
						|
 | 
						|
  // no ciphered data processed yet
 | 
						|
  this._cipherLength = 0;
 | 
						|
 | 
						|
  // default additional data is none
 | 
						|
  var additionalData;
 | 
						|
  if('additionalData' in options) {
 | 
						|
    additionalData = forge.util.createBuffer(options.additionalData);
 | 
						|
  } else {
 | 
						|
    additionalData = forge.util.createBuffer();
 | 
						|
  }
 | 
						|
 | 
						|
  // default tag length is 128 bits
 | 
						|
  if('tagLength' in options) {
 | 
						|
    this._tagLength = options.tagLength;
 | 
						|
  } else {
 | 
						|
    this._tagLength = 128;
 | 
						|
  }
 | 
						|
 | 
						|
  // if tag is given, ensure tag matches tag length
 | 
						|
  this._tag = null;
 | 
						|
  if(options.decrypt) {
 | 
						|
    // save tag to check later
 | 
						|
    this._tag = forge.util.createBuffer(options.tag).getBytes();
 | 
						|
    if(this._tag.length !== (this._tagLength / 8)) {
 | 
						|
      throw new Error('Authentication tag does not match tag length.');
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // create tmp storage for hash calculation
 | 
						|
  this._hashBlock = new Array(this._ints);
 | 
						|
 | 
						|
  // no tag generated yet
 | 
						|
  this.tag = null;
 | 
						|
 | 
						|
  // generate hash subkey
 | 
						|
  // (apply block cipher to "zero" block)
 | 
						|
  this._hashSubkey = new Array(this._ints);
 | 
						|
  this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
 | 
						|
 | 
						|
  // generate table M
 | 
						|
  // use 4-bit tables (32 component decomposition of a 16 byte value)
 | 
						|
  // 8-bit tables take more space and are known to have security
 | 
						|
  // vulnerabilities (in native implementations)
 | 
						|
  this.componentBits = 4;
 | 
						|
  this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
 | 
						|
 | 
						|
  // Note: support IV length different from 96 bits? (only supporting
 | 
						|
  // 96 bits is recommended by NIST SP-800-38D)
 | 
						|
  // generate J_0
 | 
						|
  var ivLength = iv.length();
 | 
						|
  if(ivLength === 12) {
 | 
						|
    // 96-bit IV
 | 
						|
    this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
 | 
						|
  } else {
 | 
						|
    // IV is NOT 96-bits
 | 
						|
    this._j0 = [0, 0, 0, 0];
 | 
						|
    while(iv.length() > 0) {
 | 
						|
      this._j0 = this.ghash(
 | 
						|
        this._hashSubkey, this._j0,
 | 
						|
        [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
 | 
						|
    }
 | 
						|
    this._j0 = this.ghash(
 | 
						|
      this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
 | 
						|
  }
 | 
						|
 | 
						|
  // generate ICB (initial counter block)
 | 
						|
  this._inBlock = this._j0.slice(0);
 | 
						|
  inc32(this._inBlock);
 | 
						|
  this._partialBytes = 0;
 | 
						|
 | 
						|
  // consume authentication data
 | 
						|
  additionalData = forge.util.createBuffer(additionalData);
 | 
						|
  // save additional data length as a BE 64-bit number
 | 
						|
  this._aDataLength = from64To32(additionalData.length() * 8);
 | 
						|
  // pad additional data to 128 bit (16 byte) block size
 | 
						|
  var overflow = additionalData.length() % this.blockSize;
 | 
						|
  if(overflow) {
 | 
						|
    additionalData.fillWithByte(0, this.blockSize - overflow);
 | 
						|
  }
 | 
						|
  this._s = [0, 0, 0, 0];
 | 
						|
  while(additionalData.length() > 0) {
 | 
						|
    this._s = this.ghash(this._hashSubkey, this._s, [
 | 
						|
      additionalData.getInt32(),
 | 
						|
      additionalData.getInt32(),
 | 
						|
      additionalData.getInt32(),
 | 
						|
      additionalData.getInt32()
 | 
						|
    ]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.encrypt = function(input, output, finish) {
 | 
						|
  // not enough input to encrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(inputLength === 0) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // handle full block
 | 
						|
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 | 
						|
    // XOR input with output
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      output.putInt32(this._outBlock[i] ^= input.getInt32());
 | 
						|
    }
 | 
						|
    this._cipherLength += this.blockSize;
 | 
						|
  } else {
 | 
						|
    // handle partial block
 | 
						|
    var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 | 
						|
    if(partialBytes > 0) {
 | 
						|
      partialBytes = this.blockSize - partialBytes;
 | 
						|
    }
 | 
						|
 | 
						|
    // XOR input with output
 | 
						|
    this._partialOutput.clear();
 | 
						|
    for(var i = 0; i < this._ints; ++i) {
 | 
						|
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    if(partialBytes <= 0 || finish) {
 | 
						|
      // handle overflow prior to hashing
 | 
						|
      if(finish) {
 | 
						|
        // get block overflow
 | 
						|
        var overflow = inputLength % this.blockSize;
 | 
						|
        this._cipherLength += overflow;
 | 
						|
        // truncate for hash function
 | 
						|
        this._partialOutput.truncate(this.blockSize - overflow);
 | 
						|
      } else {
 | 
						|
        this._cipherLength += this.blockSize;
 | 
						|
      }
 | 
						|
 | 
						|
      // get output block for hashing
 | 
						|
      for(var i = 0; i < this._ints; ++i) {
 | 
						|
        this._outBlock[i] = this._partialOutput.getInt32();
 | 
						|
      }
 | 
						|
      this._partialOutput.read -= this.blockSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // skip any previous partial bytes
 | 
						|
    if(this._partialBytes > 0) {
 | 
						|
      this._partialOutput.getBytes(this._partialBytes);
 | 
						|
    }
 | 
						|
 | 
						|
    if(partialBytes > 0 && !finish) {
 | 
						|
      // block still incomplete, restore input buffer, get partial output,
 | 
						|
      // and return early
 | 
						|
      input.read -= this.blockSize;
 | 
						|
      output.putBytes(this._partialOutput.getBytes(
 | 
						|
        partialBytes - this._partialBytes));
 | 
						|
      this._partialBytes = partialBytes;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    output.putBytes(this._partialOutput.getBytes(
 | 
						|
      inputLength - this._partialBytes));
 | 
						|
    this._partialBytes = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // update hash block S
 | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
 | 
						|
 | 
						|
  // increment counter (input block)
 | 
						|
  inc32(this._inBlock);
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.decrypt = function(input, output, finish) {
 | 
						|
  // not enough input to decrypt
 | 
						|
  var inputLength = input.length();
 | 
						|
  if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // encrypt block (GCM always uses encryption mode)
 | 
						|
  this.cipher.encrypt(this._inBlock, this._outBlock);
 | 
						|
 | 
						|
  // increment counter (input block)
 | 
						|
  inc32(this._inBlock);
 | 
						|
 | 
						|
  // update hash block S
 | 
						|
  this._hashBlock[0] = input.getInt32();
 | 
						|
  this._hashBlock[1] = input.getInt32();
 | 
						|
  this._hashBlock[2] = input.getInt32();
 | 
						|
  this._hashBlock[3] = input.getInt32();
 | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
 | 
						|
 | 
						|
  // XOR hash input with output
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // increment cipher data length
 | 
						|
  if(inputLength < this.blockSize) {
 | 
						|
    this._cipherLength += inputLength % this.blockSize;
 | 
						|
  } else {
 | 
						|
    this._cipherLength += this.blockSize;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.afterFinish = function(output, options) {
 | 
						|
  var rval = true;
 | 
						|
 | 
						|
  // handle overflow
 | 
						|
  if(options.decrypt && options.overflow) {
 | 
						|
    output.truncate(this.blockSize - options.overflow);
 | 
						|
  }
 | 
						|
 | 
						|
  // handle authentication tag
 | 
						|
  this.tag = forge.util.createBuffer();
 | 
						|
 | 
						|
  // concatenate additional data length with cipher length
 | 
						|
  var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
 | 
						|
 | 
						|
  // include lengths in hash
 | 
						|
  this._s = this.ghash(this._hashSubkey, this._s, lengths);
 | 
						|
 | 
						|
  // do GCTR(J_0, S)
 | 
						|
  var tag = [];
 | 
						|
  this.cipher.encrypt(this._j0, tag);
 | 
						|
  for(var i = 0; i < this._ints; ++i) {
 | 
						|
    this.tag.putInt32(this._s[i] ^ tag[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // trim tag to length
 | 
						|
  this.tag.truncate(this.tag.length() % (this._tagLength / 8));
 | 
						|
 | 
						|
  // check authentication tag
 | 
						|
  if(options.decrypt && this.tag.bytes() !== this._tag) {
 | 
						|
    rval = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return rval;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
 | 
						|
 * field multiplication. The field, GF(2^128), is defined by the polynomial:
 | 
						|
 *
 | 
						|
 * x^128 + x^7 + x^2 + x + 1
 | 
						|
 *
 | 
						|
 * Which is represented in little-endian binary form as: 11100001 (0xe1). When
 | 
						|
 * the value of a coefficient is 1, a bit is set. The value R, is the
 | 
						|
 * concatenation of this value and 120 zero bits, yielding a 128-bit value
 | 
						|
 * which matches the block size.
 | 
						|
 *
 | 
						|
 * This function will multiply two elements (vectors of bytes), X and Y, in
 | 
						|
 * the field GF(2^128). The result is initialized to zero. For each bit of
 | 
						|
 * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
 | 
						|
 * by the current value of Y. For each bit, the value of Y will be raised by
 | 
						|
 * a power of x (multiplied by the polynomial x). This can be achieved by
 | 
						|
 * shifting Y once to the right. If the current value of Y, prior to being
 | 
						|
 * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
 | 
						|
 * Otherwise, we must divide by R after shifting to find the remainder.
 | 
						|
 *
 | 
						|
 * @param x the first block to multiply by the second.
 | 
						|
 * @param y the second block to multiply by the first.
 | 
						|
 *
 | 
						|
 * @return the block result of the multiplication.
 | 
						|
 */
 | 
						|
modes.gcm.prototype.multiply = function(x, y) {
 | 
						|
  var z_i = [0, 0, 0, 0];
 | 
						|
  var v_i = y.slice(0);
 | 
						|
 | 
						|
  // calculate Z_128 (block has 128 bits)
 | 
						|
  for(var i = 0; i < 128; ++i) {
 | 
						|
    // if x_i is 0, Z_{i+1} = Z_i (unchanged)
 | 
						|
    // else Z_{i+1} = Z_i ^ V_i
 | 
						|
    // get x_i by finding 32-bit int position, then left shift 1 by remainder
 | 
						|
    var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
 | 
						|
    if(x_i) {
 | 
						|
      z_i[0] ^= v_i[0];
 | 
						|
      z_i[1] ^= v_i[1];
 | 
						|
      z_i[2] ^= v_i[2];
 | 
						|
      z_i[3] ^= v_i[3];
 | 
						|
    }
 | 
						|
 | 
						|
    // if LSB(V_i) is 1, V_i = V_i >> 1
 | 
						|
    // else V_i = (V_i >> 1) ^ R
 | 
						|
    this.pow(v_i, v_i);
 | 
						|
  }
 | 
						|
 | 
						|
  return z_i;
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.pow = function(x, out) {
 | 
						|
  // if LSB(x) is 1, x = x >>> 1
 | 
						|
  // else x = (x >>> 1) ^ R
 | 
						|
  var lsb = x[3] & 1;
 | 
						|
 | 
						|
  // always do x >>> 1:
 | 
						|
  // starting with the rightmost integer, shift each integer to the right
 | 
						|
  // one bit, pulling in the bit from the integer to the left as its top
 | 
						|
  // most bit (do this for the last 3 integers)
 | 
						|
  for(var i = 3; i > 0; --i) {
 | 
						|
    out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
 | 
						|
  }
 | 
						|
  // shift the first integer normally
 | 
						|
  out[0] = x[0] >>> 1;
 | 
						|
 | 
						|
  // if lsb was not set, then polynomial had a degree of 127 and doesn't
 | 
						|
  // need to divided; otherwise, XOR with R to find the remainder; we only
 | 
						|
  // need to XOR the first integer since R technically ends w/120 zero bits
 | 
						|
  if(lsb) {
 | 
						|
    out[0] ^= this._R;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
modes.gcm.prototype.tableMultiply = function(x) {
 | 
						|
  // assumes 4-bit tables are used
 | 
						|
  var z = [0, 0, 0, 0];
 | 
						|
  for(var i = 0; i < 32; ++i) {
 | 
						|
    var idx = (i / 8) | 0;
 | 
						|
    var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
 | 
						|
    var ah = this._m[i][x_i];
 | 
						|
    z[0] ^= ah[0];
 | 
						|
    z[1] ^= ah[1];
 | 
						|
    z[2] ^= ah[2];
 | 
						|
    z[3] ^= ah[3];
 | 
						|
  }
 | 
						|
  return z;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * A continuing version of the GHASH algorithm that operates on a single
 | 
						|
 * block. The hash block, last hash value (Ym) and the new block to hash
 | 
						|
 * are given.
 | 
						|
 *
 | 
						|
 * @param h the hash block.
 | 
						|
 * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
 | 
						|
 * @param x the block to hash.
 | 
						|
 *
 | 
						|
 * @return the hashed value (Ym).
 | 
						|
 */
 | 
						|
modes.gcm.prototype.ghash = function(h, y, x) {
 | 
						|
  y[0] ^= x[0];
 | 
						|
  y[1] ^= x[1];
 | 
						|
  y[2] ^= x[2];
 | 
						|
  y[3] ^= x[3];
 | 
						|
  return this.tableMultiply(y);
 | 
						|
  //return this.multiply(y, h);
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Precomputes a table for multiplying against the hash subkey. This
 | 
						|
 * mechanism provides a substantial speed increase over multiplication
 | 
						|
 * performed without a table. The table-based multiplication this table is
 | 
						|
 * for solves X * H by multiplying each component of X by H and then
 | 
						|
 * composing the results together using XOR.
 | 
						|
 *
 | 
						|
 * This function can be used to generate tables with different bit sizes
 | 
						|
 * for the components, however, this implementation assumes there are
 | 
						|
 * 32 components of X (which is a 16 byte vector), therefore each component
 | 
						|
 * takes 4-bits (so the table is constructed with bits=4).
 | 
						|
 *
 | 
						|
 * @param h the hash subkey.
 | 
						|
 * @param bits the bit size for a component.
 | 
						|
 */
 | 
						|
modes.gcm.prototype.generateHashTable = function(h, bits) {
 | 
						|
  // TODO: There are further optimizations that would use only the
 | 
						|
  // first table M_0 (or some variant) along with a remainder table;
 | 
						|
  // this can be explored in the future
 | 
						|
  var multiplier = 8 / bits;
 | 
						|
  var perInt = 4 * multiplier;
 | 
						|
  var size = 16 * multiplier;
 | 
						|
  var m = new Array(size);
 | 
						|
  for(var i = 0; i < size; ++i) {
 | 
						|
    var tmp = [0, 0, 0, 0];
 | 
						|
    var idx = (i / perInt) | 0;
 | 
						|
    var shft = ((perInt - 1 - (i % perInt)) * bits);
 | 
						|
    tmp[idx] = (1 << (bits - 1)) << shft;
 | 
						|
    m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
 | 
						|
  }
 | 
						|
  return m;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Generates a table for multiplying against the hash subkey for one
 | 
						|
 * particular component (out of all possible component values).
 | 
						|
 *
 | 
						|
 * @param mid the pre-multiplied value for the middle key of the table.
 | 
						|
 * @param bits the bit size for a component.
 | 
						|
 */
 | 
						|
modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
 | 
						|
  // compute the table quickly by minimizing the number of
 | 
						|
  // POW operations -- they only need to be performed for powers of 2,
 | 
						|
  // all other entries can be composed from those powers using XOR
 | 
						|
  var size = 1 << bits;
 | 
						|
  var half = size >>> 1;
 | 
						|
  var m = new Array(size);
 | 
						|
  m[half] = mid.slice(0);
 | 
						|
  var i = half >>> 1;
 | 
						|
  while(i > 0) {
 | 
						|
    // raise m0[2 * i] and store in m0[i]
 | 
						|
    this.pow(m[2 * i], m[i] = []);
 | 
						|
    i >>= 1;
 | 
						|
  }
 | 
						|
  i = 2;
 | 
						|
  while(i < half) {
 | 
						|
    for(var j = 1; j < i; ++j) {
 | 
						|
      var m_i = m[i];
 | 
						|
      var m_j = m[j];
 | 
						|
      m[i + j] = [
 | 
						|
        m_i[0] ^ m_j[0],
 | 
						|
        m_i[1] ^ m_j[1],
 | 
						|
        m_i[2] ^ m_j[2],
 | 
						|
        m_i[3] ^ m_j[3]
 | 
						|
      ];
 | 
						|
    }
 | 
						|
    i *= 2;
 | 
						|
  }
 | 
						|
  m[0] = [0, 0, 0, 0];
 | 
						|
  /* Note: We could avoid storing these by doing composition during multiply
 | 
						|
  calculate top half using composition by speed is preferred. */
 | 
						|
  for(i = half + 1; i < size; ++i) {
 | 
						|
    var c = m[i ^ half];
 | 
						|
    m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
 | 
						|
  }
 | 
						|
  return m;
 | 
						|
};
 | 
						|
 | 
						|
/** Utility functions */
 | 
						|
 | 
						|
function transformIV(iv, blockSize) {
 | 
						|
  if(typeof iv === 'string') {
 | 
						|
    // convert iv string into byte buffer
 | 
						|
    iv = forge.util.createBuffer(iv);
 | 
						|
  }
 | 
						|
 | 
						|
  if(forge.util.isArray(iv) && iv.length > 4) {
 | 
						|
    // convert iv byte array into byte buffer
 | 
						|
    var tmp = iv;
 | 
						|
    iv = forge.util.createBuffer();
 | 
						|
    for(var i = 0; i < tmp.length; ++i) {
 | 
						|
      iv.putByte(tmp[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(iv.length() < blockSize) {
 | 
						|
    throw new Error(
 | 
						|
      'Invalid IV length; got ' + iv.length() +
 | 
						|
      ' bytes and expected ' + blockSize + ' bytes.');
 | 
						|
  }
 | 
						|
 | 
						|
  if(!forge.util.isArray(iv)) {
 | 
						|
    // convert iv byte buffer into 32-bit integer array
 | 
						|
    var ints = [];
 | 
						|
    var blocks = blockSize / 4;
 | 
						|
    for(var i = 0; i < blocks; ++i) {
 | 
						|
      ints.push(iv.getInt32());
 | 
						|
    }
 | 
						|
    iv = ints;
 | 
						|
  }
 | 
						|
 | 
						|
  return iv;
 | 
						|
}
 | 
						|
 | 
						|
function inc32(block) {
 | 
						|
  // increment last 32 bits of block only
 | 
						|
  block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
 | 
						|
}
 | 
						|
 | 
						|
function from64To32(num) {
 | 
						|
  // convert 64-bit number to two BE Int32s
 | 
						|
  return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
 | 
						|
}
 |