You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2927 lines
						
					
					
						
							88 KiB
						
					
					
				
			
		
		
	
	
							2927 lines
						
					
					
						
							88 KiB
						
					
					
				| ;(function (globalObject) {
 | |
|   'use strict';
 | |
| 
 | |
| /*
 | |
|  *      bignumber.js v9.1.1
 | |
|  *      A JavaScript library for arbitrary-precision arithmetic.
 | |
|  *      https://github.com/MikeMcl/bignumber.js
 | |
|  *      Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
 | |
|  *      MIT Licensed.
 | |
|  *
 | |
|  *      BigNumber.prototype methods     |  BigNumber methods
 | |
|  *                                      |
 | |
|  *      absoluteValue            abs    |  clone
 | |
|  *      comparedTo                      |  config               set
 | |
|  *      decimalPlaces            dp     |      DECIMAL_PLACES
 | |
|  *      dividedBy                div    |      ROUNDING_MODE
 | |
|  *      dividedToIntegerBy       idiv   |      EXPONENTIAL_AT
 | |
|  *      exponentiatedBy          pow    |      RANGE
 | |
|  *      integerValue                    |      CRYPTO
 | |
|  *      isEqualTo                eq     |      MODULO_MODE
 | |
|  *      isFinite                        |      POW_PRECISION
 | |
|  *      isGreaterThan            gt     |      FORMAT
 | |
|  *      isGreaterThanOrEqualTo   gte    |      ALPHABET
 | |
|  *      isInteger                       |  isBigNumber
 | |
|  *      isLessThan               lt     |  maximum              max
 | |
|  *      isLessThanOrEqualTo      lte    |  minimum              min
 | |
|  *      isNaN                           |  random
 | |
|  *      isNegative                      |  sum
 | |
|  *      isPositive                      |
 | |
|  *      isZero                          |
 | |
|  *      minus                           |
 | |
|  *      modulo                   mod    |
 | |
|  *      multipliedBy             times  |
 | |
|  *      negated                         |
 | |
|  *      plus                            |
 | |
|  *      precision                sd     |
 | |
|  *      shiftedBy                       |
 | |
|  *      squareRoot               sqrt   |
 | |
|  *      toExponential                   |
 | |
|  *      toFixed                         |
 | |
|  *      toFormat                        |
 | |
|  *      toFraction                      |
 | |
|  *      toJSON                          |
 | |
|  *      toNumber                        |
 | |
|  *      toPrecision                     |
 | |
|  *      toString                        |
 | |
|  *      valueOf                         |
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
|   var BigNumber,
 | |
|     isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
 | |
|     mathceil = Math.ceil,
 | |
|     mathfloor = Math.floor,
 | |
| 
 | |
|     bignumberError = '[BigNumber Error] ',
 | |
|     tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
 | |
| 
 | |
|     BASE = 1e14,
 | |
|     LOG_BASE = 14,
 | |
|     MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1
 | |
|     // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1
 | |
|     POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
 | |
|     SQRT_BASE = 1e7,
 | |
| 
 | |
|     // EDITABLE
 | |
|     // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
 | |
|     // the arguments to toExponential, toFixed, toFormat, and toPrecision.
 | |
|     MAX = 1E9;                                   // 0 to MAX_INT32
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Create and return a BigNumber constructor.
 | |
|    */
 | |
|   function clone(configObject) {
 | |
|     var div, convertBase, parseNumeric,
 | |
|       P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },
 | |
|       ONE = new BigNumber(1),
 | |
| 
 | |
| 
 | |
|       //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
 | |
| 
 | |
| 
 | |
|       // The default values below must be integers within the inclusive ranges stated.
 | |
|       // The values can also be changed at run-time using BigNumber.set.
 | |
| 
 | |
|       // The maximum number of decimal places for operations involving division.
 | |
|       DECIMAL_PLACES = 20,                     // 0 to MAX
 | |
| 
 | |
|       // The rounding mode used when rounding to the above decimal places, and when using
 | |
|       // toExponential, toFixed, toFormat and toPrecision, and round (default value).
 | |
|       // UP         0 Away from zero.
 | |
|       // DOWN       1 Towards zero.
 | |
|       // CEIL       2 Towards +Infinity.
 | |
|       // FLOOR      3 Towards -Infinity.
 | |
|       // HALF_UP    4 Towards nearest neighbour. If equidistant, up.
 | |
|       // HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
 | |
|       // HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
 | |
|       // HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
 | |
|       // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
 | |
|       ROUNDING_MODE = 4,                       // 0 to 8
 | |
| 
 | |
|       // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
 | |
| 
 | |
|       // The exponent value at and beneath which toString returns exponential notation.
 | |
|       // Number type: -7
 | |
|       TO_EXP_NEG = -7,                         // 0 to -MAX
 | |
| 
 | |
|       // The exponent value at and above which toString returns exponential notation.
 | |
|       // Number type: 21
 | |
|       TO_EXP_POS = 21,                         // 0 to MAX
 | |
| 
 | |
|       // RANGE : [MIN_EXP, MAX_EXP]
 | |
| 
 | |
|       // The minimum exponent value, beneath which underflow to zero occurs.
 | |
|       // Number type: -324  (5e-324)
 | |
|       MIN_EXP = -1e7,                          // -1 to -MAX
 | |
| 
 | |
|       // The maximum exponent value, above which overflow to Infinity occurs.
 | |
|       // Number type:  308  (1.7976931348623157e+308)
 | |
|       // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
 | |
|       MAX_EXP = 1e7,                           // 1 to MAX
 | |
| 
 | |
|       // Whether to use cryptographically-secure random number generation, if available.
 | |
|       CRYPTO = false,                          // true or false
 | |
| 
 | |
|       // The modulo mode used when calculating the modulus: a mod n.
 | |
|       // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
 | |
|       // The remainder (r) is calculated as: r = a - n * q.
 | |
|       //
 | |
|       // UP        0 The remainder is positive if the dividend is negative, else is negative.
 | |
|       // DOWN      1 The remainder has the same sign as the dividend.
 | |
|       //             This modulo mode is commonly known as 'truncated division' and is
 | |
|       //             equivalent to (a % n) in JavaScript.
 | |
|       // FLOOR     3 The remainder has the same sign as the divisor (Python %).
 | |
|       // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
 | |
|       // EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).
 | |
|       //             The remainder is always positive.
 | |
|       //
 | |
|       // The truncated division, floored division, Euclidian division and IEEE 754 remainder
 | |
|       // modes are commonly used for the modulus operation.
 | |
|       // Although the other rounding modes can also be used, they may not give useful results.
 | |
|       MODULO_MODE = 1,                         // 0 to 9
 | |
| 
 | |
|       // The maximum number of significant digits of the result of the exponentiatedBy operation.
 | |
|       // If POW_PRECISION is 0, there will be unlimited significant digits.
 | |
|       POW_PRECISION = 0,                       // 0 to MAX
 | |
| 
 | |
|       // The format specification used by the BigNumber.prototype.toFormat method.
 | |
|       FORMAT = {
 | |
|         prefix: '',
 | |
|         groupSize: 3,
 | |
|         secondaryGroupSize: 0,
 | |
|         groupSeparator: ',',
 | |
|         decimalSeparator: '.',
 | |
|         fractionGroupSize: 0,
 | |
|         fractionGroupSeparator: '\xA0',        // non-breaking space
 | |
|         suffix: ''
 | |
|       },
 | |
| 
 | |
|       // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
 | |
|       // '-', '.', whitespace, or repeated character.
 | |
|       // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
 | |
|       ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',
 | |
|       alphabetHasNormalDecimalDigits = true;
 | |
| 
 | |
| 
 | |
|     //------------------------------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
|     // CONSTRUCTOR
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * The BigNumber constructor and exported function.
 | |
|      * Create and return a new instance of a BigNumber object.
 | |
|      *
 | |
|      * v {number|string|BigNumber} A numeric value.
 | |
|      * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.
 | |
|      */
 | |
|     function BigNumber(v, b) {
 | |
|       var alphabet, c, caseChanged, e, i, isNum, len, str,
 | |
|         x = this;
 | |
| 
 | |
|       // Enable constructor call without `new`.
 | |
|       if (!(x instanceof BigNumber)) return new BigNumber(v, b);
 | |
| 
 | |
|       if (b == null) {
 | |
| 
 | |
|         if (v && v._isBigNumber === true) {
 | |
|           x.s = v.s;
 | |
| 
 | |
|           if (!v.c || v.e > MAX_EXP) {
 | |
|             x.c = x.e = null;
 | |
|           } else if (v.e < MIN_EXP) {
 | |
|             x.c = [x.e = 0];
 | |
|           } else {
 | |
|             x.e = v.e;
 | |
|             x.c = v.c.slice();
 | |
|           }
 | |
| 
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if ((isNum = typeof v == 'number') && v * 0 == 0) {
 | |
| 
 | |
|           // Use `1 / n` to handle minus zero also.
 | |
|           x.s = 1 / v < 0 ? (v = -v, -1) : 1;
 | |
| 
 | |
|           // Fast path for integers, where n < 2147483648 (2**31).
 | |
|           if (v === ~~v) {
 | |
|             for (e = 0, i = v; i >= 10; i /= 10, e++);
 | |
| 
 | |
|             if (e > MAX_EXP) {
 | |
|               x.c = x.e = null;
 | |
|             } else {
 | |
|               x.e = e;
 | |
|               x.c = [v];
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           str = String(v);
 | |
|         } else {
 | |
| 
 | |
|           if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);
 | |
| 
 | |
|           x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;
 | |
|         }
 | |
| 
 | |
|         // Decimal point?
 | |
|         if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
 | |
| 
 | |
|         // Exponential form?
 | |
|         if ((i = str.search(/e/i)) > 0) {
 | |
| 
 | |
|           // Determine exponent.
 | |
|           if (e < 0) e = i;
 | |
|           e += +str.slice(i + 1);
 | |
|           str = str.substring(0, i);
 | |
|         } else if (e < 0) {
 | |
| 
 | |
|           // Integer.
 | |
|           e = str.length;
 | |
|         }
 | |
| 
 | |
|       } else {
 | |
| 
 | |
|         // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
 | |
|         intCheck(b, 2, ALPHABET.length, 'Base');
 | |
| 
 | |
|         // Allow exponential notation to be used with base 10 argument, while
 | |
|         // also rounding to DECIMAL_PLACES as with other bases.
 | |
|         if (b == 10 && alphabetHasNormalDecimalDigits) {
 | |
|           x = new BigNumber(v);
 | |
|           return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);
 | |
|         }
 | |
| 
 | |
|         str = String(v);
 | |
| 
 | |
|         if (isNum = typeof v == 'number') {
 | |
| 
 | |
|           // Avoid potential interpretation of Infinity and NaN as base 44+ values.
 | |
|           if (v * 0 != 0) return parseNumeric(x, str, isNum, b);
 | |
| 
 | |
|           x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;
 | |
| 
 | |
|           // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | |
|           if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {
 | |
|             throw Error
 | |
|              (tooManyDigits + v);
 | |
|           }
 | |
|         } else {
 | |
|           x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;
 | |
|         }
 | |
| 
 | |
|         alphabet = ALPHABET.slice(0, b);
 | |
|         e = i = 0;
 | |
| 
 | |
|         // Check that str is a valid base b number.
 | |
|         // Don't use RegExp, so alphabet can contain special characters.
 | |
|         for (len = str.length; i < len; i++) {
 | |
|           if (alphabet.indexOf(c = str.charAt(i)) < 0) {
 | |
|             if (c == '.') {
 | |
| 
 | |
|               // If '.' is not the first character and it has not be found before.
 | |
|               if (i > e) {
 | |
|                 e = len;
 | |
|                 continue;
 | |
|               }
 | |
|             } else if (!caseChanged) {
 | |
| 
 | |
|               // Allow e.g. hexadecimal 'FF' as well as 'ff'.
 | |
|               if (str == str.toUpperCase() && (str = str.toLowerCase()) ||
 | |
|                   str == str.toLowerCase() && (str = str.toUpperCase())) {
 | |
|                 caseChanged = true;
 | |
|                 i = -1;
 | |
|                 e = 0;
 | |
|                 continue;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             return parseNumeric(x, String(v), isNum, b);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Prevent later check for length on converted number.
 | |
|         isNum = false;
 | |
|         str = convertBase(str, b, 10, x.s);
 | |
| 
 | |
|         // Decimal point?
 | |
|         if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
 | |
|         else e = str.length;
 | |
|       }
 | |
| 
 | |
|       // Determine leading zeros.
 | |
|       for (i = 0; str.charCodeAt(i) === 48; i++);
 | |
| 
 | |
|       // Determine trailing zeros.
 | |
|       for (len = str.length; str.charCodeAt(--len) === 48;);
 | |
| 
 | |
|       if (str = str.slice(i, ++len)) {
 | |
|         len -= i;
 | |
| 
 | |
|         // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | |
|         if (isNum && BigNumber.DEBUG &&
 | |
|           len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {
 | |
|             throw Error
 | |
|              (tooManyDigits + (x.s * v));
 | |
|         }
 | |
| 
 | |
|          // Overflow?
 | |
|         if ((e = e - i - 1) > MAX_EXP) {
 | |
| 
 | |
|           // Infinity.
 | |
|           x.c = x.e = null;
 | |
| 
 | |
|         // Underflow?
 | |
|         } else if (e < MIN_EXP) {
 | |
| 
 | |
|           // Zero.
 | |
|           x.c = [x.e = 0];
 | |
|         } else {
 | |
|           x.e = e;
 | |
|           x.c = [];
 | |
| 
 | |
|           // Transform base
 | |
| 
 | |
|           // e is the base 10 exponent.
 | |
|           // i is where to slice str to get the first element of the coefficient array.
 | |
|           i = (e + 1) % LOG_BASE;
 | |
|           if (e < 0) i += LOG_BASE;  // i < 1
 | |
| 
 | |
|           if (i < len) {
 | |
|             if (i) x.c.push(+str.slice(0, i));
 | |
| 
 | |
|             for (len -= LOG_BASE; i < len;) {
 | |
|               x.c.push(+str.slice(i, i += LOG_BASE));
 | |
|             }
 | |
| 
 | |
|             i = LOG_BASE - (str = str.slice(i)).length;
 | |
|           } else {
 | |
|             i -= len;
 | |
|           }
 | |
| 
 | |
|           for (; i--; str += '0');
 | |
|           x.c.push(+str);
 | |
|         }
 | |
|       } else {
 | |
| 
 | |
|         // Zero.
 | |
|         x.c = [x.e = 0];
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // CONSTRUCTOR PROPERTIES
 | |
| 
 | |
| 
 | |
|     BigNumber.clone = clone;
 | |
| 
 | |
|     BigNumber.ROUND_UP = 0;
 | |
|     BigNumber.ROUND_DOWN = 1;
 | |
|     BigNumber.ROUND_CEIL = 2;
 | |
|     BigNumber.ROUND_FLOOR = 3;
 | |
|     BigNumber.ROUND_HALF_UP = 4;
 | |
|     BigNumber.ROUND_HALF_DOWN = 5;
 | |
|     BigNumber.ROUND_HALF_EVEN = 6;
 | |
|     BigNumber.ROUND_HALF_CEIL = 7;
 | |
|     BigNumber.ROUND_HALF_FLOOR = 8;
 | |
|     BigNumber.EUCLID = 9;
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Configure infrequently-changing library-wide settings.
 | |
|      *
 | |
|      * Accept an object with the following optional properties (if the value of a property is
 | |
|      * a number, it must be an integer within the inclusive range stated):
 | |
|      *
 | |
|      *   DECIMAL_PLACES   {number}           0 to MAX
 | |
|      *   ROUNDING_MODE    {number}           0 to 8
 | |
|      *   EXPONENTIAL_AT   {number|number[]}  -MAX to MAX  or  [-MAX to 0, 0 to MAX]
 | |
|      *   RANGE            {number|number[]}  -MAX to MAX (not zero)  or  [-MAX to -1, 1 to MAX]
 | |
|      *   CRYPTO           {boolean}          true or false
 | |
|      *   MODULO_MODE      {number}           0 to 9
 | |
|      *   POW_PRECISION       {number}           0 to MAX
 | |
|      *   ALPHABET         {string}           A string of two or more unique characters which does
 | |
|      *                                       not contain '.'.
 | |
|      *   FORMAT           {object}           An object with some of the following properties:
 | |
|      *     prefix                 {string}
 | |
|      *     groupSize              {number}
 | |
|      *     secondaryGroupSize     {number}
 | |
|      *     groupSeparator         {string}
 | |
|      *     decimalSeparator       {string}
 | |
|      *     fractionGroupSize      {number}
 | |
|      *     fractionGroupSeparator {string}
 | |
|      *     suffix                 {string}
 | |
|      *
 | |
|      * (The values assigned to the above FORMAT object properties are not checked for validity.)
 | |
|      *
 | |
|      * E.g.
 | |
|      * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
 | |
|      *
 | |
|      * Ignore properties/parameters set to null or undefined, except for ALPHABET.
 | |
|      *
 | |
|      * Return an object with the properties current values.
 | |
|      */
 | |
|     BigNumber.config = BigNumber.set = function (obj) {
 | |
|       var p, v;
 | |
| 
 | |
|       if (obj != null) {
 | |
| 
 | |
|         if (typeof obj == 'object') {
 | |
| 
 | |
|           // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
 | |
|           // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {
 | |
|             v = obj[p];
 | |
|             intCheck(v, 0, MAX, p);
 | |
|             DECIMAL_PLACES = v;
 | |
|           }
 | |
| 
 | |
|           // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
 | |
|           // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {
 | |
|             v = obj[p];
 | |
|             intCheck(v, 0, 8, p);
 | |
|             ROUNDING_MODE = v;
 | |
|           }
 | |
| 
 | |
|           // EXPONENTIAL_AT {number|number[]}
 | |
|           // Integer, -MAX to MAX inclusive or
 | |
|           // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
 | |
|           // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {
 | |
|             v = obj[p];
 | |
|             if (v && v.pop) {
 | |
|               intCheck(v[0], -MAX, 0, p);
 | |
|               intCheck(v[1], 0, MAX, p);
 | |
|               TO_EXP_NEG = v[0];
 | |
|               TO_EXP_POS = v[1];
 | |
|             } else {
 | |
|               intCheck(v, -MAX, MAX, p);
 | |
|               TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
 | |
|           // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
 | |
|           // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'RANGE')) {
 | |
|             v = obj[p];
 | |
|             if (v && v.pop) {
 | |
|               intCheck(v[0], -MAX, -1, p);
 | |
|               intCheck(v[1], 1, MAX, p);
 | |
|               MIN_EXP = v[0];
 | |
|               MAX_EXP = v[1];
 | |
|             } else {
 | |
|               intCheck(v, -MAX, MAX, p);
 | |
|               if (v) {
 | |
|                 MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);
 | |
|               } else {
 | |
|                 throw Error
 | |
|                  (bignumberError + p + ' cannot be zero: ' + v);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // CRYPTO {boolean} true or false.
 | |
|           // '[BigNumber Error] CRYPTO not true or false: {v}'
 | |
|           // '[BigNumber Error] crypto unavailable'
 | |
|           if (obj.hasOwnProperty(p = 'CRYPTO')) {
 | |
|             v = obj[p];
 | |
|             if (v === !!v) {
 | |
|               if (v) {
 | |
|                 if (typeof crypto != 'undefined' && crypto &&
 | |
|                  (crypto.getRandomValues || crypto.randomBytes)) {
 | |
|                   CRYPTO = v;
 | |
|                 } else {
 | |
|                   CRYPTO = !v;
 | |
|                   throw Error
 | |
|                    (bignumberError + 'crypto unavailable');
 | |
|                 }
 | |
|               } else {
 | |
|                 CRYPTO = v;
 | |
|               }
 | |
|             } else {
 | |
|               throw Error
 | |
|                (bignumberError + p + ' not true or false: ' + v);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // MODULO_MODE {number} Integer, 0 to 9 inclusive.
 | |
|           // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'MODULO_MODE')) {
 | |
|             v = obj[p];
 | |
|             intCheck(v, 0, 9, p);
 | |
|             MODULO_MODE = v;
 | |
|           }
 | |
| 
 | |
|           // POW_PRECISION {number} Integer, 0 to MAX inclusive.
 | |
|           // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'POW_PRECISION')) {
 | |
|             v = obj[p];
 | |
|             intCheck(v, 0, MAX, p);
 | |
|             POW_PRECISION = v;
 | |
|           }
 | |
| 
 | |
|           // FORMAT {object}
 | |
|           // '[BigNumber Error] FORMAT not an object: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'FORMAT')) {
 | |
|             v = obj[p];
 | |
|             if (typeof v == 'object') FORMAT = v;
 | |
|             else throw Error
 | |
|              (bignumberError + p + ' not an object: ' + v);
 | |
|           }
 | |
| 
 | |
|           // ALPHABET {string}
 | |
|           // '[BigNumber Error] ALPHABET invalid: {v}'
 | |
|           if (obj.hasOwnProperty(p = 'ALPHABET')) {
 | |
|             v = obj[p];
 | |
| 
 | |
|             // Disallow if less than two characters,
 | |
|             // or if it contains '+', '-', '.', whitespace, or a repeated character.
 | |
|             if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) {
 | |
|               alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';
 | |
|               ALPHABET = v;
 | |
|             } else {
 | |
|               throw Error
 | |
|                (bignumberError + p + ' invalid: ' + v);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         } else {
 | |
| 
 | |
|           // '[BigNumber Error] Object expected: {v}'
 | |
|           throw Error
 | |
|            (bignumberError + 'Object expected: ' + obj);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return {
 | |
|         DECIMAL_PLACES: DECIMAL_PLACES,
 | |
|         ROUNDING_MODE: ROUNDING_MODE,
 | |
|         EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],
 | |
|         RANGE: [MIN_EXP, MAX_EXP],
 | |
|         CRYPTO: CRYPTO,
 | |
|         MODULO_MODE: MODULO_MODE,
 | |
|         POW_PRECISION: POW_PRECISION,
 | |
|         FORMAT: FORMAT,
 | |
|         ALPHABET: ALPHABET
 | |
|       };
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if v is a BigNumber instance, otherwise return false.
 | |
|      *
 | |
|      * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.
 | |
|      *
 | |
|      * v {any}
 | |
|      *
 | |
|      * '[BigNumber Error] Invalid BigNumber: {v}'
 | |
|      */
 | |
|     BigNumber.isBigNumber = function (v) {
 | |
|       if (!v || v._isBigNumber !== true) return false;
 | |
|       if (!BigNumber.DEBUG) return true;
 | |
| 
 | |
|       var i, n,
 | |
|         c = v.c,
 | |
|         e = v.e,
 | |
|         s = v.s;
 | |
| 
 | |
|       out: if ({}.toString.call(c) == '[object Array]') {
 | |
| 
 | |
|         if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {
 | |
| 
 | |
|           // If the first element is zero, the BigNumber value must be zero.
 | |
|           if (c[0] === 0) {
 | |
|             if (e === 0 && c.length === 1) return true;
 | |
|             break out;
 | |
|           }
 | |
| 
 | |
|           // Calculate number of digits that c[0] should have, based on the exponent.
 | |
|           i = (e + 1) % LOG_BASE;
 | |
|           if (i < 1) i += LOG_BASE;
 | |
| 
 | |
|           // Calculate number of digits of c[0].
 | |
|           //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
 | |
|           if (String(c[0]).length == i) {
 | |
| 
 | |
|             for (i = 0; i < c.length; i++) {
 | |
|               n = c[i];
 | |
|               if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;
 | |
|             }
 | |
| 
 | |
|             // Last element cannot be zero, unless it is the only element.
 | |
|             if (n !== 0) return true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // Infinity/NaN
 | |
|       } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       throw Error
 | |
|         (bignumberError + 'Invalid BigNumber: ' + v);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the maximum of the arguments.
 | |
|      *
 | |
|      * arguments {number|string|BigNumber}
 | |
|      */
 | |
|     BigNumber.maximum = BigNumber.max = function () {
 | |
|       return maxOrMin(arguments, P.lt);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the minimum of the arguments.
 | |
|      *
 | |
|      * arguments {number|string|BigNumber}
 | |
|      */
 | |
|     BigNumber.minimum = BigNumber.min = function () {
 | |
|       return maxOrMin(arguments, P.gt);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
 | |
|      * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
 | |
|      * zeros are produced).
 | |
|      *
 | |
|      * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
 | |
|      * '[BigNumber Error] crypto unavailable'
 | |
|      */
 | |
|     BigNumber.random = (function () {
 | |
|       var pow2_53 = 0x20000000000000;
 | |
| 
 | |
|       // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
 | |
|       // Check if Math.random() produces more than 32 bits of randomness.
 | |
|       // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
 | |
|       // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
 | |
|       var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
 | |
|        ? function () { return mathfloor(Math.random() * pow2_53); }
 | |
|        : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
 | |
|          (Math.random() * 0x800000 | 0); };
 | |
| 
 | |
|       return function (dp) {
 | |
|         var a, b, e, k, v,
 | |
|           i = 0,
 | |
|           c = [],
 | |
|           rand = new BigNumber(ONE);
 | |
| 
 | |
|         if (dp == null) dp = DECIMAL_PLACES;
 | |
|         else intCheck(dp, 0, MAX);
 | |
| 
 | |
|         k = mathceil(dp / LOG_BASE);
 | |
| 
 | |
|         if (CRYPTO) {
 | |
| 
 | |
|           // Browsers supporting crypto.getRandomValues.
 | |
|           if (crypto.getRandomValues) {
 | |
| 
 | |
|             a = crypto.getRandomValues(new Uint32Array(k *= 2));
 | |
| 
 | |
|             for (; i < k;) {
 | |
| 
 | |
|               // 53 bits:
 | |
|               // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
 | |
|               // 11111 11111111 11111111 11111111 11100000 00000000 00000000
 | |
|               // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
 | |
|               //                                     11111 11111111 11111111
 | |
|               // 0x20000 is 2^21.
 | |
|               v = a[i] * 0x20000 + (a[i + 1] >>> 11);
 | |
| 
 | |
|               // Rejection sampling:
 | |
|               // 0 <= v < 9007199254740992
 | |
|               // Probability that v >= 9e15, is
 | |
|               // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
 | |
|               if (v >= 9e15) {
 | |
|                 b = crypto.getRandomValues(new Uint32Array(2));
 | |
|                 a[i] = b[0];
 | |
|                 a[i + 1] = b[1];
 | |
|               } else {
 | |
| 
 | |
|                 // 0 <= v <= 8999999999999999
 | |
|                 // 0 <= (v % 1e14) <= 99999999999999
 | |
|                 c.push(v % 1e14);
 | |
|                 i += 2;
 | |
|               }
 | |
|             }
 | |
|             i = k / 2;
 | |
| 
 | |
|           // Node.js supporting crypto.randomBytes.
 | |
|           } else if (crypto.randomBytes) {
 | |
| 
 | |
|             // buffer
 | |
|             a = crypto.randomBytes(k *= 7);
 | |
| 
 | |
|             for (; i < k;) {
 | |
| 
 | |
|               // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
 | |
|               // 0x100000000 is 2^32, 0x1000000 is 2^24
 | |
|               // 11111 11111111 11111111 11111111 11111111 11111111 11111111
 | |
|               // 0 <= v < 9007199254740992
 | |
|               v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +
 | |
|                  (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +
 | |
|                  (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];
 | |
| 
 | |
|               if (v >= 9e15) {
 | |
|                 crypto.randomBytes(7).copy(a, i);
 | |
|               } else {
 | |
| 
 | |
|                 // 0 <= (v % 1e14) <= 99999999999999
 | |
|                 c.push(v % 1e14);
 | |
|                 i += 7;
 | |
|               }
 | |
|             }
 | |
|             i = k / 7;
 | |
|           } else {
 | |
|             CRYPTO = false;
 | |
|             throw Error
 | |
|              (bignumberError + 'crypto unavailable');
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Use Math.random.
 | |
|         if (!CRYPTO) {
 | |
| 
 | |
|           for (; i < k;) {
 | |
|             v = random53bitInt();
 | |
|             if (v < 9e15) c[i++] = v % 1e14;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         k = c[--i];
 | |
|         dp %= LOG_BASE;
 | |
| 
 | |
|         // Convert trailing digits to zeros according to dp.
 | |
|         if (k && dp) {
 | |
|           v = POWS_TEN[LOG_BASE - dp];
 | |
|           c[i] = mathfloor(k / v) * v;
 | |
|         }
 | |
| 
 | |
|         // Remove trailing elements which are zero.
 | |
|         for (; c[i] === 0; c.pop(), i--);
 | |
| 
 | |
|         // Zero?
 | |
|         if (i < 0) {
 | |
|           c = [e = 0];
 | |
|         } else {
 | |
| 
 | |
|           // Remove leading elements which are zero and adjust exponent accordingly.
 | |
|           for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
 | |
| 
 | |
|           // Count the digits of the first element of c to determine leading zeros, and...
 | |
|           for (i = 1, v = c[0]; v >= 10; v /= 10, i++);
 | |
| 
 | |
|           // adjust the exponent accordingly.
 | |
|           if (i < LOG_BASE) e -= LOG_BASE - i;
 | |
|         }
 | |
| 
 | |
|         rand.e = e;
 | |
|         rand.c = c;
 | |
|         return rand;
 | |
|       };
 | |
|     })();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a BigNumber whose value is the sum of the arguments.
 | |
|      *
 | |
|      * arguments {number|string|BigNumber}
 | |
|      */
 | |
|     BigNumber.sum = function () {
 | |
|       var i = 1,
 | |
|         args = arguments,
 | |
|         sum = new BigNumber(args[0]);
 | |
|       for (; i < args.length;) sum = sum.plus(args[i++]);
 | |
|       return sum;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     // PRIVATE FUNCTIONS
 | |
| 
 | |
| 
 | |
|     // Called by BigNumber and BigNumber.prototype.toString.
 | |
|     convertBase = (function () {
 | |
|       var decimal = '0123456789';
 | |
| 
 | |
|       /*
 | |
|        * Convert string of baseIn to an array of numbers of baseOut.
 | |
|        * Eg. toBaseOut('255', 10, 16) returns [15, 15].
 | |
|        * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
 | |
|        */
 | |
|       function toBaseOut(str, baseIn, baseOut, alphabet) {
 | |
|         var j,
 | |
|           arr = [0],
 | |
|           arrL,
 | |
|           i = 0,
 | |
|           len = str.length;
 | |
| 
 | |
|         for (; i < len;) {
 | |
|           for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);
 | |
| 
 | |
|           arr[0] += alphabet.indexOf(str.charAt(i++));
 | |
| 
 | |
|           for (j = 0; j < arr.length; j++) {
 | |
| 
 | |
|             if (arr[j] > baseOut - 1) {
 | |
|               if (arr[j + 1] == null) arr[j + 1] = 0;
 | |
|               arr[j + 1] += arr[j] / baseOut | 0;
 | |
|               arr[j] %= baseOut;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return arr.reverse();
 | |
|       }
 | |
| 
 | |
|       // Convert a numeric string of baseIn to a numeric string of baseOut.
 | |
|       // If the caller is toString, we are converting from base 10 to baseOut.
 | |
|       // If the caller is BigNumber, we are converting from baseIn to base 10.
 | |
|       return function (str, baseIn, baseOut, sign, callerIsToString) {
 | |
|         var alphabet, d, e, k, r, x, xc, y,
 | |
|           i = str.indexOf('.'),
 | |
|           dp = DECIMAL_PLACES,
 | |
|           rm = ROUNDING_MODE;
 | |
| 
 | |
|         // Non-integer.
 | |
|         if (i >= 0) {
 | |
|           k = POW_PRECISION;
 | |
| 
 | |
|           // Unlimited precision.
 | |
|           POW_PRECISION = 0;
 | |
|           str = str.replace('.', '');
 | |
|           y = new BigNumber(baseIn);
 | |
|           x = y.pow(str.length - i);
 | |
|           POW_PRECISION = k;
 | |
| 
 | |
|           // Convert str as if an integer, then restore the fraction part by dividing the
 | |
|           // result by its base raised to a power.
 | |
| 
 | |
|           y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),
 | |
|            10, baseOut, decimal);
 | |
|           y.e = y.c.length;
 | |
|         }
 | |
| 
 | |
|         // Convert the number as integer.
 | |
| 
 | |
|         xc = toBaseOut(str, baseIn, baseOut, callerIsToString
 | |
|          ? (alphabet = ALPHABET, decimal)
 | |
|          : (alphabet = decimal, ALPHABET));
 | |
| 
 | |
|         // xc now represents str as an integer and converted to baseOut. e is the exponent.
 | |
|         e = k = xc.length;
 | |
| 
 | |
|         // Remove trailing zeros.
 | |
|         for (; xc[--k] == 0; xc.pop());
 | |
| 
 | |
|         // Zero?
 | |
|         if (!xc[0]) return alphabet.charAt(0);
 | |
| 
 | |
|         // Does str represent an integer? If so, no need for the division.
 | |
|         if (i < 0) {
 | |
|           --e;
 | |
|         } else {
 | |
|           x.c = xc;
 | |
|           x.e = e;
 | |
| 
 | |
|           // The sign is needed for correct rounding.
 | |
|           x.s = sign;
 | |
|           x = div(x, y, dp, rm, baseOut);
 | |
|           xc = x.c;
 | |
|           r = x.r;
 | |
|           e = x.e;
 | |
|         }
 | |
| 
 | |
|         // xc now represents str converted to baseOut.
 | |
| 
 | |
|         // THe index of the rounding digit.
 | |
|         d = e + dp + 1;
 | |
| 
 | |
|         // The rounding digit: the digit to the right of the digit that may be rounded up.
 | |
|         i = xc[d];
 | |
| 
 | |
|         // Look at the rounding digits and mode to determine whether to round up.
 | |
| 
 | |
|         k = baseOut / 2;
 | |
|         r = r || d < 0 || xc[d + 1] != null;
 | |
| 
 | |
|         r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
 | |
|               : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
 | |
|                rm == (x.s < 0 ? 8 : 7));
 | |
| 
 | |
|         // If the index of the rounding digit is not greater than zero, or xc represents
 | |
|         // zero, then the result of the base conversion is zero or, if rounding up, a value
 | |
|         // such as 0.00001.
 | |
|         if (d < 1 || !xc[0]) {
 | |
| 
 | |
|           // 1^-dp or 0
 | |
|           str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);
 | |
|         } else {
 | |
| 
 | |
|           // Truncate xc to the required number of decimal places.
 | |
|           xc.length = d;
 | |
| 
 | |
|           // Round up?
 | |
|           if (r) {
 | |
| 
 | |
|             // Rounding up may mean the previous digit has to be rounded up and so on.
 | |
|             for (--baseOut; ++xc[--d] > baseOut;) {
 | |
|               xc[d] = 0;
 | |
| 
 | |
|               if (!d) {
 | |
|                 ++e;
 | |
|                 xc = [1].concat(xc);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Determine trailing zeros.
 | |
|           for (k = xc.length; !xc[--k];);
 | |
| 
 | |
|           // E.g. [4, 11, 15] becomes 4bf.
 | |
|           for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));
 | |
| 
 | |
|           // Add leading zeros, decimal point and trailing zeros as required.
 | |
|           str = toFixedPoint(str, e, alphabet.charAt(0));
 | |
|         }
 | |
| 
 | |
|         // The caller will add the sign.
 | |
|         return str;
 | |
|       };
 | |
|     })();
 | |
| 
 | |
| 
 | |
|     // Perform division in the specified base. Called by div and convertBase.
 | |
|     div = (function () {
 | |
| 
 | |
|       // Assume non-zero x and k.
 | |
|       function multiply(x, k, base) {
 | |
|         var m, temp, xlo, xhi,
 | |
|           carry = 0,
 | |
|           i = x.length,
 | |
|           klo = k % SQRT_BASE,
 | |
|           khi = k / SQRT_BASE | 0;
 | |
| 
 | |
|         for (x = x.slice(); i--;) {
 | |
|           xlo = x[i] % SQRT_BASE;
 | |
|           xhi = x[i] / SQRT_BASE | 0;
 | |
|           m = khi * xlo + xhi * klo;
 | |
|           temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;
 | |
|           carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;
 | |
|           x[i] = temp % base;
 | |
|         }
 | |
| 
 | |
|         if (carry) x = [carry].concat(x);
 | |
| 
 | |
|         return x;
 | |
|       }
 | |
| 
 | |
|       function compare(a, b, aL, bL) {
 | |
|         var i, cmp;
 | |
| 
 | |
|         if (aL != bL) {
 | |
|           cmp = aL > bL ? 1 : -1;
 | |
|         } else {
 | |
| 
 | |
|           for (i = cmp = 0; i < aL; i++) {
 | |
| 
 | |
|             if (a[i] != b[i]) {
 | |
|               cmp = a[i] > b[i] ? 1 : -1;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return cmp;
 | |
|       }
 | |
| 
 | |
|       function subtract(a, b, aL, base) {
 | |
|         var i = 0;
 | |
| 
 | |
|         // Subtract b from a.
 | |
|         for (; aL--;) {
 | |
|           a[aL] -= i;
 | |
|           i = a[aL] < b[aL] ? 1 : 0;
 | |
|           a[aL] = i * base + a[aL] - b[aL];
 | |
|         }
 | |
| 
 | |
|         // Remove leading zeros.
 | |
|         for (; !a[0] && a.length > 1; a.splice(0, 1));
 | |
|       }
 | |
| 
 | |
|       // x: dividend, y: divisor.
 | |
|       return function (x, y, dp, rm, base) {
 | |
|         var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
 | |
|           yL, yz,
 | |
|           s = x.s == y.s ? 1 : -1,
 | |
|           xc = x.c,
 | |
|           yc = y.c;
 | |
| 
 | |
|         // Either NaN, Infinity or 0?
 | |
|         if (!xc || !xc[0] || !yc || !yc[0]) {
 | |
| 
 | |
|           return new BigNumber(
 | |
| 
 | |
|            // Return NaN if either NaN, or both Infinity or 0.
 | |
|            !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :
 | |
| 
 | |
|             // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
 | |
|             xc && xc[0] == 0 || !yc ? s * 0 : s / 0
 | |
|          );
 | |
|         }
 | |
| 
 | |
|         q = new BigNumber(s);
 | |
|         qc = q.c = [];
 | |
|         e = x.e - y.e;
 | |
|         s = dp + e + 1;
 | |
| 
 | |
|         if (!base) {
 | |
|           base = BASE;
 | |
|           e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);
 | |
|           s = s / LOG_BASE | 0;
 | |
|         }
 | |
| 
 | |
|         // Result exponent may be one less then the current value of e.
 | |
|         // The coefficients of the BigNumbers from convertBase may have trailing zeros.
 | |
|         for (i = 0; yc[i] == (xc[i] || 0); i++);
 | |
| 
 | |
|         if (yc[i] > (xc[i] || 0)) e--;
 | |
| 
 | |
|         if (s < 0) {
 | |
|           qc.push(1);
 | |
|           more = true;
 | |
|         } else {
 | |
|           xL = xc.length;
 | |
|           yL = yc.length;
 | |
|           i = 0;
 | |
|           s += 2;
 | |
| 
 | |
|           // Normalise xc and yc so highest order digit of yc is >= base / 2.
 | |
| 
 | |
|           n = mathfloor(base / (yc[0] + 1));
 | |
| 
 | |
|           // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
 | |
|           // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
 | |
|           if (n > 1) {
 | |
|             yc = multiply(yc, n, base);
 | |
|             xc = multiply(xc, n, base);
 | |
|             yL = yc.length;
 | |
|             xL = xc.length;
 | |
|           }
 | |
| 
 | |
|           xi = yL;
 | |
|           rem = xc.slice(0, yL);
 | |
|           remL = rem.length;
 | |
| 
 | |
|           // Add zeros to make remainder as long as divisor.
 | |
|           for (; remL < yL; rem[remL++] = 0);
 | |
|           yz = yc.slice();
 | |
|           yz = [0].concat(yz);
 | |
|           yc0 = yc[0];
 | |
|           if (yc[1] >= base / 2) yc0++;
 | |
|           // Not necessary, but to prevent trial digit n > base, when using base 3.
 | |
|           // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
 | |
| 
 | |
|           do {
 | |
|             n = 0;
 | |
| 
 | |
|             // Compare divisor and remainder.
 | |
|             cmp = compare(yc, rem, yL, remL);
 | |
| 
 | |
|             // If divisor < remainder.
 | |
|             if (cmp < 0) {
 | |
| 
 | |
|               // Calculate trial digit, n.
 | |
| 
 | |
|               rem0 = rem[0];
 | |
|               if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
 | |
| 
 | |
|               // n is how many times the divisor goes into the current remainder.
 | |
|               n = mathfloor(rem0 / yc0);
 | |
| 
 | |
|               //  Algorithm:
 | |
|               //  product = divisor multiplied by trial digit (n).
 | |
|               //  Compare product and remainder.
 | |
|               //  If product is greater than remainder:
 | |
|               //    Subtract divisor from product, decrement trial digit.
 | |
|               //  Subtract product from remainder.
 | |
|               //  If product was less than remainder at the last compare:
 | |
|               //    Compare new remainder and divisor.
 | |
|               //    If remainder is greater than divisor:
 | |
|               //      Subtract divisor from remainder, increment trial digit.
 | |
| 
 | |
|               if (n > 1) {
 | |
| 
 | |
|                 // n may be > base only when base is 3.
 | |
|                 if (n >= base) n = base - 1;
 | |
| 
 | |
|                 // product = divisor * trial digit.
 | |
|                 prod = multiply(yc, n, base);
 | |
|                 prodL = prod.length;
 | |
|                 remL = rem.length;
 | |
| 
 | |
|                 // Compare product and remainder.
 | |
|                 // If product > remainder then trial digit n too high.
 | |
|                 // n is 1 too high about 5% of the time, and is not known to have
 | |
|                 // ever been more than 1 too high.
 | |
|                 while (compare(prod, rem, prodL, remL) == 1) {
 | |
|                   n--;
 | |
| 
 | |
|                   // Subtract divisor from product.
 | |
|                   subtract(prod, yL < prodL ? yz : yc, prodL, base);
 | |
|                   prodL = prod.length;
 | |
|                   cmp = 1;
 | |
|                 }
 | |
|               } else {
 | |
| 
 | |
|                 // n is 0 or 1, cmp is -1.
 | |
|                 // If n is 0, there is no need to compare yc and rem again below,
 | |
|                 // so change cmp to 1 to avoid it.
 | |
|                 // If n is 1, leave cmp as -1, so yc and rem are compared again.
 | |
|                 if (n == 0) {
 | |
| 
 | |
|                   // divisor < remainder, so n must be at least 1.
 | |
|                   cmp = n = 1;
 | |
|                 }
 | |
| 
 | |
|                 // product = divisor
 | |
|                 prod = yc.slice();
 | |
|                 prodL = prod.length;
 | |
|               }
 | |
| 
 | |
|               if (prodL < remL) prod = [0].concat(prod);
 | |
| 
 | |
|               // Subtract product from remainder.
 | |
|               subtract(rem, prod, remL, base);
 | |
|               remL = rem.length;
 | |
| 
 | |
|                // If product was < remainder.
 | |
|               if (cmp == -1) {
 | |
| 
 | |
|                 // Compare divisor and new remainder.
 | |
|                 // If divisor < new remainder, subtract divisor from remainder.
 | |
|                 // Trial digit n too low.
 | |
|                 // n is 1 too low about 5% of the time, and very rarely 2 too low.
 | |
|                 while (compare(yc, rem, yL, remL) < 1) {
 | |
|                   n++;
 | |
| 
 | |
|                   // Subtract divisor from remainder.
 | |
|                   subtract(rem, yL < remL ? yz : yc, remL, base);
 | |
|                   remL = rem.length;
 | |
|                 }
 | |
|               }
 | |
|             } else if (cmp === 0) {
 | |
|               n++;
 | |
|               rem = [0];
 | |
|             } // else cmp === 1 and n will be 0
 | |
| 
 | |
|             // Add the next digit, n, to the result array.
 | |
|             qc[i++] = n;
 | |
| 
 | |
|             // Update the remainder.
 | |
|             if (rem[0]) {
 | |
|               rem[remL++] = xc[xi] || 0;
 | |
|             } else {
 | |
|               rem = [xc[xi]];
 | |
|               remL = 1;
 | |
|             }
 | |
|           } while ((xi++ < xL || rem[0] != null) && s--);
 | |
| 
 | |
|           more = rem[0] != null;
 | |
| 
 | |
|           // Leading zero?
 | |
|           if (!qc[0]) qc.splice(0, 1);
 | |
|         }
 | |
| 
 | |
|         if (base == BASE) {
 | |
| 
 | |
|           // To calculate q.e, first get the number of digits of qc[0].
 | |
|           for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);
 | |
| 
 | |
|           round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);
 | |
| 
 | |
|         // Caller is convertBase.
 | |
|         } else {
 | |
|           q.e = e;
 | |
|           q.r = +more;
 | |
|         }
 | |
| 
 | |
|         return q;
 | |
|       };
 | |
|     })();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of BigNumber n in fixed-point or exponential
 | |
|      * notation rounded to the specified decimal places or significant digits.
 | |
|      *
 | |
|      * n: a BigNumber.
 | |
|      * i: the index of the last digit required (i.e. the digit that may be rounded up).
 | |
|      * rm: the rounding mode.
 | |
|      * id: 1 (toExponential) or 2 (toPrecision).
 | |
|      */
 | |
|     function format(n, i, rm, id) {
 | |
|       var c0, e, ne, len, str;
 | |
| 
 | |
|       if (rm == null) rm = ROUNDING_MODE;
 | |
|       else intCheck(rm, 0, 8);
 | |
| 
 | |
|       if (!n.c) return n.toString();
 | |
| 
 | |
|       c0 = n.c[0];
 | |
|       ne = n.e;
 | |
| 
 | |
|       if (i == null) {
 | |
|         str = coeffToString(n.c);
 | |
|         str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)
 | |
|          ? toExponential(str, ne)
 | |
|          : toFixedPoint(str, ne, '0');
 | |
|       } else {
 | |
|         n = round(new BigNumber(n), i, rm);
 | |
| 
 | |
|         // n.e may have changed if the value was rounded up.
 | |
|         e = n.e;
 | |
| 
 | |
|         str = coeffToString(n.c);
 | |
|         len = str.length;
 | |
| 
 | |
|         // toPrecision returns exponential notation if the number of significant digits
 | |
|         // specified is less than the number of digits necessary to represent the integer
 | |
|         // part of the value in fixed-point notation.
 | |
| 
 | |
|         // Exponential notation.
 | |
|         if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {
 | |
| 
 | |
|           // Append zeros?
 | |
|           for (; len < i; str += '0', len++);
 | |
|           str = toExponential(str, e);
 | |
| 
 | |
|         // Fixed-point notation.
 | |
|         } else {
 | |
|           i -= ne;
 | |
|           str = toFixedPoint(str, e, '0');
 | |
| 
 | |
|           // Append zeros?
 | |
|           if (e + 1 > len) {
 | |
|             if (--i > 0) for (str += '.'; i--; str += '0');
 | |
|           } else {
 | |
|             i += e - len;
 | |
|             if (i > 0) {
 | |
|               if (e + 1 == len) str += '.';
 | |
|               for (; i--; str += '0');
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return n.s < 0 && c0 ? '-' + str : str;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Handle BigNumber.max and BigNumber.min.
 | |
|     function maxOrMin(args, method) {
 | |
|       var n,
 | |
|         i = 1,
 | |
|         m = new BigNumber(args[0]);
 | |
| 
 | |
|       for (; i < args.length; i++) {
 | |
|         n = new BigNumber(args[i]);
 | |
| 
 | |
|         // If any number is NaN, return NaN.
 | |
|         if (!n.s) {
 | |
|           m = n;
 | |
|           break;
 | |
|         } else if (method.call(m, n)) {
 | |
|           m = n;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return m;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
 | |
|      * Called by minus, plus and times.
 | |
|      */
 | |
|     function normalise(n, c, e) {
 | |
|       var i = 1,
 | |
|         j = c.length;
 | |
| 
 | |
|        // Remove trailing zeros.
 | |
|       for (; !c[--j]; c.pop());
 | |
| 
 | |
|       // Calculate the base 10 exponent. First get the number of digits of c[0].
 | |
|       for (j = c[0]; j >= 10; j /= 10, i++);
 | |
| 
 | |
|       // Overflow?
 | |
|       if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {
 | |
| 
 | |
|         // Infinity.
 | |
|         n.c = n.e = null;
 | |
| 
 | |
|       // Underflow?
 | |
|       } else if (e < MIN_EXP) {
 | |
| 
 | |
|         // Zero.
 | |
|         n.c = [n.e = 0];
 | |
|       } else {
 | |
|         n.e = e;
 | |
|         n.c = c;
 | |
|       }
 | |
| 
 | |
|       return n;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Handle values that fail the validity test in BigNumber.
 | |
|     parseNumeric = (function () {
 | |
|       var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
 | |
|         dotAfter = /^([^.]+)\.$/,
 | |
|         dotBefore = /^\.([^.]+)$/,
 | |
|         isInfinityOrNaN = /^-?(Infinity|NaN)$/,
 | |
|         whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
 | |
| 
 | |
|       return function (x, str, isNum, b) {
 | |
|         var base,
 | |
|           s = isNum ? str : str.replace(whitespaceOrPlus, '');
 | |
| 
 | |
|         // No exception on ±Infinity or NaN.
 | |
|         if (isInfinityOrNaN.test(s)) {
 | |
|           x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
 | |
|         } else {
 | |
|           if (!isNum) {
 | |
| 
 | |
|             // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
 | |
|             s = s.replace(basePrefix, function (m, p1, p2) {
 | |
|               base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
 | |
|               return !b || b == base ? p1 : m;
 | |
|             });
 | |
| 
 | |
|             if (b) {
 | |
|               base = b;
 | |
| 
 | |
|               // E.g. '1.' to '1', '.1' to '0.1'
 | |
|               s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');
 | |
|             }
 | |
| 
 | |
|             if (str != s) return new BigNumber(s, base);
 | |
|           }
 | |
| 
 | |
|           // '[BigNumber Error] Not a number: {n}'
 | |
|           // '[BigNumber Error] Not a base {b} number: {n}'
 | |
|           if (BigNumber.DEBUG) {
 | |
|             throw Error
 | |
|               (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);
 | |
|           }
 | |
| 
 | |
|           // NaN
 | |
|           x.s = null;
 | |
|         }
 | |
| 
 | |
|         x.c = x.e = null;
 | |
|       }
 | |
|     })();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
 | |
|      * If r is truthy, it is known that there are more digits after the rounding digit.
 | |
|      */
 | |
|     function round(x, sd, rm, r) {
 | |
|       var d, i, j, k, n, ni, rd,
 | |
|         xc = x.c,
 | |
|         pows10 = POWS_TEN;
 | |
| 
 | |
|       // if x is not Infinity or NaN...
 | |
|       if (xc) {
 | |
| 
 | |
|         // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
 | |
|         // n is a base 1e14 number, the value of the element of array x.c containing rd.
 | |
|         // ni is the index of n within x.c.
 | |
|         // d is the number of digits of n.
 | |
|         // i is the index of rd within n including leading zeros.
 | |
|         // j is the actual index of rd within n (if < 0, rd is a leading zero).
 | |
|         out: {
 | |
| 
 | |
|           // Get the number of digits of the first element of xc.
 | |
|           for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);
 | |
|           i = sd - d;
 | |
| 
 | |
|           // If the rounding digit is in the first element of xc...
 | |
|           if (i < 0) {
 | |
|             i += LOG_BASE;
 | |
|             j = sd;
 | |
|             n = xc[ni = 0];
 | |
| 
 | |
|             // Get the rounding digit at index j of n.
 | |
|             rd = n / pows10[d - j - 1] % 10 | 0;
 | |
|           } else {
 | |
|             ni = mathceil((i + 1) / LOG_BASE);
 | |
| 
 | |
|             if (ni >= xc.length) {
 | |
| 
 | |
|               if (r) {
 | |
| 
 | |
|                 // Needed by sqrt.
 | |
|                 for (; xc.length <= ni; xc.push(0));
 | |
|                 n = rd = 0;
 | |
|                 d = 1;
 | |
|                 i %= LOG_BASE;
 | |
|                 j = i - LOG_BASE + 1;
 | |
|               } else {
 | |
|                 break out;
 | |
|               }
 | |
|             } else {
 | |
|               n = k = xc[ni];
 | |
| 
 | |
|               // Get the number of digits of n.
 | |
|               for (d = 1; k >= 10; k /= 10, d++);
 | |
| 
 | |
|               // Get the index of rd within n.
 | |
|               i %= LOG_BASE;
 | |
| 
 | |
|               // Get the index of rd within n, adjusted for leading zeros.
 | |
|               // The number of leading zeros of n is given by LOG_BASE - d.
 | |
|               j = i - LOG_BASE + d;
 | |
| 
 | |
|               // Get the rounding digit at index j of n.
 | |
|               rd = j < 0 ? 0 : n / pows10[d - j - 1] % 10 | 0;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           r = r || sd < 0 ||
 | |
| 
 | |
|           // Are there any non-zero digits after the rounding digit?
 | |
|           // The expression  n % pows10[d - j - 1]  returns all digits of n to the right
 | |
|           // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
 | |
|            xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);
 | |
| 
 | |
|           r = rm < 4
 | |
|            ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
 | |
|            : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&
 | |
| 
 | |
|             // Check whether the digit to the left of the rounding digit is odd.
 | |
|             ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||
 | |
|              rm == (x.s < 0 ? 8 : 7));
 | |
| 
 | |
|           if (sd < 1 || !xc[0]) {
 | |
|             xc.length = 0;
 | |
| 
 | |
|             if (r) {
 | |
| 
 | |
|               // Convert sd to decimal places.
 | |
|               sd -= x.e + 1;
 | |
| 
 | |
|               // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 | |
|               xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];
 | |
|               x.e = -sd || 0;
 | |
|             } else {
 | |
| 
 | |
|               // Zero.
 | |
|               xc[0] = x.e = 0;
 | |
|             }
 | |
| 
 | |
|             return x;
 | |
|           }
 | |
| 
 | |
|           // Remove excess digits.
 | |
|           if (i == 0) {
 | |
|             xc.length = ni;
 | |
|             k = 1;
 | |
|             ni--;
 | |
|           } else {
 | |
|             xc.length = ni + 1;
 | |
|             k = pows10[LOG_BASE - i];
 | |
| 
 | |
|             // E.g. 56700 becomes 56000 if 7 is the rounding digit.
 | |
|             // j > 0 means i > number of leading zeros of n.
 | |
|             xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;
 | |
|           }
 | |
| 
 | |
|           // Round up?
 | |
|           if (r) {
 | |
| 
 | |
|             for (; ;) {
 | |
| 
 | |
|               // If the digit to be rounded up is in the first element of xc...
 | |
|               if (ni == 0) {
 | |
| 
 | |
|                 // i will be the length of xc[0] before k is added.
 | |
|                 for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);
 | |
|                 j = xc[0] += k;
 | |
|                 for (k = 1; j >= 10; j /= 10, k++);
 | |
| 
 | |
|                 // if i != k the length has increased.
 | |
|                 if (i != k) {
 | |
|                   x.e++;
 | |
|                   if (xc[0] == BASE) xc[0] = 1;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|               } else {
 | |
|                 xc[ni] += k;
 | |
|                 if (xc[ni] != BASE) break;
 | |
|                 xc[ni--] = 0;
 | |
|                 k = 1;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Remove trailing zeros.
 | |
|           for (i = xc.length; xc[--i] === 0; xc.pop());
 | |
|         }
 | |
| 
 | |
|         // Overflow? Infinity.
 | |
|         if (x.e > MAX_EXP) {
 | |
|           x.c = x.e = null;
 | |
| 
 | |
|         // Underflow? Zero.
 | |
|         } else if (x.e < MIN_EXP) {
 | |
|           x.c = [x.e = 0];
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function valueOf(n) {
 | |
|       var str,
 | |
|         e = n.e;
 | |
| 
 | |
|       if (e === null) return n.toString();
 | |
| 
 | |
|       str = coeffToString(n.c);
 | |
| 
 | |
|       str = e <= TO_EXP_NEG || e >= TO_EXP_POS
 | |
|         ? toExponential(str, e)
 | |
|         : toFixedPoint(str, e, '0');
 | |
| 
 | |
|       return n.s < 0 ? '-' + str : str;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // PROTOTYPE/INSTANCE METHODS
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the absolute value of this BigNumber.
 | |
|      */
 | |
|     P.absoluteValue = P.abs = function () {
 | |
|       var x = new BigNumber(this);
 | |
|       if (x.s < 0) x.s = 1;
 | |
|       return x;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return
 | |
|      *   1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | |
|      *   -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
 | |
|      *   0 if they have the same value,
 | |
|      *   or null if the value of either is NaN.
 | |
|      */
 | |
|     P.comparedTo = function (y, b) {
 | |
|       return compare(this, new BigNumber(y, b));
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * If dp is undefined or null or true or false, return the number of decimal places of the
 | |
|      * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
 | |
|      *
 | |
|      * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
 | |
|      * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
 | |
|      * ROUNDING_MODE if rm is omitted.
 | |
|      *
 | |
|      * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | |
|      */
 | |
|     P.decimalPlaces = P.dp = function (dp, rm) {
 | |
|       var c, n, v,
 | |
|         x = this;
 | |
| 
 | |
|       if (dp != null) {
 | |
|         intCheck(dp, 0, MAX);
 | |
|         if (rm == null) rm = ROUNDING_MODE;
 | |
|         else intCheck(rm, 0, 8);
 | |
| 
 | |
|         return round(new BigNumber(x), dp + x.e + 1, rm);
 | |
|       }
 | |
| 
 | |
|       if (!(c = x.c)) return null;
 | |
|       n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;
 | |
| 
 | |
|       // Subtract the number of trailing zeros of the last number.
 | |
|       if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);
 | |
|       if (n < 0) n = 0;
 | |
| 
 | |
|       return n;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *  n / 0 = I
 | |
|      *  n / N = N
 | |
|      *  n / I = 0
 | |
|      *  0 / n = 0
 | |
|      *  0 / 0 = N
 | |
|      *  0 / N = N
 | |
|      *  0 / I = 0
 | |
|      *  N / n = N
 | |
|      *  N / 0 = N
 | |
|      *  N / N = N
 | |
|      *  N / I = N
 | |
|      *  I / n = I
 | |
|      *  I / 0 = I
 | |
|      *  I / N = N
 | |
|      *  I / I = N
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
 | |
|      * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|      */
 | |
|     P.dividedBy = P.div = function (y, b) {
 | |
|       return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the integer part of dividing the value of this
 | |
|      * BigNumber by the value of BigNumber(y, b).
 | |
|      */
 | |
|     P.dividedToIntegerBy = P.idiv = function (y, b) {
 | |
|       return div(this, new BigNumber(y, b), 0, 1);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
 | |
|      *
 | |
|      * If m is present, return the result modulo m.
 | |
|      * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|      * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
 | |
|      *
 | |
|      * The modular power operation works efficiently when x, n, and m are integers, otherwise it
 | |
|      * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
 | |
|      *
 | |
|      * n {number|string|BigNumber} The exponent. An integer.
 | |
|      * [m] {number|string|BigNumber} The modulus.
 | |
|      *
 | |
|      * '[BigNumber Error] Exponent not an integer: {n}'
 | |
|      */
 | |
|     P.exponentiatedBy = P.pow = function (n, m) {
 | |
|       var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,
 | |
|         x = this;
 | |
| 
 | |
|       n = new BigNumber(n);
 | |
| 
 | |
|       // Allow NaN and ±Infinity, but not other non-integers.
 | |
|       if (n.c && !n.isInteger()) {
 | |
|         throw Error
 | |
|           (bignumberError + 'Exponent not an integer: ' + valueOf(n));
 | |
|       }
 | |
| 
 | |
|       if (m != null) m = new BigNumber(m);
 | |
| 
 | |
|       // Exponent of MAX_SAFE_INTEGER is 15.
 | |
|       nIsBig = n.e > 14;
 | |
| 
 | |
|       // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
 | |
|       if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {
 | |
| 
 | |
|         // The sign of the result of pow when x is negative depends on the evenness of n.
 | |
|         // If +n overflows to ±Infinity, the evenness of n would be not be known.
 | |
|         y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? n.s * (2 - isOdd(n)) : +valueOf(n)));
 | |
|         return m ? y.mod(m) : y;
 | |
|       }
 | |
| 
 | |
|       nIsNeg = n.s < 0;
 | |
| 
 | |
|       if (m) {
 | |
| 
 | |
|         // x % m returns NaN if abs(m) is zero, or m is NaN.
 | |
|         if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);
 | |
| 
 | |
|         isModExp = !nIsNeg && x.isInteger() && m.isInteger();
 | |
| 
 | |
|         if (isModExp) x = x.mod(m);
 | |
| 
 | |
|       // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
 | |
|       // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
 | |
|       } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0
 | |
|         // [1, 240000000]
 | |
|         ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7
 | |
|         // [80000000000000]  [99999750000000]
 | |
|         : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {
 | |
| 
 | |
|         // If x is negative and n is odd, k = -0, else k = 0.
 | |
|         k = x.s < 0 && isOdd(n) ? -0 : 0;
 | |
| 
 | |
|         // If x >= 1, k = ±Infinity.
 | |
|         if (x.e > -1) k = 1 / k;
 | |
| 
 | |
|         // If n is negative return ±0, else return ±Infinity.
 | |
|         return new BigNumber(nIsNeg ? 1 / k : k);
 | |
| 
 | |
|       } else if (POW_PRECISION) {
 | |
| 
 | |
|         // Truncating each coefficient array to a length of k after each multiplication
 | |
|         // equates to truncating significant digits to POW_PRECISION + [28, 41],
 | |
|         // i.e. there will be a minimum of 28 guard digits retained.
 | |
|         k = mathceil(POW_PRECISION / LOG_BASE + 2);
 | |
|       }
 | |
| 
 | |
|       if (nIsBig) {
 | |
|         half = new BigNumber(0.5);
 | |
|         if (nIsNeg) n.s = 1;
 | |
|         nIsOdd = isOdd(n);
 | |
|       } else {
 | |
|         i = Math.abs(+valueOf(n));
 | |
|         nIsOdd = i % 2;
 | |
|       }
 | |
| 
 | |
|       y = new BigNumber(ONE);
 | |
| 
 | |
|       // Performs 54 loop iterations for n of 9007199254740991.
 | |
|       for (; ;) {
 | |
| 
 | |
|         if (nIsOdd) {
 | |
|           y = y.times(x);
 | |
|           if (!y.c) break;
 | |
| 
 | |
|           if (k) {
 | |
|             if (y.c.length > k) y.c.length = k;
 | |
|           } else if (isModExp) {
 | |
|             y = y.mod(m);    //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (i) {
 | |
|           i = mathfloor(i / 2);
 | |
|           if (i === 0) break;
 | |
|           nIsOdd = i % 2;
 | |
|         } else {
 | |
|           n = n.times(half);
 | |
|           round(n, n.e + 1, 1);
 | |
| 
 | |
|           if (n.e > 14) {
 | |
|             nIsOdd = isOdd(n);
 | |
|           } else {
 | |
|             i = +valueOf(n);
 | |
|             if (i === 0) break;
 | |
|             nIsOdd = i % 2;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         x = x.times(x);
 | |
| 
 | |
|         if (k) {
 | |
|           if (x.c && x.c.length > k) x.c.length = k;
 | |
|         } else if (isModExp) {
 | |
|           x = x.mod(m);    //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (isModExp) return y;
 | |
|       if (nIsNeg) y = ONE.div(y);
 | |
| 
 | |
|       return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
 | |
|      * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | |
|      *
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
 | |
|      */
 | |
|     P.integerValue = function (rm) {
 | |
|       var n = new BigNumber(this);
 | |
|       if (rm == null) rm = ROUNDING_MODE;
 | |
|       else intCheck(rm, 0, 8);
 | |
|       return round(n, n.e + 1, rm);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
 | |
|      * otherwise return false.
 | |
|      */
 | |
|     P.isEqualTo = P.eq = function (y, b) {
 | |
|       return compare(this, new BigNumber(y, b)) === 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is a finite number, otherwise return false.
 | |
|      */
 | |
|     P.isFinite = function () {
 | |
|       return !!this.c;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | |
|      * otherwise return false.
 | |
|      */
 | |
|     P.isGreaterThan = P.gt = function (y, b) {
 | |
|       return compare(this, new BigNumber(y, b)) > 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is greater than or equal to the value of
 | |
|      * BigNumber(y, b), otherwise return false.
 | |
|      */
 | |
|     P.isGreaterThanOrEqualTo = P.gte = function (y, b) {
 | |
|       return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;
 | |
| 
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is an integer, otherwise return false.
 | |
|      */
 | |
|     P.isInteger = function () {
 | |
|       return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
 | |
|      * otherwise return false.
 | |
|      */
 | |
|     P.isLessThan = P.lt = function (y, b) {
 | |
|       return compare(this, new BigNumber(y, b)) < 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is less than or equal to the value of
 | |
|      * BigNumber(y, b), otherwise return false.
 | |
|      */
 | |
|     P.isLessThanOrEqualTo = P.lte = function (y, b) {
 | |
|       return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is NaN, otherwise return false.
 | |
|      */
 | |
|     P.isNaN = function () {
 | |
|       return !this.s;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is negative, otherwise return false.
 | |
|      */
 | |
|     P.isNegative = function () {
 | |
|       return this.s < 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is positive, otherwise return false.
 | |
|      */
 | |
|     P.isPositive = function () {
 | |
|       return this.s > 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
 | |
|      */
 | |
|     P.isZero = function () {
 | |
|       return !!this.c && this.c[0] == 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *  n - 0 = n
 | |
|      *  n - N = N
 | |
|      *  n - I = -I
 | |
|      *  0 - n = -n
 | |
|      *  0 - 0 = 0
 | |
|      *  0 - N = N
 | |
|      *  0 - I = -I
 | |
|      *  N - n = N
 | |
|      *  N - 0 = N
 | |
|      *  N - N = N
 | |
|      *  N - I = N
 | |
|      *  I - n = I
 | |
|      *  I - 0 = I
 | |
|      *  I - N = N
 | |
|      *  I - I = N
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber minus the value of
 | |
|      * BigNumber(y, b).
 | |
|      */
 | |
|     P.minus = function (y, b) {
 | |
|       var i, j, t, xLTy,
 | |
|         x = this,
 | |
|         a = x.s;
 | |
| 
 | |
|       y = new BigNumber(y, b);
 | |
|       b = y.s;
 | |
| 
 | |
|       // Either NaN?
 | |
|       if (!a || !b) return new BigNumber(NaN);
 | |
| 
 | |
|       // Signs differ?
 | |
|       if (a != b) {
 | |
|         y.s = -b;
 | |
|         return x.plus(y);
 | |
|       }
 | |
| 
 | |
|       var xe = x.e / LOG_BASE,
 | |
|         ye = y.e / LOG_BASE,
 | |
|         xc = x.c,
 | |
|         yc = y.c;
 | |
| 
 | |
|       if (!xe || !ye) {
 | |
| 
 | |
|         // Either Infinity?
 | |
|         if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);
 | |
| 
 | |
|         // Either zero?
 | |
|         if (!xc[0] || !yc[0]) {
 | |
| 
 | |
|           // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | |
|           return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :
 | |
| 
 | |
|            // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
 | |
|            ROUNDING_MODE == 3 ? -0 : 0);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       xe = bitFloor(xe);
 | |
|       ye = bitFloor(ye);
 | |
|       xc = xc.slice();
 | |
| 
 | |
|       // Determine which is the bigger number.
 | |
|       if (a = xe - ye) {
 | |
| 
 | |
|         if (xLTy = a < 0) {
 | |
|           a = -a;
 | |
|           t = xc;
 | |
|         } else {
 | |
|           ye = xe;
 | |
|           t = yc;
 | |
|         }
 | |
| 
 | |
|         t.reverse();
 | |
| 
 | |
|         // Prepend zeros to equalise exponents.
 | |
|         for (b = a; b--; t.push(0));
 | |
|         t.reverse();
 | |
|       } else {
 | |
| 
 | |
|         // Exponents equal. Check digit by digit.
 | |
|         j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;
 | |
| 
 | |
|         for (a = b = 0; b < j; b++) {
 | |
| 
 | |
|           if (xc[b] != yc[b]) {
 | |
|             xLTy = xc[b] < yc[b];
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // x < y? Point xc to the array of the bigger number.
 | |
|       if (xLTy) {
 | |
|         t = xc;
 | |
|         xc = yc;
 | |
|         yc = t;
 | |
|         y.s = -y.s;
 | |
|       }
 | |
| 
 | |
|       b = (j = yc.length) - (i = xc.length);
 | |
| 
 | |
|       // Append zeros to xc if shorter.
 | |
|       // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
 | |
|       if (b > 0) for (; b--; xc[i++] = 0);
 | |
|       b = BASE - 1;
 | |
| 
 | |
|       // Subtract yc from xc.
 | |
|       for (; j > a;) {
 | |
| 
 | |
|         if (xc[--j] < yc[j]) {
 | |
|           for (i = j; i && !xc[--i]; xc[i] = b);
 | |
|           --xc[i];
 | |
|           xc[j] += BASE;
 | |
|         }
 | |
| 
 | |
|         xc[j] -= yc[j];
 | |
|       }
 | |
| 
 | |
|       // Remove leading zeros and adjust exponent accordingly.
 | |
|       for (; xc[0] == 0; xc.splice(0, 1), --ye);
 | |
| 
 | |
|       // Zero?
 | |
|       if (!xc[0]) {
 | |
| 
 | |
|         // Following IEEE 754 (2008) 6.3,
 | |
|         // n - n = +0  but  n - n = -0  when rounding towards -Infinity.
 | |
|         y.s = ROUNDING_MODE == 3 ? -1 : 1;
 | |
|         y.c = [y.e = 0];
 | |
|         return y;
 | |
|       }
 | |
| 
 | |
|       // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
 | |
|       // for finite x and y.
 | |
|       return normalise(y, xc, ye);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *   n % 0 =  N
 | |
|      *   n % N =  N
 | |
|      *   n % I =  n
 | |
|      *   0 % n =  0
 | |
|      *  -0 % n = -0
 | |
|      *   0 % 0 =  N
 | |
|      *   0 % N =  N
 | |
|      *   0 % I =  0
 | |
|      *   N % n =  N
 | |
|      *   N % 0 =  N
 | |
|      *   N % N =  N
 | |
|      *   N % I =  N
 | |
|      *   I % n =  N
 | |
|      *   I % 0 =  N
 | |
|      *   I % N =  N
 | |
|      *   I % I =  N
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
 | |
|      * BigNumber(y, b). The result depends on the value of MODULO_MODE.
 | |
|      */
 | |
|     P.modulo = P.mod = function (y, b) {
 | |
|       var q, s,
 | |
|         x = this;
 | |
| 
 | |
|       y = new BigNumber(y, b);
 | |
| 
 | |
|       // Return NaN if x is Infinity or NaN, or y is NaN or zero.
 | |
|       if (!x.c || !y.s || y.c && !y.c[0]) {
 | |
|         return new BigNumber(NaN);
 | |
| 
 | |
|       // Return x if y is Infinity or x is zero.
 | |
|       } else if (!y.c || x.c && !x.c[0]) {
 | |
|         return new BigNumber(x);
 | |
|       }
 | |
| 
 | |
|       if (MODULO_MODE == 9) {
 | |
| 
 | |
|         // Euclidian division: q = sign(y) * floor(x / abs(y))
 | |
|         // r = x - qy    where  0 <= r < abs(y)
 | |
|         s = y.s;
 | |
|         y.s = 1;
 | |
|         q = div(x, y, 0, 3);
 | |
|         y.s = s;
 | |
|         q.s *= s;
 | |
|       } else {
 | |
|         q = div(x, y, 0, MODULO_MODE);
 | |
|       }
 | |
| 
 | |
|       y = x.minus(q.times(y));
 | |
| 
 | |
|       // To match JavaScript %, ensure sign of zero is sign of dividend.
 | |
|       if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;
 | |
| 
 | |
|       return y;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *  n * 0 = 0
 | |
|      *  n * N = N
 | |
|      *  n * I = I
 | |
|      *  0 * n = 0
 | |
|      *  0 * 0 = 0
 | |
|      *  0 * N = N
 | |
|      *  0 * I = N
 | |
|      *  N * n = N
 | |
|      *  N * 0 = N
 | |
|      *  N * N = N
 | |
|      *  N * I = N
 | |
|      *  I * n = I
 | |
|      *  I * 0 = N
 | |
|      *  I * N = N
 | |
|      *  I * I = I
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
 | |
|      * of BigNumber(y, b).
 | |
|      */
 | |
|     P.multipliedBy = P.times = function (y, b) {
 | |
|       var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
 | |
|         base, sqrtBase,
 | |
|         x = this,
 | |
|         xc = x.c,
 | |
|         yc = (y = new BigNumber(y, b)).c;
 | |
| 
 | |
|       // Either NaN, ±Infinity or ±0?
 | |
|       if (!xc || !yc || !xc[0] || !yc[0]) {
 | |
| 
 | |
|         // Return NaN if either is NaN, or one is 0 and the other is Infinity.
 | |
|         if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {
 | |
|           y.c = y.e = y.s = null;
 | |
|         } else {
 | |
|           y.s *= x.s;
 | |
| 
 | |
|           // Return ±Infinity if either is ±Infinity.
 | |
|           if (!xc || !yc) {
 | |
|             y.c = y.e = null;
 | |
| 
 | |
|           // Return ±0 if either is ±0.
 | |
|           } else {
 | |
|             y.c = [0];
 | |
|             y.e = 0;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return y;
 | |
|       }
 | |
| 
 | |
|       e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);
 | |
|       y.s *= x.s;
 | |
|       xcL = xc.length;
 | |
|       ycL = yc.length;
 | |
| 
 | |
|       // Ensure xc points to longer array and xcL to its length.
 | |
|       if (xcL < ycL) {
 | |
|         zc = xc;
 | |
|         xc = yc;
 | |
|         yc = zc;
 | |
|         i = xcL;
 | |
|         xcL = ycL;
 | |
|         ycL = i;
 | |
|       }
 | |
| 
 | |
|       // Initialise the result array with zeros.
 | |
|       for (i = xcL + ycL, zc = []; i--; zc.push(0));
 | |
| 
 | |
|       base = BASE;
 | |
|       sqrtBase = SQRT_BASE;
 | |
| 
 | |
|       for (i = ycL; --i >= 0;) {
 | |
|         c = 0;
 | |
|         ylo = yc[i] % sqrtBase;
 | |
|         yhi = yc[i] / sqrtBase | 0;
 | |
| 
 | |
|         for (k = xcL, j = i + k; j > i;) {
 | |
|           xlo = xc[--k] % sqrtBase;
 | |
|           xhi = xc[k] / sqrtBase | 0;
 | |
|           m = yhi * xlo + xhi * ylo;
 | |
|           xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;
 | |
|           c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;
 | |
|           zc[j--] = xlo % base;
 | |
|         }
 | |
| 
 | |
|         zc[j] = c;
 | |
|       }
 | |
| 
 | |
|       if (c) {
 | |
|         ++e;
 | |
|       } else {
 | |
|         zc.splice(0, 1);
 | |
|       }
 | |
| 
 | |
|       return normalise(y, zc, e);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber negated,
 | |
|      * i.e. multiplied by -1.
 | |
|      */
 | |
|     P.negated = function () {
 | |
|       var x = new BigNumber(this);
 | |
|       x.s = -x.s || null;
 | |
|       return x;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *  n + 0 = n
 | |
|      *  n + N = N
 | |
|      *  n + I = I
 | |
|      *  0 + n = n
 | |
|      *  0 + 0 = 0
 | |
|      *  0 + N = N
 | |
|      *  0 + I = I
 | |
|      *  N + n = N
 | |
|      *  N + 0 = N
 | |
|      *  N + N = N
 | |
|      *  N + I = N
 | |
|      *  I + n = I
 | |
|      *  I + 0 = I
 | |
|      *  I + N = N
 | |
|      *  I + I = I
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber plus the value of
 | |
|      * BigNumber(y, b).
 | |
|      */
 | |
|     P.plus = function (y, b) {
 | |
|       var t,
 | |
|         x = this,
 | |
|         a = x.s;
 | |
| 
 | |
|       y = new BigNumber(y, b);
 | |
|       b = y.s;
 | |
| 
 | |
|       // Either NaN?
 | |
|       if (!a || !b) return new BigNumber(NaN);
 | |
| 
 | |
|       // Signs differ?
 | |
|        if (a != b) {
 | |
|         y.s = -b;
 | |
|         return x.minus(y);
 | |
|       }
 | |
| 
 | |
|       var xe = x.e / LOG_BASE,
 | |
|         ye = y.e / LOG_BASE,
 | |
|         xc = x.c,
 | |
|         yc = y.c;
 | |
| 
 | |
|       if (!xe || !ye) {
 | |
| 
 | |
|         // Return ±Infinity if either ±Infinity.
 | |
|         if (!xc || !yc) return new BigNumber(a / 0);
 | |
| 
 | |
|         // Either zero?
 | |
|         // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | |
|         if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);
 | |
|       }
 | |
| 
 | |
|       xe = bitFloor(xe);
 | |
|       ye = bitFloor(ye);
 | |
|       xc = xc.slice();
 | |
| 
 | |
|       // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
 | |
|       if (a = xe - ye) {
 | |
|         if (a > 0) {
 | |
|           ye = xe;
 | |
|           t = yc;
 | |
|         } else {
 | |
|           a = -a;
 | |
|           t = xc;
 | |
|         }
 | |
| 
 | |
|         t.reverse();
 | |
|         for (; a--; t.push(0));
 | |
|         t.reverse();
 | |
|       }
 | |
| 
 | |
|       a = xc.length;
 | |
|       b = yc.length;
 | |
| 
 | |
|       // Point xc to the longer array, and b to the shorter length.
 | |
|       if (a - b < 0) {
 | |
|         t = yc;
 | |
|         yc = xc;
 | |
|         xc = t;
 | |
|         b = a;
 | |
|       }
 | |
| 
 | |
|       // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
 | |
|       for (a = 0; b;) {
 | |
|         a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;
 | |
|         xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
 | |
|       }
 | |
| 
 | |
|       if (a) {
 | |
|         xc = [a].concat(xc);
 | |
|         ++ye;
 | |
|       }
 | |
| 
 | |
|       // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 | |
|       // ye = MAX_EXP + 1 possible
 | |
|       return normalise(y, xc, ye);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * If sd is undefined or null or true or false, return the number of significant digits of
 | |
|      * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
 | |
|      * If sd is true include integer-part trailing zeros in the count.
 | |
|      *
 | |
|      * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
 | |
|      * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
 | |
|      * ROUNDING_MODE if rm is omitted.
 | |
|      *
 | |
|      * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
 | |
|      *                     boolean: whether to count integer-part trailing zeros: true or false.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
 | |
|      */
 | |
|     P.precision = P.sd = function (sd, rm) {
 | |
|       var c, n, v,
 | |
|         x = this;
 | |
| 
 | |
|       if (sd != null && sd !== !!sd) {
 | |
|         intCheck(sd, 1, MAX);
 | |
|         if (rm == null) rm = ROUNDING_MODE;
 | |
|         else intCheck(rm, 0, 8);
 | |
| 
 | |
|         return round(new BigNumber(x), sd, rm);
 | |
|       }
 | |
| 
 | |
|       if (!(c = x.c)) return null;
 | |
|       v = c.length - 1;
 | |
|       n = v * LOG_BASE + 1;
 | |
| 
 | |
|       if (v = c[v]) {
 | |
| 
 | |
|         // Subtract the number of trailing zeros of the last element.
 | |
|         for (; v % 10 == 0; v /= 10, n--);
 | |
| 
 | |
|         // Add the number of digits of the first element.
 | |
|         for (v = c[0]; v >= 10; v /= 10, n++);
 | |
|       }
 | |
| 
 | |
|       if (sd && x.e + 1 > n) n = x.e + 1;
 | |
| 
 | |
|       return n;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
 | |
|      * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
 | |
|      *
 | |
|      * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
 | |
|      */
 | |
|     P.shiftedBy = function (k) {
 | |
|       intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);
 | |
|       return this.times('1e' + k);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      *  sqrt(-n) =  N
 | |
|      *  sqrt(N) =  N
 | |
|      *  sqrt(-I) =  N
 | |
|      *  sqrt(I) =  I
 | |
|      *  sqrt(0) =  0
 | |
|      *  sqrt(-0) = -0
 | |
|      *
 | |
|      * Return a new BigNumber whose value is the square root of the value of this BigNumber,
 | |
|      * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|      */
 | |
|     P.squareRoot = P.sqrt = function () {
 | |
|       var m, n, r, rep, t,
 | |
|         x = this,
 | |
|         c = x.c,
 | |
|         s = x.s,
 | |
|         e = x.e,
 | |
|         dp = DECIMAL_PLACES + 4,
 | |
|         half = new BigNumber('0.5');
 | |
| 
 | |
|       // Negative/NaN/Infinity/zero?
 | |
|       if (s !== 1 || !c || !c[0]) {
 | |
|         return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);
 | |
|       }
 | |
| 
 | |
|       // Initial estimate.
 | |
|       s = Math.sqrt(+valueOf(x));
 | |
| 
 | |
|       // Math.sqrt underflow/overflow?
 | |
|       // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
 | |
|       if (s == 0 || s == 1 / 0) {
 | |
|         n = coeffToString(c);
 | |
|         if ((n.length + e) % 2 == 0) n += '0';
 | |
|         s = Math.sqrt(+n);
 | |
|         e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);
 | |
| 
 | |
|         if (s == 1 / 0) {
 | |
|           n = '5e' + e;
 | |
|         } else {
 | |
|           n = s.toExponential();
 | |
|           n = n.slice(0, n.indexOf('e') + 1) + e;
 | |
|         }
 | |
| 
 | |
|         r = new BigNumber(n);
 | |
|       } else {
 | |
|         r = new BigNumber(s + '');
 | |
|       }
 | |
| 
 | |
|       // Check for zero.
 | |
|       // r could be zero if MIN_EXP is changed after the this value was created.
 | |
|       // This would cause a division by zero (x/t) and hence Infinity below, which would cause
 | |
|       // coeffToString to throw.
 | |
|       if (r.c[0]) {
 | |
|         e = r.e;
 | |
|         s = e + dp;
 | |
|         if (s < 3) s = 0;
 | |
| 
 | |
|         // Newton-Raphson iteration.
 | |
|         for (; ;) {
 | |
|           t = r;
 | |
|           r = half.times(t.plus(div(x, t, dp, 1)));
 | |
| 
 | |
|           if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {
 | |
| 
 | |
|             // The exponent of r may here be one less than the final result exponent,
 | |
|             // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
 | |
|             // are indexed correctly.
 | |
|             if (r.e < e) --s;
 | |
|             n = n.slice(s - 3, s + 1);
 | |
| 
 | |
|             // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
 | |
|             // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
 | |
|             // iteration.
 | |
|             if (n == '9999' || !rep && n == '4999') {
 | |
| 
 | |
|               // On the first iteration only, check to see if rounding up gives the
 | |
|               // exact result as the nines may infinitely repeat.
 | |
|               if (!rep) {
 | |
|                 round(t, t.e + DECIMAL_PLACES + 2, 0);
 | |
| 
 | |
|                 if (t.times(t).eq(x)) {
 | |
|                   r = t;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
| 
 | |
|               dp += 4;
 | |
|               s += 4;
 | |
|               rep = 1;
 | |
|             } else {
 | |
| 
 | |
|               // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
 | |
|               // result. If not, then there are further digits and m will be truthy.
 | |
|               if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
 | |
| 
 | |
|                 // Truncate to the first rounding digit.
 | |
|                 round(r, r.e + DECIMAL_PLACES + 2, 1);
 | |
|                 m = !r.times(r).eq(x);
 | |
|               }
 | |
| 
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of this BigNumber in exponential notation and
 | |
|      * rounded using ROUNDING_MODE to dp fixed decimal places.
 | |
|      *
 | |
|      * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | |
|      */
 | |
|     P.toExponential = function (dp, rm) {
 | |
|       if (dp != null) {
 | |
|         intCheck(dp, 0, MAX);
 | |
|         dp++;
 | |
|       }
 | |
|       return format(this, dp, rm, 1);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of this BigNumber in fixed-point notation rounding
 | |
|      * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | |
|      *
 | |
|      * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
 | |
|      * but e.g. (-0.00001).toFixed(0) is '-0'.
 | |
|      *
 | |
|      * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | |
|      */
 | |
|     P.toFixed = function (dp, rm) {
 | |
|       if (dp != null) {
 | |
|         intCheck(dp, 0, MAX);
 | |
|         dp = dp + this.e + 1;
 | |
|       }
 | |
|       return format(this, dp, rm);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of this BigNumber in fixed-point notation rounded
 | |
|      * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
 | |
|      * of the format or FORMAT object (see BigNumber.set).
 | |
|      *
 | |
|      * The formatting object may contain some or all of the properties shown below.
 | |
|      *
 | |
|      * FORMAT = {
 | |
|      *   prefix: '',
 | |
|      *   groupSize: 3,
 | |
|      *   secondaryGroupSize: 0,
 | |
|      *   groupSeparator: ',',
 | |
|      *   decimalSeparator: '.',
 | |
|      *   fractionGroupSize: 0,
 | |
|      *   fractionGroupSeparator: '\xA0',      // non-breaking space
 | |
|      *   suffix: ''
 | |
|      * };
 | |
|      *
 | |
|      * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      * [format] {object} Formatting options. See FORMAT pbject above.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
 | |
|      * '[BigNumber Error] Argument not an object: {format}'
 | |
|      */
 | |
|     P.toFormat = function (dp, rm, format) {
 | |
|       var str,
 | |
|         x = this;
 | |
| 
 | |
|       if (format == null) {
 | |
|         if (dp != null && rm && typeof rm == 'object') {
 | |
|           format = rm;
 | |
|           rm = null;
 | |
|         } else if (dp && typeof dp == 'object') {
 | |
|           format = dp;
 | |
|           dp = rm = null;
 | |
|         } else {
 | |
|           format = FORMAT;
 | |
|         }
 | |
|       } else if (typeof format != 'object') {
 | |
|         throw Error
 | |
|           (bignumberError + 'Argument not an object: ' + format);
 | |
|       }
 | |
| 
 | |
|       str = x.toFixed(dp, rm);
 | |
| 
 | |
|       if (x.c) {
 | |
|         var i,
 | |
|           arr = str.split('.'),
 | |
|           g1 = +format.groupSize,
 | |
|           g2 = +format.secondaryGroupSize,
 | |
|           groupSeparator = format.groupSeparator || '',
 | |
|           intPart = arr[0],
 | |
|           fractionPart = arr[1],
 | |
|           isNeg = x.s < 0,
 | |
|           intDigits = isNeg ? intPart.slice(1) : intPart,
 | |
|           len = intDigits.length;
 | |
| 
 | |
|         if (g2) {
 | |
|           i = g1;
 | |
|           g1 = g2;
 | |
|           g2 = i;
 | |
|           len -= i;
 | |
|         }
 | |
| 
 | |
|         if (g1 > 0 && len > 0) {
 | |
|           i = len % g1 || g1;
 | |
|           intPart = intDigits.substr(0, i);
 | |
|           for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);
 | |
|           if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);
 | |
|           if (isNeg) intPart = '-' + intPart;
 | |
|         }
 | |
| 
 | |
|         str = fractionPart
 | |
|          ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)
 | |
|           ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),
 | |
|            '$&' + (format.fractionGroupSeparator || ''))
 | |
|           : fractionPart)
 | |
|          : intPart;
 | |
|       }
 | |
| 
 | |
|       return (format.prefix || '') + str + (format.suffix || '');
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return an array of two BigNumbers representing the value of this BigNumber as a simple
 | |
|      * fraction with an integer numerator and an integer denominator.
 | |
|      * The denominator will be a positive non-zero value less than or equal to the specified
 | |
|      * maximum denominator. If a maximum denominator is not specified, the denominator will be
 | |
|      * the lowest value necessary to represent the number exactly.
 | |
|      *
 | |
|      * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
 | |
|      */
 | |
|     P.toFraction = function (md) {
 | |
|       var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,
 | |
|         x = this,
 | |
|         xc = x.c;
 | |
| 
 | |
|       if (md != null) {
 | |
|         n = new BigNumber(md);
 | |
| 
 | |
|         // Throw if md is less than one or is not an integer, unless it is Infinity.
 | |
|         if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {
 | |
|           throw Error
 | |
|             (bignumberError + 'Argument ' +
 | |
|               (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!xc) return new BigNumber(x);
 | |
| 
 | |
|       d = new BigNumber(ONE);
 | |
|       n1 = d0 = new BigNumber(ONE);
 | |
|       d1 = n0 = new BigNumber(ONE);
 | |
|       s = coeffToString(xc);
 | |
| 
 | |
|       // Determine initial denominator.
 | |
|       // d is a power of 10 and the minimum max denominator that specifies the value exactly.
 | |
|       e = d.e = s.length - x.e - 1;
 | |
|       d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];
 | |
|       md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;
 | |
| 
 | |
|       exp = MAX_EXP;
 | |
|       MAX_EXP = 1 / 0;
 | |
|       n = new BigNumber(s);
 | |
| 
 | |
|       // n0 = d1 = 0
 | |
|       n0.c[0] = 0;
 | |
| 
 | |
|       for (; ;)  {
 | |
|         q = div(n, d, 0, 1);
 | |
|         d2 = d0.plus(q.times(d1));
 | |
|         if (d2.comparedTo(md) == 1) break;
 | |
|         d0 = d1;
 | |
|         d1 = d2;
 | |
|         n1 = n0.plus(q.times(d2 = n1));
 | |
|         n0 = d2;
 | |
|         d = n.minus(q.times(d2 = d));
 | |
|         n = d2;
 | |
|       }
 | |
| 
 | |
|       d2 = div(md.minus(d0), d1, 0, 1);
 | |
|       n0 = n0.plus(d2.times(n1));
 | |
|       d0 = d0.plus(d2.times(d1));
 | |
|       n0.s = n1.s = x.s;
 | |
|       e = e * 2;
 | |
| 
 | |
|       // Determine which fraction is closer to x, n0/d0 or n1/d1
 | |
|       r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(
 | |
|           div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
 | |
| 
 | |
|       MAX_EXP = exp;
 | |
| 
 | |
|       return r;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return the value of this BigNumber converted to a number primitive.
 | |
|      */
 | |
|     P.toNumber = function () {
 | |
|       return +valueOf(this);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of this BigNumber rounded to sd significant digits
 | |
|      * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
 | |
|      * necessary to represent the integer part of the value in fixed-point notation, then use
 | |
|      * exponential notation.
 | |
|      *
 | |
|      * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
 | |
|      * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
 | |
|      */
 | |
|     P.toPrecision = function (sd, rm) {
 | |
|       if (sd != null) intCheck(sd, 1, MAX);
 | |
|       return format(this, sd, rm, 2);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return a string representing the value of this BigNumber in base b, or base 10 if b is
 | |
|      * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
 | |
|      * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
 | |
|      * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
 | |
|      * TO_EXP_NEG, return exponential notation.
 | |
|      *
 | |
|      * [b] {number} Integer, 2 to ALPHABET.length inclusive.
 | |
|      *
 | |
|      * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
 | |
|      */
 | |
|     P.toString = function (b) {
 | |
|       var str,
 | |
|         n = this,
 | |
|         s = n.s,
 | |
|         e = n.e;
 | |
| 
 | |
|       // Infinity or NaN?
 | |
|       if (e === null) {
 | |
|         if (s) {
 | |
|           str = 'Infinity';
 | |
|           if (s < 0) str = '-' + str;
 | |
|         } else {
 | |
|           str = 'NaN';
 | |
|         }
 | |
|       } else {
 | |
|         if (b == null) {
 | |
|           str = e <= TO_EXP_NEG || e >= TO_EXP_POS
 | |
|            ? toExponential(coeffToString(n.c), e)
 | |
|            : toFixedPoint(coeffToString(n.c), e, '0');
 | |
|         } else if (b === 10 && alphabetHasNormalDecimalDigits) {
 | |
|           n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);
 | |
|           str = toFixedPoint(coeffToString(n.c), n.e, '0');
 | |
|         } else {
 | |
|           intCheck(b, 2, ALPHABET.length, 'Base');
 | |
|           str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);
 | |
|         }
 | |
| 
 | |
|         if (s < 0 && n.c[0]) str = '-' + str;
 | |
|       }
 | |
| 
 | |
|       return str;
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return as toString, but do not accept a base argument, and include the minus sign for
 | |
|      * negative zero.
 | |
|      */
 | |
|     P.valueOf = P.toJSON = function () {
 | |
|       return valueOf(this);
 | |
|     };
 | |
| 
 | |
| 
 | |
|     P._isBigNumber = true;
 | |
| 
 | |
|     if (configObject != null) BigNumber.set(configObject);
 | |
| 
 | |
|     return BigNumber;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // PRIVATE HELPER FUNCTIONS
 | |
| 
 | |
|   // These functions don't need access to variables,
 | |
|   // e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
 | |
| 
 | |
| 
 | |
|   function bitFloor(n) {
 | |
|     var i = n | 0;
 | |
|     return n > 0 || n === i ? i : i - 1;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Return a coefficient array as a string of base 10 digits.
 | |
|   function coeffToString(a) {
 | |
|     var s, z,
 | |
|       i = 1,
 | |
|       j = a.length,
 | |
|       r = a[0] + '';
 | |
| 
 | |
|     for (; i < j;) {
 | |
|       s = a[i++] + '';
 | |
|       z = LOG_BASE - s.length;
 | |
|       for (; z--; s = '0' + s);
 | |
|       r += s;
 | |
|     }
 | |
| 
 | |
|     // Determine trailing zeros.
 | |
|     for (j = r.length; r.charCodeAt(--j) === 48;);
 | |
| 
 | |
|     return r.slice(0, j + 1 || 1);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Compare the value of BigNumbers x and y.
 | |
|   function compare(x, y) {
 | |
|     var a, b,
 | |
|       xc = x.c,
 | |
|       yc = y.c,
 | |
|       i = x.s,
 | |
|       j = y.s,
 | |
|       k = x.e,
 | |
|       l = y.e;
 | |
| 
 | |
|     // Either NaN?
 | |
|     if (!i || !j) return null;
 | |
| 
 | |
|     a = xc && !xc[0];
 | |
|     b = yc && !yc[0];
 | |
| 
 | |
|     // Either zero?
 | |
|     if (a || b) return a ? b ? 0 : -j : i;
 | |
| 
 | |
|     // Signs differ?
 | |
|     if (i != j) return i;
 | |
| 
 | |
|     a = i < 0;
 | |
|     b = k == l;
 | |
| 
 | |
|     // Either Infinity?
 | |
|     if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;
 | |
| 
 | |
|     // Compare exponents.
 | |
|     if (!b) return k > l ^ a ? 1 : -1;
 | |
| 
 | |
|     j = (k = xc.length) < (l = yc.length) ? k : l;
 | |
| 
 | |
|     // Compare digit by digit.
 | |
|     for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;
 | |
| 
 | |
|     // Compare lengths.
 | |
|     return k == l ? 0 : k > l ^ a ? 1 : -1;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Check that n is a primitive number, an integer, and in range, otherwise throw.
 | |
|    */
 | |
|   function intCheck(n, min, max, name) {
 | |
|     if (n < min || n > max || n !== mathfloor(n)) {
 | |
|       throw Error
 | |
|        (bignumberError + (name || 'Argument') + (typeof n == 'number'
 | |
|          ? n < min || n > max ? ' out of range: ' : ' not an integer: '
 | |
|          : ' not a primitive number: ') + String(n));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Assumes finite n.
 | |
|   function isOdd(n) {
 | |
|     var k = n.c.length - 1;
 | |
|     return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function toExponential(str, e) {
 | |
|     return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +
 | |
|      (e < 0 ? 'e' : 'e+') + e;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function toFixedPoint(str, e, z) {
 | |
|     var len, zs;
 | |
| 
 | |
|     // Negative exponent?
 | |
|     if (e < 0) {
 | |
| 
 | |
|       // Prepend zeros.
 | |
|       for (zs = z + '.'; ++e; zs += z);
 | |
|       str = zs + str;
 | |
| 
 | |
|     // Positive exponent
 | |
|     } else {
 | |
|       len = str.length;
 | |
| 
 | |
|       // Append zeros.
 | |
|       if (++e > len) {
 | |
|         for (zs = z, e -= len; --e; zs += z);
 | |
|         str += zs;
 | |
|       } else if (e < len) {
 | |
|         str = str.slice(0, e) + '.' + str.slice(e);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return str;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // EXPORT
 | |
| 
 | |
| 
 | |
|   BigNumber = clone();
 | |
|   BigNumber['default'] = BigNumber.BigNumber = BigNumber;
 | |
| 
 | |
|   // AMD.
 | |
|   if (typeof define == 'function' && define.amd) {
 | |
|     define(function () { return BigNumber; });
 | |
| 
 | |
|   // Node.js and other environments that support module.exports.
 | |
|   } else if (typeof module != 'undefined' && module.exports) {
 | |
|     module.exports = BigNumber;
 | |
| 
 | |
|   // Browser.
 | |
|   } else {
 | |
|     if (!globalObject) {
 | |
|       globalObject = typeof self != 'undefined' && self ? self : window;
 | |
|     }
 | |
| 
 | |
|     globalObject.BigNumber = BigNumber;
 | |
|   }
 | |
| })(this);
 |