You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1358 lines
						
					
					
						
							41 KiB
						
					
					
				
			
		
		
	
	
							1358 lines
						
					
					
						
							41 KiB
						
					
					
				| (function(){
 | |
| 
 | |
|     // Copyright (c) 2005  Tom Wu
 | |
|     // All Rights Reserved.
 | |
|     // See "LICENSE" for details.
 | |
| 
 | |
|     // Basic JavaScript BN library - subset useful for RSA encryption.
 | |
| 
 | |
|     // Bits per digit
 | |
|     var dbits;
 | |
| 
 | |
|     // JavaScript engine analysis
 | |
|     var canary = 0xdeadbeefcafe;
 | |
|     var j_lm = ((canary&0xffffff)==0xefcafe);
 | |
| 
 | |
|     // (public) Constructor
 | |
|     function BigInteger(a,b,c) {
 | |
|       if(a != null)
 | |
|         if("number" == typeof a) this.fromNumber(a,b,c);
 | |
|         else if(b == null && "string" != typeof a) this.fromString(a,256);
 | |
|         else this.fromString(a,b);
 | |
|     }
 | |
| 
 | |
|     // return new, unset BigInteger
 | |
|     function nbi() { return new BigInteger(null); }
 | |
| 
 | |
|     // am: Compute w_j += (x*this_i), propagate carries,
 | |
|     // c is initial carry, returns final carry.
 | |
|     // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
 | |
|     // We need to select the fastest one that works in this environment.
 | |
| 
 | |
|     // am1: use a single mult and divide to get the high bits,
 | |
|     // max digit bits should be 26 because
 | |
|     // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
 | |
|     function am1(i,x,w,j,c,n) {
 | |
|       while(--n >= 0) {
 | |
|         var v = x*this[i++]+w[j]+c;
 | |
|         c = Math.floor(v/0x4000000);
 | |
|         w[j++] = v&0x3ffffff;
 | |
|       }
 | |
|       return c;
 | |
|     }
 | |
|     // am2 avoids a big mult-and-extract completely.
 | |
|     // Max digit bits should be <= 30 because we do bitwise ops
 | |
|     // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
 | |
|     function am2(i,x,w,j,c,n) {
 | |
|       var xl = x&0x7fff, xh = x>>15;
 | |
|       while(--n >= 0) {
 | |
|         var l = this[i]&0x7fff;
 | |
|         var h = this[i++]>>15;
 | |
|         var m = xh*l+h*xl;
 | |
|         l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
 | |
|         c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
 | |
|         w[j++] = l&0x3fffffff;
 | |
|       }
 | |
|       return c;
 | |
|     }
 | |
|     // Alternately, set max digit bits to 28 since some
 | |
|     // browsers slow down when dealing with 32-bit numbers.
 | |
|     function am3(i,x,w,j,c,n) {
 | |
|       var xl = x&0x3fff, xh = x>>14;
 | |
|       while(--n >= 0) {
 | |
|         var l = this[i]&0x3fff;
 | |
|         var h = this[i++]>>14;
 | |
|         var m = xh*l+h*xl;
 | |
|         l = xl*l+((m&0x3fff)<<14)+w[j]+c;
 | |
|         c = (l>>28)+(m>>14)+xh*h;
 | |
|         w[j++] = l&0xfffffff;
 | |
|       }
 | |
|       return c;
 | |
|     }
 | |
|     var inBrowser = typeof navigator !== "undefined";
 | |
|     if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
 | |
|       BigInteger.prototype.am = am2;
 | |
|       dbits = 30;
 | |
|     }
 | |
|     else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
 | |
|       BigInteger.prototype.am = am1;
 | |
|       dbits = 26;
 | |
|     }
 | |
|     else { // Mozilla/Netscape seems to prefer am3
 | |
|       BigInteger.prototype.am = am3;
 | |
|       dbits = 28;
 | |
|     }
 | |
| 
 | |
|     BigInteger.prototype.DB = dbits;
 | |
|     BigInteger.prototype.DM = ((1<<dbits)-1);
 | |
|     BigInteger.prototype.DV = (1<<dbits);
 | |
| 
 | |
|     var BI_FP = 52;
 | |
|     BigInteger.prototype.FV = Math.pow(2,BI_FP);
 | |
|     BigInteger.prototype.F1 = BI_FP-dbits;
 | |
|     BigInteger.prototype.F2 = 2*dbits-BI_FP;
 | |
| 
 | |
|     // Digit conversions
 | |
|     var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
 | |
|     var BI_RC = new Array();
 | |
|     var rr,vv;
 | |
|     rr = "0".charCodeAt(0);
 | |
|     for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
 | |
|     rr = "a".charCodeAt(0);
 | |
|     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
|     rr = "A".charCodeAt(0);
 | |
|     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
| 
 | |
|     function int2char(n) { return BI_RM.charAt(n); }
 | |
|     function intAt(s,i) {
 | |
|       var c = BI_RC[s.charCodeAt(i)];
 | |
|       return (c==null)?-1:c;
 | |
|     }
 | |
| 
 | |
|     // (protected) copy this to r
 | |
|     function bnpCopyTo(r) {
 | |
|       for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
 | |
|       r.t = this.t;
 | |
|       r.s = this.s;
 | |
|     }
 | |
| 
 | |
|     // (protected) set from integer value x, -DV <= x < DV
 | |
|     function bnpFromInt(x) {
 | |
|       this.t = 1;
 | |
|       this.s = (x<0)?-1:0;
 | |
|       if(x > 0) this[0] = x;
 | |
|       else if(x < -1) this[0] = x+this.DV;
 | |
|       else this.t = 0;
 | |
|     }
 | |
| 
 | |
|     // return bigint initialized to value
 | |
|     function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
 | |
| 
 | |
|     // (protected) set from string and radix
 | |
|     function bnpFromString(s,b) {
 | |
|       var k;
 | |
|       if(b == 16) k = 4;
 | |
|       else if(b == 8) k = 3;
 | |
|       else if(b == 256) k = 8; // byte array
 | |
|       else if(b == 2) k = 1;
 | |
|       else if(b == 32) k = 5;
 | |
|       else if(b == 4) k = 2;
 | |
|       else { this.fromRadix(s,b); return; }
 | |
|       this.t = 0;
 | |
|       this.s = 0;
 | |
|       var i = s.length, mi = false, sh = 0;
 | |
|       while(--i >= 0) {
 | |
|         var x = (k==8)?s[i]&0xff:intAt(s,i);
 | |
|         if(x < 0) {
 | |
|           if(s.charAt(i) == "-") mi = true;
 | |
|           continue;
 | |
|         }
 | |
|         mi = false;
 | |
|         if(sh == 0)
 | |
|           this[this.t++] = x;
 | |
|         else if(sh+k > this.DB) {
 | |
|           this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
 | |
|           this[this.t++] = (x>>(this.DB-sh));
 | |
|         }
 | |
|         else
 | |
|           this[this.t-1] |= x<<sh;
 | |
|         sh += k;
 | |
|         if(sh >= this.DB) sh -= this.DB;
 | |
|       }
 | |
|       if(k == 8 && (s[0]&0x80) != 0) {
 | |
|         this.s = -1;
 | |
|         if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
 | |
|       }
 | |
|       this.clamp();
 | |
|       if(mi) BigInteger.ZERO.subTo(this,this);
 | |
|     }
 | |
| 
 | |
|     // (protected) clamp off excess high words
 | |
|     function bnpClamp() {
 | |
|       var c = this.s&this.DM;
 | |
|       while(this.t > 0 && this[this.t-1] == c) --this.t;
 | |
|     }
 | |
| 
 | |
|     // (public) return string representation in given radix
 | |
|     function bnToString(b) {
 | |
|       if(this.s < 0) return "-"+this.negate().toString(b);
 | |
|       var k;
 | |
|       if(b == 16) k = 4;
 | |
|       else if(b == 8) k = 3;
 | |
|       else if(b == 2) k = 1;
 | |
|       else if(b == 32) k = 5;
 | |
|       else if(b == 4) k = 2;
 | |
|       else return this.toRadix(b);
 | |
|       var km = (1<<k)-1, d, m = false, r = "", i = this.t;
 | |
|       var p = this.DB-(i*this.DB)%k;
 | |
|       if(i-- > 0) {
 | |
|         if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
 | |
|         while(i >= 0) {
 | |
|           if(p < k) {
 | |
|             d = (this[i]&((1<<p)-1))<<(k-p);
 | |
|             d |= this[--i]>>(p+=this.DB-k);
 | |
|           }
 | |
|           else {
 | |
|             d = (this[i]>>(p-=k))&km;
 | |
|             if(p <= 0) { p += this.DB; --i; }
 | |
|           }
 | |
|           if(d > 0) m = true;
 | |
|           if(m) r += int2char(d);
 | |
|         }
 | |
|       }
 | |
|       return m?r:"0";
 | |
|     }
 | |
| 
 | |
|     // (public) -this
 | |
|     function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
 | |
| 
 | |
|     // (public) |this|
 | |
|     function bnAbs() { return (this.s<0)?this.negate():this; }
 | |
| 
 | |
|     // (public) return + if this > a, - if this < a, 0 if equal
 | |
|     function bnCompareTo(a) {
 | |
|       var r = this.s-a.s;
 | |
|       if(r != 0) return r;
 | |
|       var i = this.t;
 | |
|       r = i-a.t;
 | |
|       if(r != 0) return (this.s<0)?-r:r;
 | |
|       while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // returns bit length of the integer x
 | |
|     function nbits(x) {
 | |
|       var r = 1, t;
 | |
|       if((t=x>>>16) != 0) { x = t; r += 16; }
 | |
|       if((t=x>>8) != 0) { x = t; r += 8; }
 | |
|       if((t=x>>4) != 0) { x = t; r += 4; }
 | |
|       if((t=x>>2) != 0) { x = t; r += 2; }
 | |
|       if((t=x>>1) != 0) { x = t; r += 1; }
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) return the number of bits in "this"
 | |
|     function bnBitLength() {
 | |
|       if(this.t <= 0) return 0;
 | |
|       return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this << n*DB
 | |
|     function bnpDLShiftTo(n,r) {
 | |
|       var i;
 | |
|       for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
 | |
|       for(i = n-1; i >= 0; --i) r[i] = 0;
 | |
|       r.t = this.t+n;
 | |
|       r.s = this.s;
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this >> n*DB
 | |
|     function bnpDRShiftTo(n,r) {
 | |
|       for(var i = n; i < this.t; ++i) r[i-n] = this[i];
 | |
|       r.t = Math.max(this.t-n,0);
 | |
|       r.s = this.s;
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this << n
 | |
|     function bnpLShiftTo(n,r) {
 | |
|       var bs = n%this.DB;
 | |
|       var cbs = this.DB-bs;
 | |
|       var bm = (1<<cbs)-1;
 | |
|       var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
 | |
|       for(i = this.t-1; i >= 0; --i) {
 | |
|         r[i+ds+1] = (this[i]>>cbs)|c;
 | |
|         c = (this[i]&bm)<<bs;
 | |
|       }
 | |
|       for(i = ds-1; i >= 0; --i) r[i] = 0;
 | |
|       r[ds] = c;
 | |
|       r.t = this.t+ds+1;
 | |
|       r.s = this.s;
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this >> n
 | |
|     function bnpRShiftTo(n,r) {
 | |
|       r.s = this.s;
 | |
|       var ds = Math.floor(n/this.DB);
 | |
|       if(ds >= this.t) { r.t = 0; return; }
 | |
|       var bs = n%this.DB;
 | |
|       var cbs = this.DB-bs;
 | |
|       var bm = (1<<bs)-1;
 | |
|       r[0] = this[ds]>>bs;
 | |
|       for(var i = ds+1; i < this.t; ++i) {
 | |
|         r[i-ds-1] |= (this[i]&bm)<<cbs;
 | |
|         r[i-ds] = this[i]>>bs;
 | |
|       }
 | |
|       if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
 | |
|       r.t = this.t-ds;
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this - a
 | |
|     function bnpSubTo(a,r) {
 | |
|       var i = 0, c = 0, m = Math.min(a.t,this.t);
 | |
|       while(i < m) {
 | |
|         c += this[i]-a[i];
 | |
|         r[i++] = c&this.DM;
 | |
|         c >>= this.DB;
 | |
|       }
 | |
|       if(a.t < this.t) {
 | |
|         c -= a.s;
 | |
|         while(i < this.t) {
 | |
|           c += this[i];
 | |
|           r[i++] = c&this.DM;
 | |
|           c >>= this.DB;
 | |
|         }
 | |
|         c += this.s;
 | |
|       }
 | |
|       else {
 | |
|         c += this.s;
 | |
|         while(i < a.t) {
 | |
|           c -= a[i];
 | |
|           r[i++] = c&this.DM;
 | |
|           c >>= this.DB;
 | |
|         }
 | |
|         c -= a.s;
 | |
|       }
 | |
|       r.s = (c<0)?-1:0;
 | |
|       if(c < -1) r[i++] = this.DV+c;
 | |
|       else if(c > 0) r[i++] = c;
 | |
|       r.t = i;
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this * a, r != this,a (HAC 14.12)
 | |
|     // "this" should be the larger one if appropriate.
 | |
|     function bnpMultiplyTo(a,r) {
 | |
|       var x = this.abs(), y = a.abs();
 | |
|       var i = x.t;
 | |
|       r.t = i+y.t;
 | |
|       while(--i >= 0) r[i] = 0;
 | |
|       for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
 | |
|       r.s = 0;
 | |
|       r.clamp();
 | |
|       if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
 | |
|     }
 | |
| 
 | |
|     // (protected) r = this^2, r != this (HAC 14.16)
 | |
|     function bnpSquareTo(r) {
 | |
|       var x = this.abs();
 | |
|       var i = r.t = 2*x.t;
 | |
|       while(--i >= 0) r[i] = 0;
 | |
|       for(i = 0; i < x.t-1; ++i) {
 | |
|         var c = x.am(i,x[i],r,2*i,0,1);
 | |
|         if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
 | |
|           r[i+x.t] -= x.DV;
 | |
|           r[i+x.t+1] = 1;
 | |
|         }
 | |
|       }
 | |
|       if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
 | |
|       r.s = 0;
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
 | |
|     // r != q, this != m.  q or r may be null.
 | |
|     function bnpDivRemTo(m,q,r) {
 | |
|       var pm = m.abs();
 | |
|       if(pm.t <= 0) return;
 | |
|       var pt = this.abs();
 | |
|       if(pt.t < pm.t) {
 | |
|         if(q != null) q.fromInt(0);
 | |
|         if(r != null) this.copyTo(r);
 | |
|         return;
 | |
|       }
 | |
|       if(r == null) r = nbi();
 | |
|       var y = nbi(), ts = this.s, ms = m.s;
 | |
|       var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus
 | |
|       if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
 | |
|       else { pm.copyTo(y); pt.copyTo(r); }
 | |
|       var ys = y.t;
 | |
|       var y0 = y[ys-1];
 | |
|       if(y0 == 0) return;
 | |
|       var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
 | |
|       var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
 | |
|       var i = r.t, j = i-ys, t = (q==null)?nbi():q;
 | |
|       y.dlShiftTo(j,t);
 | |
|       if(r.compareTo(t) >= 0) {
 | |
|         r[r.t++] = 1;
 | |
|         r.subTo(t,r);
 | |
|       }
 | |
|       BigInteger.ONE.dlShiftTo(ys,t);
 | |
|       t.subTo(y,y);  // "negative" y so we can replace sub with am later
 | |
|       while(y.t < ys) y[y.t++] = 0;
 | |
|       while(--j >= 0) {
 | |
|         // Estimate quotient digit
 | |
|         var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
 | |
|         if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out
 | |
|           y.dlShiftTo(j,t);
 | |
|           r.subTo(t,r);
 | |
|           while(r[i] < --qd) r.subTo(t,r);
 | |
|         }
 | |
|       }
 | |
|       if(q != null) {
 | |
|         r.drShiftTo(ys,q);
 | |
|         if(ts != ms) BigInteger.ZERO.subTo(q,q);
 | |
|       }
 | |
|       r.t = ys;
 | |
|       r.clamp();
 | |
|       if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
 | |
|       if(ts < 0) BigInteger.ZERO.subTo(r,r);
 | |
|     }
 | |
| 
 | |
|     // (public) this mod a
 | |
|     function bnMod(a) {
 | |
|       var r = nbi();
 | |
|       this.abs().divRemTo(a,null,r);
 | |
|       if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // Modular reduction using "classic" algorithm
 | |
|     function Classic(m) { this.m = m; }
 | |
|     function cConvert(x) {
 | |
|       if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
 | |
|       else return x;
 | |
|     }
 | |
|     function cRevert(x) { return x; }
 | |
|     function cReduce(x) { x.divRemTo(this.m,null,x); }
 | |
|     function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
|     function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
|     Classic.prototype.convert = cConvert;
 | |
|     Classic.prototype.revert = cRevert;
 | |
|     Classic.prototype.reduce = cReduce;
 | |
|     Classic.prototype.mulTo = cMulTo;
 | |
|     Classic.prototype.sqrTo = cSqrTo;
 | |
| 
 | |
|     // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
 | |
|     // justification:
 | |
|     //         xy == 1 (mod m)
 | |
|     //         xy =  1+km
 | |
|     //   xy(2-xy) = (1+km)(1-km)
 | |
|     // x[y(2-xy)] = 1-k^2m^2
 | |
|     // x[y(2-xy)] == 1 (mod m^2)
 | |
|     // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
 | |
|     // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
 | |
|     // JS multiply "overflows" differently from C/C++, so care is needed here.
 | |
|     function bnpInvDigit() {
 | |
|       if(this.t < 1) return 0;
 | |
|       var x = this[0];
 | |
|       if((x&1) == 0) return 0;
 | |
|       var y = x&3;       // y == 1/x mod 2^2
 | |
|       y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
 | |
|       y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8
 | |
|       y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
 | |
|       // last step - calculate inverse mod DV directly;
 | |
|       // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
 | |
|       y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits
 | |
|       // we really want the negative inverse, and -DV < y < DV
 | |
|       return (y>0)?this.DV-y:-y;
 | |
|     }
 | |
| 
 | |
|     // Montgomery reduction
 | |
|     function Montgomery(m) {
 | |
|       this.m = m;
 | |
|       this.mp = m.invDigit();
 | |
|       this.mpl = this.mp&0x7fff;
 | |
|       this.mph = this.mp>>15;
 | |
|       this.um = (1<<(m.DB-15))-1;
 | |
|       this.mt2 = 2*m.t;
 | |
|     }
 | |
| 
 | |
|     // xR mod m
 | |
|     function montConvert(x) {
 | |
|       var r = nbi();
 | |
|       x.abs().dlShiftTo(this.m.t,r);
 | |
|       r.divRemTo(this.m,null,r);
 | |
|       if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // x/R mod m
 | |
|     function montRevert(x) {
 | |
|       var r = nbi();
 | |
|       x.copyTo(r);
 | |
|       this.reduce(r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // x = x/R mod m (HAC 14.32)
 | |
|     function montReduce(x) {
 | |
|       while(x.t <= this.mt2) // pad x so am has enough room later
 | |
|         x[x.t++] = 0;
 | |
|       for(var i = 0; i < this.m.t; ++i) {
 | |
|         // faster way of calculating u0 = x[i]*mp mod DV
 | |
|         var j = x[i]&0x7fff;
 | |
|         var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
 | |
|         // use am to combine the multiply-shift-add into one call
 | |
|         j = i+this.m.t;
 | |
|         x[j] += this.m.am(0,u0,x,i,0,this.m.t);
 | |
|         // propagate carry
 | |
|         while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
 | |
|       }
 | |
|       x.clamp();
 | |
|       x.drShiftTo(this.m.t,x);
 | |
|       if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
 | |
|     }
 | |
| 
 | |
|     // r = "x^2/R mod m"; x != r
 | |
|     function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
|     // r = "xy/R mod m"; x,y != r
 | |
|     function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
| 
 | |
|     Montgomery.prototype.convert = montConvert;
 | |
|     Montgomery.prototype.revert = montRevert;
 | |
|     Montgomery.prototype.reduce = montReduce;
 | |
|     Montgomery.prototype.mulTo = montMulTo;
 | |
|     Montgomery.prototype.sqrTo = montSqrTo;
 | |
| 
 | |
|     // (protected) true iff this is even
 | |
|     function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
 | |
| 
 | |
|     // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
 | |
|     function bnpExp(e,z) {
 | |
|       if(e > 0xffffffff || e < 1) return BigInteger.ONE;
 | |
|       var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
 | |
|       g.copyTo(r);
 | |
|       while(--i >= 0) {
 | |
|         z.sqrTo(r,r2);
 | |
|         if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
 | |
|         else { var t = r; r = r2; r2 = t; }
 | |
|       }
 | |
|       return z.revert(r);
 | |
|     }
 | |
| 
 | |
|     // (public) this^e % m, 0 <= e < 2^32
 | |
|     function bnModPowInt(e,m) {
 | |
|       var z;
 | |
|       if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
 | |
|       return this.exp(e,z);
 | |
|     }
 | |
| 
 | |
|     // protected
 | |
|     BigInteger.prototype.copyTo = bnpCopyTo;
 | |
|     BigInteger.prototype.fromInt = bnpFromInt;
 | |
|     BigInteger.prototype.fromString = bnpFromString;
 | |
|     BigInteger.prototype.clamp = bnpClamp;
 | |
|     BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
 | |
|     BigInteger.prototype.drShiftTo = bnpDRShiftTo;
 | |
|     BigInteger.prototype.lShiftTo = bnpLShiftTo;
 | |
|     BigInteger.prototype.rShiftTo = bnpRShiftTo;
 | |
|     BigInteger.prototype.subTo = bnpSubTo;
 | |
|     BigInteger.prototype.multiplyTo = bnpMultiplyTo;
 | |
|     BigInteger.prototype.squareTo = bnpSquareTo;
 | |
|     BigInteger.prototype.divRemTo = bnpDivRemTo;
 | |
|     BigInteger.prototype.invDigit = bnpInvDigit;
 | |
|     BigInteger.prototype.isEven = bnpIsEven;
 | |
|     BigInteger.prototype.exp = bnpExp;
 | |
| 
 | |
|     // public
 | |
|     BigInteger.prototype.toString = bnToString;
 | |
|     BigInteger.prototype.negate = bnNegate;
 | |
|     BigInteger.prototype.abs = bnAbs;
 | |
|     BigInteger.prototype.compareTo = bnCompareTo;
 | |
|     BigInteger.prototype.bitLength = bnBitLength;
 | |
|     BigInteger.prototype.mod = bnMod;
 | |
|     BigInteger.prototype.modPowInt = bnModPowInt;
 | |
| 
 | |
|     // "constants"
 | |
|     BigInteger.ZERO = nbv(0);
 | |
|     BigInteger.ONE = nbv(1);
 | |
| 
 | |
|     // Copyright (c) 2005-2009  Tom Wu
 | |
|     // All Rights Reserved.
 | |
|     // See "LICENSE" for details.
 | |
| 
 | |
|     // Extended JavaScript BN functions, required for RSA private ops.
 | |
| 
 | |
|     // Version 1.1: new BigInteger("0", 10) returns "proper" zero
 | |
|     // Version 1.2: square() API, isProbablePrime fix
 | |
| 
 | |
|     // (public)
 | |
|     function bnClone() { var r = nbi(); this.copyTo(r); return r; }
 | |
| 
 | |
|     // (public) return value as integer
 | |
|     function bnIntValue() {
 | |
|       if(this.s < 0) {
 | |
|         if(this.t == 1) return this[0]-this.DV;
 | |
|         else if(this.t == 0) return -1;
 | |
|       }
 | |
|       else if(this.t == 1) return this[0];
 | |
|       else if(this.t == 0) return 0;
 | |
|       // assumes 16 < DB < 32
 | |
|       return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
 | |
|     }
 | |
| 
 | |
|     // (public) return value as byte
 | |
|     function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
 | |
| 
 | |
|     // (public) return value as short (assumes DB>=16)
 | |
|     function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
 | |
| 
 | |
|     // (protected) return x s.t. r^x < DV
 | |
|     function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
 | |
| 
 | |
|     // (public) 0 if this == 0, 1 if this > 0
 | |
|     function bnSigNum() {
 | |
|       if(this.s < 0) return -1;
 | |
|       else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
 | |
|       else return 1;
 | |
|     }
 | |
| 
 | |
|     // (protected) convert to radix string
 | |
|     function bnpToRadix(b) {
 | |
|       if(b == null) b = 10;
 | |
|       if(this.signum() == 0 || b < 2 || b > 36) return "0";
 | |
|       var cs = this.chunkSize(b);
 | |
|       var a = Math.pow(b,cs);
 | |
|       var d = nbv(a), y = nbi(), z = nbi(), r = "";
 | |
|       this.divRemTo(d,y,z);
 | |
|       while(y.signum() > 0) {
 | |
|         r = (a+z.intValue()).toString(b).substr(1) + r;
 | |
|         y.divRemTo(d,y,z);
 | |
|       }
 | |
|       return z.intValue().toString(b) + r;
 | |
|     }
 | |
| 
 | |
|     // (protected) convert from radix string
 | |
|     function bnpFromRadix(s,b) {
 | |
|       this.fromInt(0);
 | |
|       if(b == null) b = 10;
 | |
|       var cs = this.chunkSize(b);
 | |
|       var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
 | |
|       for(var i = 0; i < s.length; ++i) {
 | |
|         var x = intAt(s,i);
 | |
|         if(x < 0) {
 | |
|           if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
 | |
|           continue;
 | |
|         }
 | |
|         w = b*w+x;
 | |
|         if(++j >= cs) {
 | |
|           this.dMultiply(d);
 | |
|           this.dAddOffset(w,0);
 | |
|           j = 0;
 | |
|           w = 0;
 | |
|         }
 | |
|       }
 | |
|       if(j > 0) {
 | |
|         this.dMultiply(Math.pow(b,j));
 | |
|         this.dAddOffset(w,0);
 | |
|       }
 | |
|       if(mi) BigInteger.ZERO.subTo(this,this);
 | |
|     }
 | |
| 
 | |
|     // (protected) alternate constructor
 | |
|     function bnpFromNumber(a,b,c) {
 | |
|       if("number" == typeof b) {
 | |
|         // new BigInteger(int,int,RNG)
 | |
|         if(a < 2) this.fromInt(1);
 | |
|         else {
 | |
|           this.fromNumber(a,c);
 | |
|           if(!this.testBit(a-1))	// force MSB set
 | |
|             this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
 | |
|           if(this.isEven()) this.dAddOffset(1,0); // force odd
 | |
|           while(!this.isProbablePrime(b)) {
 | |
|             this.dAddOffset(2,0);
 | |
|             if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         // new BigInteger(int,RNG)
 | |
|         var x = new Array(), t = a&7;
 | |
|         x.length = (a>>3)+1;
 | |
|         b.nextBytes(x);
 | |
|         if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
 | |
|         this.fromString(x,256);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (public) convert to bigendian byte array
 | |
|     function bnToByteArray() {
 | |
|       var i = this.t, r = new Array();
 | |
|       r[0] = this.s;
 | |
|       var p = this.DB-(i*this.DB)%8, d, k = 0;
 | |
|       if(i-- > 0) {
 | |
|         if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
 | |
|           r[k++] = d|(this.s<<(this.DB-p));
 | |
|         while(i >= 0) {
 | |
|           if(p < 8) {
 | |
|             d = (this[i]&((1<<p)-1))<<(8-p);
 | |
|             d |= this[--i]>>(p+=this.DB-8);
 | |
|           }
 | |
|           else {
 | |
|             d = (this[i]>>(p-=8))&0xff;
 | |
|             if(p <= 0) { p += this.DB; --i; }
 | |
|           }
 | |
|           if((d&0x80) != 0) d |= -256;
 | |
|           if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
 | |
|           if(k > 0 || d != this.s) r[k++] = d;
 | |
|         }
 | |
|       }
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     function bnEquals(a) { return(this.compareTo(a)==0); }
 | |
|     function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
 | |
|     function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
 | |
| 
 | |
|     // (protected) r = this op a (bitwise)
 | |
|     function bnpBitwiseTo(a,op,r) {
 | |
|       var i, f, m = Math.min(a.t,this.t);
 | |
|       for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
 | |
|       if(a.t < this.t) {
 | |
|         f = a.s&this.DM;
 | |
|         for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
 | |
|         r.t = this.t;
 | |
|       }
 | |
|       else {
 | |
|         f = this.s&this.DM;
 | |
|         for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
 | |
|         r.t = a.t;
 | |
|       }
 | |
|       r.s = op(this.s,a.s);
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (public) this & a
 | |
|     function op_and(x,y) { return x&y; }
 | |
|     function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
 | |
| 
 | |
|     // (public) this | a
 | |
|     function op_or(x,y) { return x|y; }
 | |
|     function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
 | |
| 
 | |
|     // (public) this ^ a
 | |
|     function op_xor(x,y) { return x^y; }
 | |
|     function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
 | |
| 
 | |
|     // (public) this & ~a
 | |
|     function op_andnot(x,y) { return x&~y; }
 | |
|     function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
 | |
| 
 | |
|     // (public) ~this
 | |
|     function bnNot() {
 | |
|       var r = nbi();
 | |
|       for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
 | |
|       r.t = this.t;
 | |
|       r.s = ~this.s;
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) this << n
 | |
|     function bnShiftLeft(n) {
 | |
|       var r = nbi();
 | |
|       if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) this >> n
 | |
|     function bnShiftRight(n) {
 | |
|       var r = nbi();
 | |
|       if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // return index of lowest 1-bit in x, x < 2^31
 | |
|     function lbit(x) {
 | |
|       if(x == 0) return -1;
 | |
|       var r = 0;
 | |
|       if((x&0xffff) == 0) { x >>= 16; r += 16; }
 | |
|       if((x&0xff) == 0) { x >>= 8; r += 8; }
 | |
|       if((x&0xf) == 0) { x >>= 4; r += 4; }
 | |
|       if((x&3) == 0) { x >>= 2; r += 2; }
 | |
|       if((x&1) == 0) ++r;
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) returns index of lowest 1-bit (or -1 if none)
 | |
|     function bnGetLowestSetBit() {
 | |
|       for(var i = 0; i < this.t; ++i)
 | |
|         if(this[i] != 0) return i*this.DB+lbit(this[i]);
 | |
|       if(this.s < 0) return this.t*this.DB;
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     // return number of 1 bits in x
 | |
|     function cbit(x) {
 | |
|       var r = 0;
 | |
|       while(x != 0) { x &= x-1; ++r; }
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) return number of set bits
 | |
|     function bnBitCount() {
 | |
|       var r = 0, x = this.s&this.DM;
 | |
|       for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) true iff nth bit is set
 | |
|     function bnTestBit(n) {
 | |
|       var j = Math.floor(n/this.DB);
 | |
|       if(j >= this.t) return(this.s!=0);
 | |
|       return((this[j]&(1<<(n%this.DB)))!=0);
 | |
|     }
 | |
| 
 | |
|     // (protected) this op (1<<n)
 | |
|     function bnpChangeBit(n,op) {
 | |
|       var r = BigInteger.ONE.shiftLeft(n);
 | |
|       this.bitwiseTo(r,op,r);
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) this | (1<<n)
 | |
|     function bnSetBit(n) { return this.changeBit(n,op_or); }
 | |
| 
 | |
|     // (public) this & ~(1<<n)
 | |
|     function bnClearBit(n) { return this.changeBit(n,op_andnot); }
 | |
| 
 | |
|     // (public) this ^ (1<<n)
 | |
|     function bnFlipBit(n) { return this.changeBit(n,op_xor); }
 | |
| 
 | |
|     // (protected) r = this + a
 | |
|     function bnpAddTo(a,r) {
 | |
|       var i = 0, c = 0, m = Math.min(a.t,this.t);
 | |
|       while(i < m) {
 | |
|         c += this[i]+a[i];
 | |
|         r[i++] = c&this.DM;
 | |
|         c >>= this.DB;
 | |
|       }
 | |
|       if(a.t < this.t) {
 | |
|         c += a.s;
 | |
|         while(i < this.t) {
 | |
|           c += this[i];
 | |
|           r[i++] = c&this.DM;
 | |
|           c >>= this.DB;
 | |
|         }
 | |
|         c += this.s;
 | |
|       }
 | |
|       else {
 | |
|         c += this.s;
 | |
|         while(i < a.t) {
 | |
|           c += a[i];
 | |
|           r[i++] = c&this.DM;
 | |
|           c >>= this.DB;
 | |
|         }
 | |
|         c += a.s;
 | |
|       }
 | |
|       r.s = (c<0)?-1:0;
 | |
|       if(c > 0) r[i++] = c;
 | |
|       else if(c < -1) r[i++] = this.DV+c;
 | |
|       r.t = i;
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (public) this + a
 | |
|     function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
 | |
| 
 | |
|     // (public) this - a
 | |
|     function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
 | |
| 
 | |
|     // (public) this * a
 | |
|     function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
 | |
| 
 | |
|     // (public) this^2
 | |
|     function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
 | |
| 
 | |
|     // (public) this / a
 | |
|     function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
 | |
| 
 | |
|     // (public) this % a
 | |
|     function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
 | |
| 
 | |
|     // (public) [this/a,this%a]
 | |
|     function bnDivideAndRemainder(a) {
 | |
|       var q = nbi(), r = nbi();
 | |
|       this.divRemTo(a,q,r);
 | |
|       return new Array(q,r);
 | |
|     }
 | |
| 
 | |
|     // (protected) this *= n, this >= 0, 1 < n < DV
 | |
|     function bnpDMultiply(n) {
 | |
|       this[this.t] = this.am(0,n-1,this,0,0,this.t);
 | |
|       ++this.t;
 | |
|       this.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) this += n << w words, this >= 0
 | |
|     function bnpDAddOffset(n,w) {
 | |
|       if(n == 0) return;
 | |
|       while(this.t <= w) this[this.t++] = 0;
 | |
|       this[w] += n;
 | |
|       while(this[w] >= this.DV) {
 | |
|         this[w] -= this.DV;
 | |
|         if(++w >= this.t) this[this.t++] = 0;
 | |
|         ++this[w];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // A "null" reducer
 | |
|     function NullExp() {}
 | |
|     function nNop(x) { return x; }
 | |
|     function nMulTo(x,y,r) { x.multiplyTo(y,r); }
 | |
|     function nSqrTo(x,r) { x.squareTo(r); }
 | |
| 
 | |
|     NullExp.prototype.convert = nNop;
 | |
|     NullExp.prototype.revert = nNop;
 | |
|     NullExp.prototype.mulTo = nMulTo;
 | |
|     NullExp.prototype.sqrTo = nSqrTo;
 | |
| 
 | |
|     // (public) this^e
 | |
|     function bnPow(e) { return this.exp(e,new NullExp()); }
 | |
| 
 | |
|     // (protected) r = lower n words of "this * a", a.t <= n
 | |
|     // "this" should be the larger one if appropriate.
 | |
|     function bnpMultiplyLowerTo(a,n,r) {
 | |
|       var i = Math.min(this.t+a.t,n);
 | |
|       r.s = 0; // assumes a,this >= 0
 | |
|       r.t = i;
 | |
|       while(i > 0) r[--i] = 0;
 | |
|       var j;
 | |
|       for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
 | |
|       for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
 | |
|       r.clamp();
 | |
|     }
 | |
| 
 | |
|     // (protected) r = "this * a" without lower n words, n > 0
 | |
|     // "this" should be the larger one if appropriate.
 | |
|     function bnpMultiplyUpperTo(a,n,r) {
 | |
|       --n;
 | |
|       var i = r.t = this.t+a.t-n;
 | |
|       r.s = 0; // assumes a,this >= 0
 | |
|       while(--i >= 0) r[i] = 0;
 | |
|       for(i = Math.max(n-this.t,0); i < a.t; ++i)
 | |
|         r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
 | |
|       r.clamp();
 | |
|       r.drShiftTo(1,r);
 | |
|     }
 | |
| 
 | |
|     // Barrett modular reduction
 | |
|     function Barrett(m) {
 | |
|       // setup Barrett
 | |
|       this.r2 = nbi();
 | |
|       this.q3 = nbi();
 | |
|       BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
 | |
|       this.mu = this.r2.divide(m);
 | |
|       this.m = m;
 | |
|     }
 | |
| 
 | |
|     function barrettConvert(x) {
 | |
|       if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
 | |
|       else if(x.compareTo(this.m) < 0) return x;
 | |
|       else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
 | |
|     }
 | |
| 
 | |
|     function barrettRevert(x) { return x; }
 | |
| 
 | |
|     // x = x mod m (HAC 14.42)
 | |
|     function barrettReduce(x) {
 | |
|       x.drShiftTo(this.m.t-1,this.r2);
 | |
|       if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
 | |
|       this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
 | |
|       this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
 | |
|       while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
 | |
|       x.subTo(this.r2,x);
 | |
|       while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
 | |
|     }
 | |
| 
 | |
|     // r = x^2 mod m; x != r
 | |
|     function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
|     // r = x*y mod m; x,y != r
 | |
|     function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
| 
 | |
|     Barrett.prototype.convert = barrettConvert;
 | |
|     Barrett.prototype.revert = barrettRevert;
 | |
|     Barrett.prototype.reduce = barrettReduce;
 | |
|     Barrett.prototype.mulTo = barrettMulTo;
 | |
|     Barrett.prototype.sqrTo = barrettSqrTo;
 | |
| 
 | |
|     // (public) this^e % m (HAC 14.85)
 | |
|     function bnModPow(e,m) {
 | |
|       var i = e.bitLength(), k, r = nbv(1), z;
 | |
|       if(i <= 0) return r;
 | |
|       else if(i < 18) k = 1;
 | |
|       else if(i < 48) k = 3;
 | |
|       else if(i < 144) k = 4;
 | |
|       else if(i < 768) k = 5;
 | |
|       else k = 6;
 | |
|       if(i < 8)
 | |
|         z = new Classic(m);
 | |
|       else if(m.isEven())
 | |
|         z = new Barrett(m);
 | |
|       else
 | |
|         z = new Montgomery(m);
 | |
| 
 | |
|       // precomputation
 | |
|       var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
 | |
|       g[1] = z.convert(this);
 | |
|       if(k > 1) {
 | |
|         var g2 = nbi();
 | |
|         z.sqrTo(g[1],g2);
 | |
|         while(n <= km) {
 | |
|           g[n] = nbi();
 | |
|           z.mulTo(g2,g[n-2],g[n]);
 | |
|           n += 2;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       var j = e.t-1, w, is1 = true, r2 = nbi(), t;
 | |
|       i = nbits(e[j])-1;
 | |
|       while(j >= 0) {
 | |
|         if(i >= k1) w = (e[j]>>(i-k1))&km;
 | |
|         else {
 | |
|           w = (e[j]&((1<<(i+1))-1))<<(k1-i);
 | |
|           if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
 | |
|         }
 | |
| 
 | |
|         n = k;
 | |
|         while((w&1) == 0) { w >>= 1; --n; }
 | |
|         if((i -= n) < 0) { i += this.DB; --j; }
 | |
|         if(is1) {	// ret == 1, don't bother squaring or multiplying it
 | |
|           g[w].copyTo(r);
 | |
|           is1 = false;
 | |
|         }
 | |
|         else {
 | |
|           while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
 | |
|           if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
 | |
|           z.mulTo(r2,g[w],r);
 | |
|         }
 | |
| 
 | |
|         while(j >= 0 && (e[j]&(1<<i)) == 0) {
 | |
|           z.sqrTo(r,r2); t = r; r = r2; r2 = t;
 | |
|           if(--i < 0) { i = this.DB-1; --j; }
 | |
|         }
 | |
|       }
 | |
|       return z.revert(r);
 | |
|     }
 | |
| 
 | |
|     // (public) gcd(this,a) (HAC 14.54)
 | |
|     function bnGCD(a) {
 | |
|       var x = (this.s<0)?this.negate():this.clone();
 | |
|       var y = (a.s<0)?a.negate():a.clone();
 | |
|       if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
 | |
|       var i = x.getLowestSetBit(), g = y.getLowestSetBit();
 | |
|       if(g < 0) return x;
 | |
|       if(i < g) g = i;
 | |
|       if(g > 0) {
 | |
|         x.rShiftTo(g,x);
 | |
|         y.rShiftTo(g,y);
 | |
|       }
 | |
|       while(x.signum() > 0) {
 | |
|         if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
 | |
|         if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
 | |
|         if(x.compareTo(y) >= 0) {
 | |
|           x.subTo(y,x);
 | |
|           x.rShiftTo(1,x);
 | |
|         }
 | |
|         else {
 | |
|           y.subTo(x,y);
 | |
|           y.rShiftTo(1,y);
 | |
|         }
 | |
|       }
 | |
|       if(g > 0) y.lShiftTo(g,y);
 | |
|       return y;
 | |
|     }
 | |
| 
 | |
|     // (protected) this % n, n < 2^26
 | |
|     function bnpModInt(n) {
 | |
|       if(n <= 0) return 0;
 | |
|       var d = this.DV%n, r = (this.s<0)?n-1:0;
 | |
|       if(this.t > 0)
 | |
|         if(d == 0) r = this[0]%n;
 | |
|         else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     // (public) 1/this % m (HAC 14.61)
 | |
|     function bnModInverse(m) {
 | |
|       var ac = m.isEven();
 | |
|       if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
 | |
|       var u = m.clone(), v = this.clone();
 | |
|       var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
 | |
|       while(u.signum() != 0) {
 | |
|         while(u.isEven()) {
 | |
|           u.rShiftTo(1,u);
 | |
|           if(ac) {
 | |
|             if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
 | |
|             a.rShiftTo(1,a);
 | |
|           }
 | |
|           else if(!b.isEven()) b.subTo(m,b);
 | |
|           b.rShiftTo(1,b);
 | |
|         }
 | |
|         while(v.isEven()) {
 | |
|           v.rShiftTo(1,v);
 | |
|           if(ac) {
 | |
|             if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
 | |
|             c.rShiftTo(1,c);
 | |
|           }
 | |
|           else if(!d.isEven()) d.subTo(m,d);
 | |
|           d.rShiftTo(1,d);
 | |
|         }
 | |
|         if(u.compareTo(v) >= 0) {
 | |
|           u.subTo(v,u);
 | |
|           if(ac) a.subTo(c,a);
 | |
|           b.subTo(d,b);
 | |
|         }
 | |
|         else {
 | |
|           v.subTo(u,v);
 | |
|           if(ac) c.subTo(a,c);
 | |
|           d.subTo(b,d);
 | |
|         }
 | |
|       }
 | |
|       if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
 | |
|       if(d.compareTo(m) >= 0) return d.subtract(m);
 | |
|       if(d.signum() < 0) d.addTo(m,d); else return d;
 | |
|       if(d.signum() < 0) return d.add(m); else return d;
 | |
|     }
 | |
| 
 | |
|     var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
 | |
|     var lplim = (1<<26)/lowprimes[lowprimes.length-1];
 | |
| 
 | |
|     // (public) test primality with certainty >= 1-.5^t
 | |
|     function bnIsProbablePrime(t) {
 | |
|       var i, x = this.abs();
 | |
|       if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
 | |
|         for(i = 0; i < lowprimes.length; ++i)
 | |
|           if(x[0] == lowprimes[i]) return true;
 | |
|         return false;
 | |
|       }
 | |
|       if(x.isEven()) return false;
 | |
|       i = 1;
 | |
|       while(i < lowprimes.length) {
 | |
|         var m = lowprimes[i], j = i+1;
 | |
|         while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
 | |
|         m = x.modInt(m);
 | |
|         while(i < j) if(m%lowprimes[i++] == 0) return false;
 | |
|       }
 | |
|       return x.millerRabin(t);
 | |
|     }
 | |
| 
 | |
|     // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
 | |
|     function bnpMillerRabin(t) {
 | |
|       var n1 = this.subtract(BigInteger.ONE);
 | |
|       var k = n1.getLowestSetBit();
 | |
|       if(k <= 0) return false;
 | |
|       var r = n1.shiftRight(k);
 | |
|       t = (t+1)>>1;
 | |
|       if(t > lowprimes.length) t = lowprimes.length;
 | |
|       var a = nbi();
 | |
|       for(var i = 0; i < t; ++i) {
 | |
|         //Pick bases at random, instead of starting at 2
 | |
|         a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
 | |
|         var y = a.modPow(r,this);
 | |
|         if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
 | |
|           var j = 1;
 | |
|           while(j++ < k && y.compareTo(n1) != 0) {
 | |
|             y = y.modPowInt(2,this);
 | |
|             if(y.compareTo(BigInteger.ONE) == 0) return false;
 | |
|           }
 | |
|           if(y.compareTo(n1) != 0) return false;
 | |
|         }
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // protected
 | |
|     BigInteger.prototype.chunkSize = bnpChunkSize;
 | |
|     BigInteger.prototype.toRadix = bnpToRadix;
 | |
|     BigInteger.prototype.fromRadix = bnpFromRadix;
 | |
|     BigInteger.prototype.fromNumber = bnpFromNumber;
 | |
|     BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
 | |
|     BigInteger.prototype.changeBit = bnpChangeBit;
 | |
|     BigInteger.prototype.addTo = bnpAddTo;
 | |
|     BigInteger.prototype.dMultiply = bnpDMultiply;
 | |
|     BigInteger.prototype.dAddOffset = bnpDAddOffset;
 | |
|     BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
 | |
|     BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
 | |
|     BigInteger.prototype.modInt = bnpModInt;
 | |
|     BigInteger.prototype.millerRabin = bnpMillerRabin;
 | |
| 
 | |
|     // public
 | |
|     BigInteger.prototype.clone = bnClone;
 | |
|     BigInteger.prototype.intValue = bnIntValue;
 | |
|     BigInteger.prototype.byteValue = bnByteValue;
 | |
|     BigInteger.prototype.shortValue = bnShortValue;
 | |
|     BigInteger.prototype.signum = bnSigNum;
 | |
|     BigInteger.prototype.toByteArray = bnToByteArray;
 | |
|     BigInteger.prototype.equals = bnEquals;
 | |
|     BigInteger.prototype.min = bnMin;
 | |
|     BigInteger.prototype.max = bnMax;
 | |
|     BigInteger.prototype.and = bnAnd;
 | |
|     BigInteger.prototype.or = bnOr;
 | |
|     BigInteger.prototype.xor = bnXor;
 | |
|     BigInteger.prototype.andNot = bnAndNot;
 | |
|     BigInteger.prototype.not = bnNot;
 | |
|     BigInteger.prototype.shiftLeft = bnShiftLeft;
 | |
|     BigInteger.prototype.shiftRight = bnShiftRight;
 | |
|     BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
 | |
|     BigInteger.prototype.bitCount = bnBitCount;
 | |
|     BigInteger.prototype.testBit = bnTestBit;
 | |
|     BigInteger.prototype.setBit = bnSetBit;
 | |
|     BigInteger.prototype.clearBit = bnClearBit;
 | |
|     BigInteger.prototype.flipBit = bnFlipBit;
 | |
|     BigInteger.prototype.add = bnAdd;
 | |
|     BigInteger.prototype.subtract = bnSubtract;
 | |
|     BigInteger.prototype.multiply = bnMultiply;
 | |
|     BigInteger.prototype.divide = bnDivide;
 | |
|     BigInteger.prototype.remainder = bnRemainder;
 | |
|     BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
 | |
|     BigInteger.prototype.modPow = bnModPow;
 | |
|     BigInteger.prototype.modInverse = bnModInverse;
 | |
|     BigInteger.prototype.pow = bnPow;
 | |
|     BigInteger.prototype.gcd = bnGCD;
 | |
|     BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
 | |
| 
 | |
|     // JSBN-specific extension
 | |
|     BigInteger.prototype.square = bnSquare;
 | |
| 
 | |
|     // Expose the Barrett function
 | |
|     BigInteger.prototype.Barrett = Barrett
 | |
| 
 | |
|     // BigInteger interfaces not implemented in jsbn:
 | |
| 
 | |
|     // BigInteger(int signum, byte[] magnitude)
 | |
|     // double doubleValue()
 | |
|     // float floatValue()
 | |
|     // int hashCode()
 | |
|     // long longValue()
 | |
|     // static BigInteger valueOf(long val)
 | |
| 
 | |
| 	// Random number generator - requires a PRNG backend, e.g. prng4.js
 | |
| 
 | |
| 	// For best results, put code like
 | |
| 	// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
 | |
| 	// in your main HTML document.
 | |
| 
 | |
| 	var rng_state;
 | |
| 	var rng_pool;
 | |
| 	var rng_pptr;
 | |
| 
 | |
| 	// Mix in a 32-bit integer into the pool
 | |
| 	function rng_seed_int(x) {
 | |
| 	  rng_pool[rng_pptr++] ^= x & 255;
 | |
| 	  rng_pool[rng_pptr++] ^= (x >> 8) & 255;
 | |
| 	  rng_pool[rng_pptr++] ^= (x >> 16) & 255;
 | |
| 	  rng_pool[rng_pptr++] ^= (x >> 24) & 255;
 | |
| 	  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
 | |
| 	}
 | |
| 
 | |
| 	// Mix in the current time (w/milliseconds) into the pool
 | |
| 	function rng_seed_time() {
 | |
| 	  rng_seed_int(new Date().getTime());
 | |
| 	}
 | |
| 
 | |
| 	// Initialize the pool with junk if needed.
 | |
| 	if(rng_pool == null) {
 | |
| 	  rng_pool = new Array();
 | |
| 	  rng_pptr = 0;
 | |
| 	  var t;
 | |
| 	  if(typeof window !== "undefined" && window.crypto) {
 | |
| 		if (window.crypto.getRandomValues) {
 | |
| 		  // Use webcrypto if available
 | |
| 		  var ua = new Uint8Array(32);
 | |
| 		  window.crypto.getRandomValues(ua);
 | |
| 		  for(t = 0; t < 32; ++t)
 | |
| 			rng_pool[rng_pptr++] = ua[t];
 | |
| 		}
 | |
| 		else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
 | |
| 		  // Extract entropy (256 bits) from NS4 RNG if available
 | |
| 		  var z = window.crypto.random(32);
 | |
| 		  for(t = 0; t < z.length; ++t)
 | |
| 			rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
 | |
| 		}
 | |
| 	  }
 | |
| 	  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
 | |
| 		t = Math.floor(65536 * Math.random());
 | |
| 		rng_pool[rng_pptr++] = t >>> 8;
 | |
| 		rng_pool[rng_pptr++] = t & 255;
 | |
| 	  }
 | |
| 	  rng_pptr = 0;
 | |
| 	  rng_seed_time();
 | |
| 	  //rng_seed_int(window.screenX);
 | |
| 	  //rng_seed_int(window.screenY);
 | |
| 	}
 | |
| 
 | |
| 	function rng_get_byte() {
 | |
| 	  if(rng_state == null) {
 | |
| 		rng_seed_time();
 | |
| 		rng_state = prng_newstate();
 | |
| 		rng_state.init(rng_pool);
 | |
| 		for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
 | |
| 		  rng_pool[rng_pptr] = 0;
 | |
| 		rng_pptr = 0;
 | |
| 		//rng_pool = null;
 | |
| 	  }
 | |
| 	  // TODO: allow reseeding after first request
 | |
| 	  return rng_state.next();
 | |
| 	}
 | |
| 
 | |
| 	function rng_get_bytes(ba) {
 | |
| 	  var i;
 | |
| 	  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
 | |
| 	}
 | |
| 
 | |
| 	function SecureRandom() {}
 | |
| 
 | |
| 	SecureRandom.prototype.nextBytes = rng_get_bytes;
 | |
| 
 | |
| 	// prng4.js - uses Arcfour as a PRNG
 | |
| 
 | |
| 	function Arcfour() {
 | |
| 	  this.i = 0;
 | |
| 	  this.j = 0;
 | |
| 	  this.S = new Array();
 | |
| 	}
 | |
| 
 | |
| 	// Initialize arcfour context from key, an array of ints, each from [0..255]
 | |
| 	function ARC4init(key) {
 | |
| 	  var i, j, t;
 | |
| 	  for(i = 0; i < 256; ++i)
 | |
| 		this.S[i] = i;
 | |
| 	  j = 0;
 | |
| 	  for(i = 0; i < 256; ++i) {
 | |
| 		j = (j + this.S[i] + key[i % key.length]) & 255;
 | |
| 		t = this.S[i];
 | |
| 		this.S[i] = this.S[j];
 | |
| 		this.S[j] = t;
 | |
| 	  }
 | |
| 	  this.i = 0;
 | |
| 	  this.j = 0;
 | |
| 	}
 | |
| 
 | |
| 	function ARC4next() {
 | |
| 	  var t;
 | |
| 	  this.i = (this.i + 1) & 255;
 | |
| 	  this.j = (this.j + this.S[this.i]) & 255;
 | |
| 	  t = this.S[this.i];
 | |
| 	  this.S[this.i] = this.S[this.j];
 | |
| 	  this.S[this.j] = t;
 | |
| 	  return this.S[(t + this.S[this.i]) & 255];
 | |
| 	}
 | |
| 
 | |
| 	Arcfour.prototype.init = ARC4init;
 | |
| 	Arcfour.prototype.next = ARC4next;
 | |
| 
 | |
| 	// Plug in your RNG constructor here
 | |
| 	function prng_newstate() {
 | |
| 	  return new Arcfour();
 | |
| 	}
 | |
| 
 | |
| 	// Pool size must be a multiple of 4 and greater than 32.
 | |
| 	// An array of bytes the size of the pool will be passed to init()
 | |
| 	var rng_psize = 256;
 | |
| 
 | |
|   BigInteger.SecureRandom = SecureRandom;
 | |
|   BigInteger.BigInteger = BigInteger;
 | |
|   if (typeof exports !== 'undefined') {
 | |
|     exports = module.exports = BigInteger;
 | |
|   } else {
 | |
|     this.BigInteger = BigInteger;
 | |
|     this.SecureRandom = SecureRandom;
 | |
|   }
 | |
| 
 | |
| }).call(this);
 |