You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							201 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
	
	
							201 lines
						
					
					
						
							6.0 KiB
						
					
					
				| # <img src="./logo.png" alt="bn.js" width="160" height="160" />
 | |
| 
 | |
| > BigNum in pure javascript
 | |
| 
 | |
| [](http://travis-ci.org/indutny/bn.js)
 | |
| 
 | |
| ## Install
 | |
| `npm install --save bn.js`
 | |
| 
 | |
| ## Usage
 | |
| 
 | |
| ```js
 | |
| const BN = require('bn.js');
 | |
| 
 | |
| var a = new BN('dead', 16);
 | |
| var b = new BN('101010', 2);
 | |
| 
 | |
| var res = a.add(b);
 | |
| console.log(res.toString(10));  // 57047
 | |
| ```
 | |
| 
 | |
| **Note**: decimals are not supported in this library.
 | |
| 
 | |
| ## Notation
 | |
| 
 | |
| ### Prefixes
 | |
| 
 | |
| There are several prefixes to instructions that affect the way the work. Here
 | |
| is the list of them in the order of appearance in the function name:
 | |
| 
 | |
| * `i` - perform operation in-place, storing the result in the host object (on
 | |
|   which the method was invoked). Might be used to avoid number allocation costs
 | |
| * `u` - unsigned, ignore the sign of operands when performing operation, or
 | |
|   always return positive value. Second case applies to reduction operations
 | |
|   like `mod()`. In such cases if the result will be negative - modulo will be
 | |
|   added to the result to make it positive
 | |
| 
 | |
| ### Postfixes
 | |
| 
 | |
| The only available postfix at the moment is:
 | |
| 
 | |
| * `n` - which means that the argument of the function must be a plain JavaScript
 | |
|   Number. Decimals are not supported.
 | |
| 
 | |
| ### Examples
 | |
| 
 | |
| * `a.iadd(b)` - perform addition on `a` and `b`, storing the result in `a`
 | |
| * `a.umod(b)` - reduce `a` modulo `b`, returning positive value
 | |
| * `a.iushln(13)` - shift bits of `a` left by 13
 | |
| 
 | |
| ## Instructions
 | |
| 
 | |
| Prefixes/postfixes are put in parens at the of the line. `endian` - could be
 | |
| either `le` (little-endian) or `be` (big-endian).
 | |
| 
 | |
| ### Utilities
 | |
| 
 | |
| * `a.clone()` - clone number
 | |
| * `a.toString(base, length)` - convert to base-string and pad with zeroes
 | |
| * `a.toNumber()` - convert to Javascript Number (limited to 53 bits)
 | |
| * `a.toJSON()` - convert to JSON compatible hex string (alias of `toString(16)`)
 | |
| * `a.toArray(endian, length)` - convert to byte `Array`, and optionally zero
 | |
|   pad to length, throwing if already exceeding
 | |
| * `a.toArrayLike(type, endian, length)` - convert to an instance of `type`,
 | |
|   which must behave like an `Array`
 | |
| * `a.toBuffer(endian, length)` - convert to Node.js Buffer (if available). For
 | |
|   compatibility with browserify and similar tools, use this instead:
 | |
|   `a.toArrayLike(Buffer, endian, length)`
 | |
| * `a.bitLength()` - get number of bits occupied
 | |
| * `a.zeroBits()` - return number of less-significant consequent zero bits
 | |
|   (example: `1010000` has 4 zero bits)
 | |
| * `a.byteLength()` - return number of bytes occupied
 | |
| * `a.isNeg()` - true if the number is negative
 | |
| * `a.isEven()` - no comments
 | |
| * `a.isOdd()` - no comments
 | |
| * `a.isZero()` - no comments
 | |
| * `a.cmp(b)` - compare numbers and return `-1` (a `<` b), `0` (a `==` b), or `1` (a `>` b)
 | |
|   depending on the comparison result (`ucmp`, `cmpn`)
 | |
| * `a.lt(b)` - `a` less than `b` (`n`)
 | |
| * `a.lte(b)` - `a` less than or equals `b` (`n`)
 | |
| * `a.gt(b)` - `a` greater than `b` (`n`)
 | |
| * `a.gte(b)` - `a` greater than or equals `b` (`n`)
 | |
| * `a.eq(b)` - `a` equals `b` (`n`)
 | |
| * `a.toTwos(width)` - convert to two's complement representation, where `width` is bit width
 | |
| * `a.fromTwos(width)` - convert from two's complement representation, where `width` is the bit width
 | |
| * `BN.isBN(object)` - returns true if the supplied `object` is a BN.js instance
 | |
| 
 | |
| ### Arithmetics
 | |
| 
 | |
| * `a.neg()` - negate sign (`i`)
 | |
| * `a.abs()` - absolute value (`i`)
 | |
| * `a.add(b)` - addition (`i`, `n`, `in`)
 | |
| * `a.sub(b)` - subtraction (`i`, `n`, `in`)
 | |
| * `a.mul(b)` - multiply (`i`, `n`, `in`)
 | |
| * `a.sqr()` - square (`i`)
 | |
| * `a.pow(b)` - raise `a` to the power of `b`
 | |
| * `a.div(b)` - divide (`divn`, `idivn`)
 | |
| * `a.mod(b)` - reduct (`u`, `n`) (but no `umodn`)
 | |
| * `a.divRound(b)` - rounded division
 | |
| 
 | |
| ### Bit operations
 | |
| 
 | |
| * `a.or(b)` - or (`i`, `u`, `iu`)
 | |
| * `a.and(b)` - and (`i`, `u`, `iu`, `andln`) (NOTE: `andln` is going to be replaced
 | |
|   with `andn` in future)
 | |
| * `a.xor(b)` - xor (`i`, `u`, `iu`)
 | |
| * `a.setn(b)` - set specified bit to `1`
 | |
| * `a.shln(b)` - shift left (`i`, `u`, `iu`)
 | |
| * `a.shrn(b)` - shift right (`i`, `u`, `iu`)
 | |
| * `a.testn(b)` - test if specified bit is set
 | |
| * `a.maskn(b)` - clear bits with indexes higher or equal to `b` (`i`)
 | |
| * `a.bincn(b)` - add `1 << b` to the number
 | |
| * `a.notn(w)` - not (for the width specified by `w`) (`i`)
 | |
| 
 | |
| ### Reduction
 | |
| 
 | |
| * `a.gcd(b)` - GCD
 | |
| * `a.egcd(b)` - Extended GCD results (`{ a: ..., b: ..., gcd: ... }`)
 | |
| * `a.invm(b)` - inverse `a` modulo `b`
 | |
| 
 | |
| ## Fast reduction
 | |
| 
 | |
| When doing lots of reductions using the same modulo, it might be beneficial to
 | |
| use some tricks: like [Montgomery multiplication][0], or using special algorithm
 | |
| for [Mersenne Prime][1].
 | |
| 
 | |
| ### Reduction context
 | |
| 
 | |
| To enable this tricks one should create a reduction context:
 | |
| 
 | |
| ```js
 | |
| var red = BN.red(num);
 | |
| ```
 | |
| where `num` is just a BN instance.
 | |
| 
 | |
| Or:
 | |
| 
 | |
| ```js
 | |
| var red = BN.red(primeName);
 | |
| ```
 | |
| 
 | |
| Where `primeName` is either of these [Mersenne Primes][1]:
 | |
| 
 | |
| * `'k256'`
 | |
| * `'p224'`
 | |
| * `'p192'`
 | |
| * `'p25519'`
 | |
| 
 | |
| Or:
 | |
| 
 | |
| ```js
 | |
| var red = BN.mont(num);
 | |
| ```
 | |
| 
 | |
| To reduce numbers with [Montgomery trick][0]. `.mont()` is generally faster than
 | |
| `.red(num)`, but slower than `BN.red(primeName)`.
 | |
| 
 | |
| ### Converting numbers
 | |
| 
 | |
| Before performing anything in reduction context - numbers should be converted
 | |
| to it. Usually, this means that one should:
 | |
| 
 | |
| * Convert inputs to reducted ones
 | |
| * Operate on them in reduction context
 | |
| * Convert outputs back from the reduction context
 | |
| 
 | |
| Here is how one may convert numbers to `red`:
 | |
| 
 | |
| ```js
 | |
| var redA = a.toRed(red);
 | |
| ```
 | |
| Where `red` is a reduction context created using instructions above
 | |
| 
 | |
| Here is how to convert them back:
 | |
| 
 | |
| ```js
 | |
| var a = redA.fromRed();
 | |
| ```
 | |
| 
 | |
| ### Red instructions
 | |
| 
 | |
| Most of the instructions from the very start of this readme have their
 | |
| counterparts in red context:
 | |
| 
 | |
| * `a.redAdd(b)`, `a.redIAdd(b)`
 | |
| * `a.redSub(b)`, `a.redISub(b)`
 | |
| * `a.redShl(num)`
 | |
| * `a.redMul(b)`, `a.redIMul(b)`
 | |
| * `a.redSqr()`, `a.redISqr()`
 | |
| * `a.redSqrt()` - square root modulo reduction context's prime
 | |
| * `a.redInvm()` - modular inverse of the number
 | |
| * `a.redNeg()`
 | |
| * `a.redPow(b)` - modular exponentiation
 | |
| 
 | |
| ## LICENSE
 | |
| 
 | |
| This software is licensed under the MIT License.
 | |
| 
 | |
| [0]: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
 | |
| [1]: https://en.wikipedia.org/wiki/Mersenne_prime
 |