You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					2890 lines
				
				83 KiB
			
		
		
			
		
	
	
					2890 lines
				
				83 KiB
			| 
											2 years ago
										 | /* | ||
|  |  *      bignumber.js v9.1.1 | ||
|  |  *      A JavaScript library for arbitrary-precision arithmetic. | ||
|  |  *      https://github.com/MikeMcl/bignumber.js
 | ||
|  |  *      Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com> | ||
|  |  *      MIT Licensed. | ||
|  |  * | ||
|  |  *      BigNumber.prototype methods     |  BigNumber methods | ||
|  |  *                                      | | ||
|  |  *      absoluteValue            abs    |  clone | ||
|  |  *      comparedTo                      |  config               set | ||
|  |  *      decimalPlaces            dp     |      DECIMAL_PLACES | ||
|  |  *      dividedBy                div    |      ROUNDING_MODE | ||
|  |  *      dividedToIntegerBy       idiv   |      EXPONENTIAL_AT | ||
|  |  *      exponentiatedBy          pow    |      RANGE | ||
|  |  *      integerValue                    |      CRYPTO | ||
|  |  *      isEqualTo                eq     |      MODULO_MODE | ||
|  |  *      isFinite                        |      POW_PRECISION | ||
|  |  *      isGreaterThan            gt     |      FORMAT | ||
|  |  *      isGreaterThanOrEqualTo   gte    |      ALPHABET | ||
|  |  *      isInteger                       |  isBigNumber | ||
|  |  *      isLessThan               lt     |  maximum              max | ||
|  |  *      isLessThanOrEqualTo      lte    |  minimum              min | ||
|  |  *      isNaN                           |  random | ||
|  |  *      isNegative                      |  sum | ||
|  |  *      isPositive                      | | ||
|  |  *      isZero                          | | ||
|  |  *      minus                           | | ||
|  |  *      modulo                   mod    | | ||
|  |  *      multipliedBy             times  | | ||
|  |  *      negated                         | | ||
|  |  *      plus                            | | ||
|  |  *      precision                sd     | | ||
|  |  *      shiftedBy                       | | ||
|  |  *      squareRoot               sqrt   | | ||
|  |  *      toExponential                   | | ||
|  |  *      toFixed                         | | ||
|  |  *      toFormat                        | | ||
|  |  *      toFraction                      | | ||
|  |  *      toJSON                          | | ||
|  |  *      toNumber                        | | ||
|  |  *      toPrecision                     | | ||
|  |  *      toString                        | | ||
|  |  *      valueOf                         | | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | var | ||
|  |   isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i, | ||
|  |   mathceil = Math.ceil, | ||
|  |   mathfloor = Math.floor, | ||
|  | 
 | ||
|  |   bignumberError = '[BigNumber Error] ', | ||
|  |   tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ', | ||
|  | 
 | ||
|  |   BASE = 1e14, | ||
|  |   LOG_BASE = 14, | ||
|  |   MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1
 | ||
|  |   // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1
 | ||
|  |   POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13], | ||
|  |   SQRT_BASE = 1e7, | ||
|  | 
 | ||
|  |   // EDITABLE
 | ||
|  |   // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
 | ||
|  |   // the arguments to toExponential, toFixed, toFormat, and toPrecision.
 | ||
|  |   MAX = 1E9;                                   // 0 to MAX_INT32
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  |  * Create and return a BigNumber constructor. | ||
|  |  */ | ||
|  | function clone(configObject) { | ||
|  |   var div, convertBase, parseNumeric, | ||
|  |     P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null }, | ||
|  |     ONE = new BigNumber(1), | ||
|  | 
 | ||
|  | 
 | ||
|  |     //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     // The default values below must be integers within the inclusive ranges stated.
 | ||
|  |     // The values can also be changed at run-time using BigNumber.set.
 | ||
|  | 
 | ||
|  |     // The maximum number of decimal places for operations involving division.
 | ||
|  |     DECIMAL_PLACES = 20,                     // 0 to MAX
 | ||
|  | 
 | ||
|  |     // The rounding mode used when rounding to the above decimal places, and when using
 | ||
|  |     // toExponential, toFixed, toFormat and toPrecision, and round (default value).
 | ||
|  |     // UP         0 Away from zero.
 | ||
|  |     // DOWN       1 Towards zero.
 | ||
|  |     // CEIL       2 Towards +Infinity.
 | ||
|  |     // FLOOR      3 Towards -Infinity.
 | ||
|  |     // HALF_UP    4 Towards nearest neighbour. If equidistant, up.
 | ||
|  |     // HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
 | ||
|  |     // HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
 | ||
|  |     // HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
 | ||
|  |     // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
 | ||
|  |     ROUNDING_MODE = 4,                       // 0 to 8
 | ||
|  | 
 | ||
|  |     // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
 | ||
|  | 
 | ||
|  |     // The exponent value at and beneath which toString returns exponential notation.
 | ||
|  |     // Number type: -7
 | ||
|  |     TO_EXP_NEG = -7,                         // 0 to -MAX
 | ||
|  | 
 | ||
|  |     // The exponent value at and above which toString returns exponential notation.
 | ||
|  |     // Number type: 21
 | ||
|  |     TO_EXP_POS = 21,                         // 0 to MAX
 | ||
|  | 
 | ||
|  |     // RANGE : [MIN_EXP, MAX_EXP]
 | ||
|  | 
 | ||
|  |     // The minimum exponent value, beneath which underflow to zero occurs.
 | ||
|  |     // Number type: -324  (5e-324)
 | ||
|  |     MIN_EXP = -1e7,                          // -1 to -MAX
 | ||
|  | 
 | ||
|  |     // The maximum exponent value, above which overflow to Infinity occurs.
 | ||
|  |     // Number type:  308  (1.7976931348623157e+308)
 | ||
|  |     // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
 | ||
|  |     MAX_EXP = 1e7,                           // 1 to MAX
 | ||
|  | 
 | ||
|  |     // Whether to use cryptographically-secure random number generation, if available.
 | ||
|  |     CRYPTO = false,                          // true or false
 | ||
|  | 
 | ||
|  |     // The modulo mode used when calculating the modulus: a mod n.
 | ||
|  |     // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
 | ||
|  |     // The remainder (r) is calculated as: r = a - n * q.
 | ||
|  |     //
 | ||
|  |     // UP        0 The remainder is positive if the dividend is negative, else is negative.
 | ||
|  |     // DOWN      1 The remainder has the same sign as the dividend.
 | ||
|  |     //             This modulo mode is commonly known as 'truncated division' and is
 | ||
|  |     //             equivalent to (a % n) in JavaScript.
 | ||
|  |     // FLOOR     3 The remainder has the same sign as the divisor (Python %).
 | ||
|  |     // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
 | ||
|  |     // EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).
 | ||
|  |     //             The remainder is always positive.
 | ||
|  |     //
 | ||
|  |     // The truncated division, floored division, Euclidian division and IEEE 754 remainder
 | ||
|  |     // modes are commonly used for the modulus operation.
 | ||
|  |     // Although the other rounding modes can also be used, they may not give useful results.
 | ||
|  |     MODULO_MODE = 1,                         // 0 to 9
 | ||
|  | 
 | ||
|  |     // The maximum number of significant digits of the result of the exponentiatedBy operation.
 | ||
|  |     // If POW_PRECISION is 0, there will be unlimited significant digits.
 | ||
|  |     POW_PRECISION = 0,                       // 0 to MAX
 | ||
|  | 
 | ||
|  |     // The format specification used by the BigNumber.prototype.toFormat method.
 | ||
|  |     FORMAT = { | ||
|  |       prefix: '', | ||
|  |       groupSize: 3, | ||
|  |       secondaryGroupSize: 0, | ||
|  |       groupSeparator: ',', | ||
|  |       decimalSeparator: '.', | ||
|  |       fractionGroupSize: 0, | ||
|  |       fractionGroupSeparator: '\xA0',        // non-breaking space
 | ||
|  |       suffix: '' | ||
|  |     }, | ||
|  | 
 | ||
|  |     // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
 | ||
|  |     // '-', '.', whitespace, or repeated character.
 | ||
|  |     // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
 | ||
|  |     ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz', | ||
|  |     alphabetHasNormalDecimalDigits = true; | ||
|  | 
 | ||
|  | 
 | ||
|  |   //------------------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // CONSTRUCTOR
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * The BigNumber constructor and exported function. | ||
|  |    * Create and return a new instance of a BigNumber object. | ||
|  |    * | ||
|  |    * v {number|string|BigNumber} A numeric value. | ||
|  |    * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive. | ||
|  |    */ | ||
|  |   function BigNumber(v, b) { | ||
|  |     var alphabet, c, caseChanged, e, i, isNum, len, str, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     // Enable constructor call without `new`.
 | ||
|  |     if (!(x instanceof BigNumber)) return new BigNumber(v, b); | ||
|  | 
 | ||
|  |     if (b == null) { | ||
|  | 
 | ||
|  |       if (v && v._isBigNumber === true) { | ||
|  |         x.s = v.s; | ||
|  | 
 | ||
|  |         if (!v.c || v.e > MAX_EXP) { | ||
|  |           x.c = x.e = null; | ||
|  |         } else if (v.e < MIN_EXP) { | ||
|  |           x.c = [x.e = 0]; | ||
|  |         } else { | ||
|  |           x.e = v.e; | ||
|  |           x.c = v.c.slice(); | ||
|  |         } | ||
|  | 
 | ||
|  |         return; | ||
|  |       } | ||
|  | 
 | ||
|  |       if ((isNum = typeof v == 'number') && v * 0 == 0) { | ||
|  | 
 | ||
|  |         // Use `1 / n` to handle minus zero also.
 | ||
|  |         x.s = 1 / v < 0 ? (v = -v, -1) : 1; | ||
|  | 
 | ||
|  |         // Fast path for integers, where n < 2147483648 (2**31).
 | ||
|  |         if (v === ~~v) { | ||
|  |           for (e = 0, i = v; i >= 10; i /= 10, e++); | ||
|  | 
 | ||
|  |           if (e > MAX_EXP) { | ||
|  |             x.c = x.e = null; | ||
|  |           } else { | ||
|  |             x.e = e; | ||
|  |             x.c = [v]; | ||
|  |           } | ||
|  | 
 | ||
|  |           return; | ||
|  |         } | ||
|  | 
 | ||
|  |         str = String(v); | ||
|  |       } else { | ||
|  | 
 | ||
|  |         if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum); | ||
|  | 
 | ||
|  |         x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Decimal point?
 | ||
|  |       if ((e = str.indexOf('.')) > -1) str = str.replace('.', ''); | ||
|  | 
 | ||
|  |       // Exponential form?
 | ||
|  |       if ((i = str.search(/e/i)) > 0) { | ||
|  | 
 | ||
|  |         // Determine exponent.
 | ||
|  |         if (e < 0) e = i; | ||
|  |         e += +str.slice(i + 1); | ||
|  |         str = str.substring(0, i); | ||
|  |       } else if (e < 0) { | ||
|  | 
 | ||
|  |         // Integer.
 | ||
|  |         e = str.length; | ||
|  |       } | ||
|  | 
 | ||
|  |     } else { | ||
|  | 
 | ||
|  |       // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
 | ||
|  |       intCheck(b, 2, ALPHABET.length, 'Base'); | ||
|  | 
 | ||
|  |       // Allow exponential notation to be used with base 10 argument, while
 | ||
|  |       // also rounding to DECIMAL_PLACES as with other bases.
 | ||
|  |       if (b == 10 && alphabetHasNormalDecimalDigits) { | ||
|  |         x = new BigNumber(v); | ||
|  |         return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE); | ||
|  |       } | ||
|  | 
 | ||
|  |       str = String(v); | ||
|  | 
 | ||
|  |       if (isNum = typeof v == 'number') { | ||
|  | 
 | ||
|  |         // Avoid potential interpretation of Infinity and NaN as base 44+ values.
 | ||
|  |         if (v * 0 != 0) return parseNumeric(x, str, isNum, b); | ||
|  | 
 | ||
|  |         x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1; | ||
|  | 
 | ||
|  |         // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | ||
|  |         if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) { | ||
|  |           throw Error | ||
|  |            (tooManyDigits + v); | ||
|  |         } | ||
|  |       } else { | ||
|  |         x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1; | ||
|  |       } | ||
|  | 
 | ||
|  |       alphabet = ALPHABET.slice(0, b); | ||
|  |       e = i = 0; | ||
|  | 
 | ||
|  |       // Check that str is a valid base b number.
 | ||
|  |       // Don't use RegExp, so alphabet can contain special characters.
 | ||
|  |       for (len = str.length; i < len; i++) { | ||
|  |         if (alphabet.indexOf(c = str.charAt(i)) < 0) { | ||
|  |           if (c == '.') { | ||
|  | 
 | ||
|  |             // If '.' is not the first character and it has not be found before.
 | ||
|  |             if (i > e) { | ||
|  |               e = len; | ||
|  |               continue; | ||
|  |             } | ||
|  |           } else if (!caseChanged) { | ||
|  | 
 | ||
|  |             // Allow e.g. hexadecimal 'FF' as well as 'ff'.
 | ||
|  |             if (str == str.toUpperCase() && (str = str.toLowerCase()) || | ||
|  |                 str == str.toLowerCase() && (str = str.toUpperCase())) { | ||
|  |               caseChanged = true; | ||
|  |               i = -1; | ||
|  |               e = 0; | ||
|  |               continue; | ||
|  |             } | ||
|  |           } | ||
|  | 
 | ||
|  |           return parseNumeric(x, String(v), isNum, b); | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // Prevent later check for length on converted number.
 | ||
|  |       isNum = false; | ||
|  |       str = convertBase(str, b, 10, x.s); | ||
|  | 
 | ||
|  |       // Decimal point?
 | ||
|  |       if ((e = str.indexOf('.')) > -1) str = str.replace('.', ''); | ||
|  |       else e = str.length; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Determine leading zeros.
 | ||
|  |     for (i = 0; str.charCodeAt(i) === 48; i++); | ||
|  | 
 | ||
|  |     // Determine trailing zeros.
 | ||
|  |     for (len = str.length; str.charCodeAt(--len) === 48;); | ||
|  | 
 | ||
|  |     if (str = str.slice(i, ++len)) { | ||
|  |       len -= i; | ||
|  | 
 | ||
|  |       // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
 | ||
|  |       if (isNum && BigNumber.DEBUG && | ||
|  |         len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) { | ||
|  |           throw Error | ||
|  |            (tooManyDigits + (x.s * v)); | ||
|  |       } | ||
|  | 
 | ||
|  |        // Overflow?
 | ||
|  |       if ((e = e - i - 1) > MAX_EXP) { | ||
|  | 
 | ||
|  |         // Infinity.
 | ||
|  |         x.c = x.e = null; | ||
|  | 
 | ||
|  |       // Underflow?
 | ||
|  |       } else if (e < MIN_EXP) { | ||
|  | 
 | ||
|  |         // Zero.
 | ||
|  |         x.c = [x.e = 0]; | ||
|  |       } else { | ||
|  |         x.e = e; | ||
|  |         x.c = []; | ||
|  | 
 | ||
|  |         // Transform base
 | ||
|  | 
 | ||
|  |         // e is the base 10 exponent.
 | ||
|  |         // i is where to slice str to get the first element of the coefficient array.
 | ||
|  |         i = (e + 1) % LOG_BASE; | ||
|  |         if (e < 0) i += LOG_BASE;  // i < 1
 | ||
|  | 
 | ||
|  |         if (i < len) { | ||
|  |           if (i) x.c.push(+str.slice(0, i)); | ||
|  | 
 | ||
|  |           for (len -= LOG_BASE; i < len;) { | ||
|  |             x.c.push(+str.slice(i, i += LOG_BASE)); | ||
|  |           } | ||
|  | 
 | ||
|  |           i = LOG_BASE - (str = str.slice(i)).length; | ||
|  |         } else { | ||
|  |           i -= len; | ||
|  |         } | ||
|  | 
 | ||
|  |         for (; i--; str += '0'); | ||
|  |         x.c.push(+str); | ||
|  |       } | ||
|  |     } else { | ||
|  | 
 | ||
|  |       // Zero.
 | ||
|  |       x.c = [x.e = 0]; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   // CONSTRUCTOR PROPERTIES
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   BigNumber.clone = clone; | ||
|  | 
 | ||
|  |   BigNumber.ROUND_UP = 0; | ||
|  |   BigNumber.ROUND_DOWN = 1; | ||
|  |   BigNumber.ROUND_CEIL = 2; | ||
|  |   BigNumber.ROUND_FLOOR = 3; | ||
|  |   BigNumber.ROUND_HALF_UP = 4; | ||
|  |   BigNumber.ROUND_HALF_DOWN = 5; | ||
|  |   BigNumber.ROUND_HALF_EVEN = 6; | ||
|  |   BigNumber.ROUND_HALF_CEIL = 7; | ||
|  |   BigNumber.ROUND_HALF_FLOOR = 8; | ||
|  |   BigNumber.EUCLID = 9; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Configure infrequently-changing library-wide settings. | ||
|  |    * | ||
|  |    * Accept an object with the following optional properties (if the value of a property is | ||
|  |    * a number, it must be an integer within the inclusive range stated): | ||
|  |    * | ||
|  |    *   DECIMAL_PLACES   {number}           0 to MAX | ||
|  |    *   ROUNDING_MODE    {number}           0 to 8 | ||
|  |    *   EXPONENTIAL_AT   {number|number[]}  -MAX to MAX  or  [-MAX to 0, 0 to MAX] | ||
|  |    *   RANGE            {number|number[]}  -MAX to MAX (not zero)  or  [-MAX to -1, 1 to MAX] | ||
|  |    *   CRYPTO           {boolean}          true or false | ||
|  |    *   MODULO_MODE      {number}           0 to 9 | ||
|  |    *   POW_PRECISION       {number}           0 to MAX | ||
|  |    *   ALPHABET         {string}           A string of two or more unique characters which does | ||
|  |    *                                       not contain '.'. | ||
|  |    *   FORMAT           {object}           An object with some of the following properties: | ||
|  |    *     prefix                 {string} | ||
|  |    *     groupSize              {number} | ||
|  |    *     secondaryGroupSize     {number} | ||
|  |    *     groupSeparator         {string} | ||
|  |    *     decimalSeparator       {string} | ||
|  |    *     fractionGroupSize      {number} | ||
|  |    *     fractionGroupSeparator {string} | ||
|  |    *     suffix                 {string} | ||
|  |    * | ||
|  |    * (The values assigned to the above FORMAT object properties are not checked for validity.) | ||
|  |    * | ||
|  |    * E.g. | ||
|  |    * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 }) | ||
|  |    * | ||
|  |    * Ignore properties/parameters set to null or undefined, except for ALPHABET. | ||
|  |    * | ||
|  |    * Return an object with the properties current values. | ||
|  |    */ | ||
|  |   BigNumber.config = BigNumber.set = function (obj) { | ||
|  |     var p, v; | ||
|  | 
 | ||
|  |     if (obj != null) { | ||
|  | 
 | ||
|  |       if (typeof obj == 'object') { | ||
|  | 
 | ||
|  |         // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
 | ||
|  |         // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) { | ||
|  |           v = obj[p]; | ||
|  |           intCheck(v, 0, MAX, p); | ||
|  |           DECIMAL_PLACES = v; | ||
|  |         } | ||
|  | 
 | ||
|  |         // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
 | ||
|  |         // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) { | ||
|  |           v = obj[p]; | ||
|  |           intCheck(v, 0, 8, p); | ||
|  |           ROUNDING_MODE = v; | ||
|  |         } | ||
|  | 
 | ||
|  |         // EXPONENTIAL_AT {number|number[]}
 | ||
|  |         // Integer, -MAX to MAX inclusive or
 | ||
|  |         // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
 | ||
|  |         // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) { | ||
|  |           v = obj[p]; | ||
|  |           if (v && v.pop) { | ||
|  |             intCheck(v[0], -MAX, 0, p); | ||
|  |             intCheck(v[1], 0, MAX, p); | ||
|  |             TO_EXP_NEG = v[0]; | ||
|  |             TO_EXP_POS = v[1]; | ||
|  |           } else { | ||
|  |             intCheck(v, -MAX, MAX, p); | ||
|  |             TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v); | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
 | ||
|  |         // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
 | ||
|  |         // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'RANGE')) { | ||
|  |           v = obj[p]; | ||
|  |           if (v && v.pop) { | ||
|  |             intCheck(v[0], -MAX, -1, p); | ||
|  |             intCheck(v[1], 1, MAX, p); | ||
|  |             MIN_EXP = v[0]; | ||
|  |             MAX_EXP = v[1]; | ||
|  |           } else { | ||
|  |             intCheck(v, -MAX, MAX, p); | ||
|  |             if (v) { | ||
|  |               MIN_EXP = -(MAX_EXP = v < 0 ? -v : v); | ||
|  |             } else { | ||
|  |               throw Error | ||
|  |                (bignumberError + p + ' cannot be zero: ' + v); | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // CRYPTO {boolean} true or false.
 | ||
|  |         // '[BigNumber Error] CRYPTO not true or false: {v}'
 | ||
|  |         // '[BigNumber Error] crypto unavailable'
 | ||
|  |         if (obj.hasOwnProperty(p = 'CRYPTO')) { | ||
|  |           v = obj[p]; | ||
|  |           if (v === !!v) { | ||
|  |             if (v) { | ||
|  |               if (typeof crypto != 'undefined' && crypto && | ||
|  |                (crypto.getRandomValues || crypto.randomBytes)) { | ||
|  |                 CRYPTO = v; | ||
|  |               } else { | ||
|  |                 CRYPTO = !v; | ||
|  |                 throw Error | ||
|  |                  (bignumberError + 'crypto unavailable'); | ||
|  |               } | ||
|  |             } else { | ||
|  |               CRYPTO = v; | ||
|  |             } | ||
|  |           } else { | ||
|  |             throw Error | ||
|  |              (bignumberError + p + ' not true or false: ' + v); | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // MODULO_MODE {number} Integer, 0 to 9 inclusive.
 | ||
|  |         // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'MODULO_MODE')) { | ||
|  |           v = obj[p]; | ||
|  |           intCheck(v, 0, 9, p); | ||
|  |           MODULO_MODE = v; | ||
|  |         } | ||
|  | 
 | ||
|  |         // POW_PRECISION {number} Integer, 0 to MAX inclusive.
 | ||
|  |         // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'POW_PRECISION')) { | ||
|  |           v = obj[p]; | ||
|  |           intCheck(v, 0, MAX, p); | ||
|  |           POW_PRECISION = v; | ||
|  |         } | ||
|  | 
 | ||
|  |         // FORMAT {object}
 | ||
|  |         // '[BigNumber Error] FORMAT not an object: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'FORMAT')) { | ||
|  |           v = obj[p]; | ||
|  |           if (typeof v == 'object') FORMAT = v; | ||
|  |           else throw Error | ||
|  |            (bignumberError + p + ' not an object: ' + v); | ||
|  |         } | ||
|  | 
 | ||
|  |         // ALPHABET {string}
 | ||
|  |         // '[BigNumber Error] ALPHABET invalid: {v}'
 | ||
|  |         if (obj.hasOwnProperty(p = 'ALPHABET')) { | ||
|  |           v = obj[p]; | ||
|  | 
 | ||
|  |           // Disallow if less than two characters,
 | ||
|  |           // or if it contains '+', '-', '.', whitespace, or a repeated character.
 | ||
|  |           if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) { | ||
|  |             alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789'; | ||
|  |             ALPHABET = v; | ||
|  |           } else { | ||
|  |             throw Error | ||
|  |              (bignumberError + p + ' invalid: ' + v); | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |       } else { | ||
|  | 
 | ||
|  |         // '[BigNumber Error] Object expected: {v}'
 | ||
|  |         throw Error | ||
|  |          (bignumberError + 'Object expected: ' + obj); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return { | ||
|  |       DECIMAL_PLACES: DECIMAL_PLACES, | ||
|  |       ROUNDING_MODE: ROUNDING_MODE, | ||
|  |       EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS], | ||
|  |       RANGE: [MIN_EXP, MAX_EXP], | ||
|  |       CRYPTO: CRYPTO, | ||
|  |       MODULO_MODE: MODULO_MODE, | ||
|  |       POW_PRECISION: POW_PRECISION, | ||
|  |       FORMAT: FORMAT, | ||
|  |       ALPHABET: ALPHABET | ||
|  |     }; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if v is a BigNumber instance, otherwise return false. | ||
|  |    * | ||
|  |    * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed. | ||
|  |    * | ||
|  |    * v {any} | ||
|  |    * | ||
|  |    * '[BigNumber Error] Invalid BigNumber: {v}' | ||
|  |    */ | ||
|  |   BigNumber.isBigNumber = function (v) { | ||
|  |     if (!v || v._isBigNumber !== true) return false; | ||
|  |     if (!BigNumber.DEBUG) return true; | ||
|  | 
 | ||
|  |     var i, n, | ||
|  |       c = v.c, | ||
|  |       e = v.e, | ||
|  |       s = v.s; | ||
|  | 
 | ||
|  |     out: if ({}.toString.call(c) == '[object Array]') { | ||
|  | 
 | ||
|  |       if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) { | ||
|  | 
 | ||
|  |         // If the first element is zero, the BigNumber value must be zero.
 | ||
|  |         if (c[0] === 0) { | ||
|  |           if (e === 0 && c.length === 1) return true; | ||
|  |           break out; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Calculate number of digits that c[0] should have, based on the exponent.
 | ||
|  |         i = (e + 1) % LOG_BASE; | ||
|  |         if (i < 1) i += LOG_BASE; | ||
|  | 
 | ||
|  |         // Calculate number of digits of c[0].
 | ||
|  |         //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
 | ||
|  |         if (String(c[0]).length == i) { | ||
|  | 
 | ||
|  |           for (i = 0; i < c.length; i++) { | ||
|  |             n = c[i]; | ||
|  |             if (n < 0 || n >= BASE || n !== mathfloor(n)) break out; | ||
|  |           } | ||
|  | 
 | ||
|  |           // Last element cannot be zero, unless it is the only element.
 | ||
|  |           if (n !== 0) return true; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |     // Infinity/NaN
 | ||
|  |     } else if (c === null && e === null && (s === null || s === 1 || s === -1)) { | ||
|  |       return true; | ||
|  |     } | ||
|  | 
 | ||
|  |     throw Error | ||
|  |       (bignumberError + 'Invalid BigNumber: ' + v); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the maximum of the arguments. | ||
|  |    * | ||
|  |    * arguments {number|string|BigNumber} | ||
|  |    */ | ||
|  |   BigNumber.maximum = BigNumber.max = function () { | ||
|  |     return maxOrMin(arguments, P.lt); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the minimum of the arguments. | ||
|  |    * | ||
|  |    * arguments {number|string|BigNumber} | ||
|  |    */ | ||
|  |   BigNumber.minimum = BigNumber.min = function () { | ||
|  |     return maxOrMin(arguments, P.gt); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber with a random value equal to or greater than 0 and less than 1, | ||
|  |    * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing | ||
|  |    * zeros are produced). | ||
|  |    * | ||
|  |    * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}' | ||
|  |    * '[BigNumber Error] crypto unavailable' | ||
|  |    */ | ||
|  |   BigNumber.random = (function () { | ||
|  |     var pow2_53 = 0x20000000000000; | ||
|  | 
 | ||
|  |     // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
 | ||
|  |     // Check if Math.random() produces more than 32 bits of randomness.
 | ||
|  |     // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
 | ||
|  |     // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
 | ||
|  |     var random53bitInt = (Math.random() * pow2_53) & 0x1fffff | ||
|  |      ? function () { return mathfloor(Math.random() * pow2_53); } | ||
|  |      : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) + | ||
|  |        (Math.random() * 0x800000 | 0); }; | ||
|  | 
 | ||
|  |     return function (dp) { | ||
|  |       var a, b, e, k, v, | ||
|  |         i = 0, | ||
|  |         c = [], | ||
|  |         rand = new BigNumber(ONE); | ||
|  | 
 | ||
|  |       if (dp == null) dp = DECIMAL_PLACES; | ||
|  |       else intCheck(dp, 0, MAX); | ||
|  | 
 | ||
|  |       k = mathceil(dp / LOG_BASE); | ||
|  | 
 | ||
|  |       if (CRYPTO) { | ||
|  | 
 | ||
|  |         // Browsers supporting crypto.getRandomValues.
 | ||
|  |         if (crypto.getRandomValues) { | ||
|  | 
 | ||
|  |           a = crypto.getRandomValues(new Uint32Array(k *= 2)); | ||
|  | 
 | ||
|  |           for (; i < k;) { | ||
|  | 
 | ||
|  |             // 53 bits:
 | ||
|  |             // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
 | ||
|  |             // 11111 11111111 11111111 11111111 11100000 00000000 00000000
 | ||
|  |             // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
 | ||
|  |             //                                     11111 11111111 11111111
 | ||
|  |             // 0x20000 is 2^21.
 | ||
|  |             v = a[i] * 0x20000 + (a[i + 1] >>> 11); | ||
|  | 
 | ||
|  |             // Rejection sampling:
 | ||
|  |             // 0 <= v < 9007199254740992
 | ||
|  |             // Probability that v >= 9e15, is
 | ||
|  |             // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
 | ||
|  |             if (v >= 9e15) { | ||
|  |               b = crypto.getRandomValues(new Uint32Array(2)); | ||
|  |               a[i] = b[0]; | ||
|  |               a[i + 1] = b[1]; | ||
|  |             } else { | ||
|  | 
 | ||
|  |               // 0 <= v <= 8999999999999999
 | ||
|  |               // 0 <= (v % 1e14) <= 99999999999999
 | ||
|  |               c.push(v % 1e14); | ||
|  |               i += 2; | ||
|  |             } | ||
|  |           } | ||
|  |           i = k / 2; | ||
|  | 
 | ||
|  |         // Node.js supporting crypto.randomBytes.
 | ||
|  |         } else if (crypto.randomBytes) { | ||
|  | 
 | ||
|  |           // buffer
 | ||
|  |           a = crypto.randomBytes(k *= 7); | ||
|  | 
 | ||
|  |           for (; i < k;) { | ||
|  | 
 | ||
|  |             // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
 | ||
|  |             // 0x100000000 is 2^32, 0x1000000 is 2^24
 | ||
|  |             // 11111 11111111 11111111 11111111 11111111 11111111 11111111
 | ||
|  |             // 0 <= v < 9007199254740992
 | ||
|  |             v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) + | ||
|  |                (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) + | ||
|  |                (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6]; | ||
|  | 
 | ||
|  |             if (v >= 9e15) { | ||
|  |               crypto.randomBytes(7).copy(a, i); | ||
|  |             } else { | ||
|  | 
 | ||
|  |               // 0 <= (v % 1e14) <= 99999999999999
 | ||
|  |               c.push(v % 1e14); | ||
|  |               i += 7; | ||
|  |             } | ||
|  |           } | ||
|  |           i = k / 7; | ||
|  |         } else { | ||
|  |           CRYPTO = false; | ||
|  |           throw Error | ||
|  |            (bignumberError + 'crypto unavailable'); | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // Use Math.random.
 | ||
|  |       if (!CRYPTO) { | ||
|  | 
 | ||
|  |         for (; i < k;) { | ||
|  |           v = random53bitInt(); | ||
|  |           if (v < 9e15) c[i++] = v % 1e14; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       k = c[--i]; | ||
|  |       dp %= LOG_BASE; | ||
|  | 
 | ||
|  |       // Convert trailing digits to zeros according to dp.
 | ||
|  |       if (k && dp) { | ||
|  |         v = POWS_TEN[LOG_BASE - dp]; | ||
|  |         c[i] = mathfloor(k / v) * v; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Remove trailing elements which are zero.
 | ||
|  |       for (; c[i] === 0; c.pop(), i--); | ||
|  | 
 | ||
|  |       // Zero?
 | ||
|  |       if (i < 0) { | ||
|  |         c = [e = 0]; | ||
|  |       } else { | ||
|  | 
 | ||
|  |         // Remove leading elements which are zero and adjust exponent accordingly.
 | ||
|  |         for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE); | ||
|  | 
 | ||
|  |         // Count the digits of the first element of c to determine leading zeros, and...
 | ||
|  |         for (i = 1, v = c[0]; v >= 10; v /= 10, i++); | ||
|  | 
 | ||
|  |         // adjust the exponent accordingly.
 | ||
|  |         if (i < LOG_BASE) e -= LOG_BASE - i; | ||
|  |       } | ||
|  | 
 | ||
|  |       rand.e = e; | ||
|  |       rand.c = c; | ||
|  |       return rand; | ||
|  |     }; | ||
|  |   })(); | ||
|  | 
 | ||
|  | 
 | ||
|  |    /* | ||
|  |    * Return a BigNumber whose value is the sum of the arguments. | ||
|  |    * | ||
|  |    * arguments {number|string|BigNumber} | ||
|  |    */ | ||
|  |   BigNumber.sum = function () { | ||
|  |     var i = 1, | ||
|  |       args = arguments, | ||
|  |       sum = new BigNumber(args[0]); | ||
|  |     for (; i < args.length;) sum = sum.plus(args[i++]); | ||
|  |     return sum; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   // PRIVATE FUNCTIONS
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Called by BigNumber and BigNumber.prototype.toString.
 | ||
|  |   convertBase = (function () { | ||
|  |     var decimal = '0123456789'; | ||
|  | 
 | ||
|  |     /* | ||
|  |      * Convert string of baseIn to an array of numbers of baseOut. | ||
|  |      * Eg. toBaseOut('255', 10, 16) returns [15, 15]. | ||
|  |      * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5]. | ||
|  |      */ | ||
|  |     function toBaseOut(str, baseIn, baseOut, alphabet) { | ||
|  |       var j, | ||
|  |         arr = [0], | ||
|  |         arrL, | ||
|  |         i = 0, | ||
|  |         len = str.length; | ||
|  | 
 | ||
|  |       for (; i < len;) { | ||
|  |         for (arrL = arr.length; arrL--; arr[arrL] *= baseIn); | ||
|  | 
 | ||
|  |         arr[0] += alphabet.indexOf(str.charAt(i++)); | ||
|  | 
 | ||
|  |         for (j = 0; j < arr.length; j++) { | ||
|  | 
 | ||
|  |           if (arr[j] > baseOut - 1) { | ||
|  |             if (arr[j + 1] == null) arr[j + 1] = 0; | ||
|  |             arr[j + 1] += arr[j] / baseOut | 0; | ||
|  |             arr[j] %= baseOut; | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       return arr.reverse(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Convert a numeric string of baseIn to a numeric string of baseOut.
 | ||
|  |     // If the caller is toString, we are converting from base 10 to baseOut.
 | ||
|  |     // If the caller is BigNumber, we are converting from baseIn to base 10.
 | ||
|  |     return function (str, baseIn, baseOut, sign, callerIsToString) { | ||
|  |       var alphabet, d, e, k, r, x, xc, y, | ||
|  |         i = str.indexOf('.'), | ||
|  |         dp = DECIMAL_PLACES, | ||
|  |         rm = ROUNDING_MODE; | ||
|  | 
 | ||
|  |       // Non-integer.
 | ||
|  |       if (i >= 0) { | ||
|  |         k = POW_PRECISION; | ||
|  | 
 | ||
|  |         // Unlimited precision.
 | ||
|  |         POW_PRECISION = 0; | ||
|  |         str = str.replace('.', ''); | ||
|  |         y = new BigNumber(baseIn); | ||
|  |         x = y.pow(str.length - i); | ||
|  |         POW_PRECISION = k; | ||
|  | 
 | ||
|  |         // Convert str as if an integer, then restore the fraction part by dividing the
 | ||
|  |         // result by its base raised to a power.
 | ||
|  | 
 | ||
|  |         y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'), | ||
|  |          10, baseOut, decimal); | ||
|  |         y.e = y.c.length; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Convert the number as integer.
 | ||
|  | 
 | ||
|  |       xc = toBaseOut(str, baseIn, baseOut, callerIsToString | ||
|  |        ? (alphabet = ALPHABET, decimal) | ||
|  |        : (alphabet = decimal, ALPHABET)); | ||
|  | 
 | ||
|  |       // xc now represents str as an integer and converted to baseOut. e is the exponent.
 | ||
|  |       e = k = xc.length; | ||
|  | 
 | ||
|  |       // Remove trailing zeros.
 | ||
|  |       for (; xc[--k] == 0; xc.pop()); | ||
|  | 
 | ||
|  |       // Zero?
 | ||
|  |       if (!xc[0]) return alphabet.charAt(0); | ||
|  | 
 | ||
|  |       // Does str represent an integer? If so, no need for the division.
 | ||
|  |       if (i < 0) { | ||
|  |         --e; | ||
|  |       } else { | ||
|  |         x.c = xc; | ||
|  |         x.e = e; | ||
|  | 
 | ||
|  |         // The sign is needed for correct rounding.
 | ||
|  |         x.s = sign; | ||
|  |         x = div(x, y, dp, rm, baseOut); | ||
|  |         xc = x.c; | ||
|  |         r = x.r; | ||
|  |         e = x.e; | ||
|  |       } | ||
|  | 
 | ||
|  |       // xc now represents str converted to baseOut.
 | ||
|  | 
 | ||
|  |       // THe index of the rounding digit.
 | ||
|  |       d = e + dp + 1; | ||
|  | 
 | ||
|  |       // The rounding digit: the digit to the right of the digit that may be rounded up.
 | ||
|  |       i = xc[d]; | ||
|  | 
 | ||
|  |       // Look at the rounding digits and mode to determine whether to round up.
 | ||
|  | 
 | ||
|  |       k = baseOut / 2; | ||
|  |       r = r || d < 0 || xc[d + 1] != null; | ||
|  | 
 | ||
|  |       r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) | ||
|  |             : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 || | ||
|  |              rm == (x.s < 0 ? 8 : 7)); | ||
|  | 
 | ||
|  |       // If the index of the rounding digit is not greater than zero, or xc represents
 | ||
|  |       // zero, then the result of the base conversion is zero or, if rounding up, a value
 | ||
|  |       // such as 0.00001.
 | ||
|  |       if (d < 1 || !xc[0]) { | ||
|  | 
 | ||
|  |         // 1^-dp or 0
 | ||
|  |         str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0); | ||
|  |       } else { | ||
|  | 
 | ||
|  |         // Truncate xc to the required number of decimal places.
 | ||
|  |         xc.length = d; | ||
|  | 
 | ||
|  |         // Round up?
 | ||
|  |         if (r) { | ||
|  | 
 | ||
|  |           // Rounding up may mean the previous digit has to be rounded up and so on.
 | ||
|  |           for (--baseOut; ++xc[--d] > baseOut;) { | ||
|  |             xc[d] = 0; | ||
|  | 
 | ||
|  |             if (!d) { | ||
|  |               ++e; | ||
|  |               xc = [1].concat(xc); | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // Determine trailing zeros.
 | ||
|  |         for (k = xc.length; !xc[--k];); | ||
|  | 
 | ||
|  |         // E.g. [4, 11, 15] becomes 4bf.
 | ||
|  |         for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++])); | ||
|  | 
 | ||
|  |         // Add leading zeros, decimal point and trailing zeros as required.
 | ||
|  |         str = toFixedPoint(str, e, alphabet.charAt(0)); | ||
|  |       } | ||
|  | 
 | ||
|  |       // The caller will add the sign.
 | ||
|  |       return str; | ||
|  |     }; | ||
|  |   })(); | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Perform division in the specified base. Called by div and convertBase.
 | ||
|  |   div = (function () { | ||
|  | 
 | ||
|  |     // Assume non-zero x and k.
 | ||
|  |     function multiply(x, k, base) { | ||
|  |       var m, temp, xlo, xhi, | ||
|  |         carry = 0, | ||
|  |         i = x.length, | ||
|  |         klo = k % SQRT_BASE, | ||
|  |         khi = k / SQRT_BASE | 0; | ||
|  | 
 | ||
|  |       for (x = x.slice(); i--;) { | ||
|  |         xlo = x[i] % SQRT_BASE; | ||
|  |         xhi = x[i] / SQRT_BASE | 0; | ||
|  |         m = khi * xlo + xhi * klo; | ||
|  |         temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry; | ||
|  |         carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi; | ||
|  |         x[i] = temp % base; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (carry) x = [carry].concat(x); | ||
|  | 
 | ||
|  |       return x; | ||
|  |     } | ||
|  | 
 | ||
|  |     function compare(a, b, aL, bL) { | ||
|  |       var i, cmp; | ||
|  | 
 | ||
|  |       if (aL != bL) { | ||
|  |         cmp = aL > bL ? 1 : -1; | ||
|  |       } else { | ||
|  | 
 | ||
|  |         for (i = cmp = 0; i < aL; i++) { | ||
|  | 
 | ||
|  |           if (a[i] != b[i]) { | ||
|  |             cmp = a[i] > b[i] ? 1 : -1; | ||
|  |             break; | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       return cmp; | ||
|  |     } | ||
|  | 
 | ||
|  |     function subtract(a, b, aL, base) { | ||
|  |       var i = 0; | ||
|  | 
 | ||
|  |       // Subtract b from a.
 | ||
|  |       for (; aL--;) { | ||
|  |         a[aL] -= i; | ||
|  |         i = a[aL] < b[aL] ? 1 : 0; | ||
|  |         a[aL] = i * base + a[aL] - b[aL]; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Remove leading zeros.
 | ||
|  |       for (; !a[0] && a.length > 1; a.splice(0, 1)); | ||
|  |     } | ||
|  | 
 | ||
|  |     // x: dividend, y: divisor.
 | ||
|  |     return function (x, y, dp, rm, base) { | ||
|  |       var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0, | ||
|  |         yL, yz, | ||
|  |         s = x.s == y.s ? 1 : -1, | ||
|  |         xc = x.c, | ||
|  |         yc = y.c; | ||
|  | 
 | ||
|  |       // Either NaN, Infinity or 0?
 | ||
|  |       if (!xc || !xc[0] || !yc || !yc[0]) { | ||
|  | 
 | ||
|  |         return new BigNumber( | ||
|  | 
 | ||
|  |          // Return NaN if either NaN, or both Infinity or 0.
 | ||
|  |          !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN : | ||
|  | 
 | ||
|  |           // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
 | ||
|  |           xc && xc[0] == 0 || !yc ? s * 0 : s / 0 | ||
|  |        ); | ||
|  |       } | ||
|  | 
 | ||
|  |       q = new BigNumber(s); | ||
|  |       qc = q.c = []; | ||
|  |       e = x.e - y.e; | ||
|  |       s = dp + e + 1; | ||
|  | 
 | ||
|  |       if (!base) { | ||
|  |         base = BASE; | ||
|  |         e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE); | ||
|  |         s = s / LOG_BASE | 0; | ||
|  |       } | ||
|  | 
 | ||
|  |       // Result exponent may be one less then the current value of e.
 | ||
|  |       // The coefficients of the BigNumbers from convertBase may have trailing zeros.
 | ||
|  |       for (i = 0; yc[i] == (xc[i] || 0); i++); | ||
|  | 
 | ||
|  |       if (yc[i] > (xc[i] || 0)) e--; | ||
|  | 
 | ||
|  |       if (s < 0) { | ||
|  |         qc.push(1); | ||
|  |         more = true; | ||
|  |       } else { | ||
|  |         xL = xc.length; | ||
|  |         yL = yc.length; | ||
|  |         i = 0; | ||
|  |         s += 2; | ||
|  | 
 | ||
|  |         // Normalise xc and yc so highest order digit of yc is >= base / 2.
 | ||
|  | 
 | ||
|  |         n = mathfloor(base / (yc[0] + 1)); | ||
|  | 
 | ||
|  |         // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
 | ||
|  |         // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
 | ||
|  |         if (n > 1) { | ||
|  |           yc = multiply(yc, n, base); | ||
|  |           xc = multiply(xc, n, base); | ||
|  |           yL = yc.length; | ||
|  |           xL = xc.length; | ||
|  |         } | ||
|  | 
 | ||
|  |         xi = yL; | ||
|  |         rem = xc.slice(0, yL); | ||
|  |         remL = rem.length; | ||
|  | 
 | ||
|  |         // Add zeros to make remainder as long as divisor.
 | ||
|  |         for (; remL < yL; rem[remL++] = 0); | ||
|  |         yz = yc.slice(); | ||
|  |         yz = [0].concat(yz); | ||
|  |         yc0 = yc[0]; | ||
|  |         if (yc[1] >= base / 2) yc0++; | ||
|  |         // Not necessary, but to prevent trial digit n > base, when using base 3.
 | ||
|  |         // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
 | ||
|  | 
 | ||
|  |         do { | ||
|  |           n = 0; | ||
|  | 
 | ||
|  |           // Compare divisor and remainder.
 | ||
|  |           cmp = compare(yc, rem, yL, remL); | ||
|  | 
 | ||
|  |           // If divisor < remainder.
 | ||
|  |           if (cmp < 0) { | ||
|  | 
 | ||
|  |             // Calculate trial digit, n.
 | ||
|  | 
 | ||
|  |             rem0 = rem[0]; | ||
|  |             if (yL != remL) rem0 = rem0 * base + (rem[1] || 0); | ||
|  | 
 | ||
|  |             // n is how many times the divisor goes into the current remainder.
 | ||
|  |             n = mathfloor(rem0 / yc0); | ||
|  | 
 | ||
|  |             //  Algorithm:
 | ||
|  |             //  product = divisor multiplied by trial digit (n).
 | ||
|  |             //  Compare product and remainder.
 | ||
|  |             //  If product is greater than remainder:
 | ||
|  |             //    Subtract divisor from product, decrement trial digit.
 | ||
|  |             //  Subtract product from remainder.
 | ||
|  |             //  If product was less than remainder at the last compare:
 | ||
|  |             //    Compare new remainder and divisor.
 | ||
|  |             //    If remainder is greater than divisor:
 | ||
|  |             //      Subtract divisor from remainder, increment trial digit.
 | ||
|  | 
 | ||
|  |             if (n > 1) { | ||
|  | 
 | ||
|  |               // n may be > base only when base is 3.
 | ||
|  |               if (n >= base) n = base - 1; | ||
|  | 
 | ||
|  |               // product = divisor * trial digit.
 | ||
|  |               prod = multiply(yc, n, base); | ||
|  |               prodL = prod.length; | ||
|  |               remL = rem.length; | ||
|  | 
 | ||
|  |               // Compare product and remainder.
 | ||
|  |               // If product > remainder then trial digit n too high.
 | ||
|  |               // n is 1 too high about 5% of the time, and is not known to have
 | ||
|  |               // ever been more than 1 too high.
 | ||
|  |               while (compare(prod, rem, prodL, remL) == 1) { | ||
|  |                 n--; | ||
|  | 
 | ||
|  |                 // Subtract divisor from product.
 | ||
|  |                 subtract(prod, yL < prodL ? yz : yc, prodL, base); | ||
|  |                 prodL = prod.length; | ||
|  |                 cmp = 1; | ||
|  |               } | ||
|  |             } else { | ||
|  | 
 | ||
|  |               // n is 0 or 1, cmp is -1.
 | ||
|  |               // If n is 0, there is no need to compare yc and rem again below,
 | ||
|  |               // so change cmp to 1 to avoid it.
 | ||
|  |               // If n is 1, leave cmp as -1, so yc and rem are compared again.
 | ||
|  |               if (n == 0) { | ||
|  | 
 | ||
|  |                 // divisor < remainder, so n must be at least 1.
 | ||
|  |                 cmp = n = 1; | ||
|  |               } | ||
|  | 
 | ||
|  |               // product = divisor
 | ||
|  |               prod = yc.slice(); | ||
|  |               prodL = prod.length; | ||
|  |             } | ||
|  | 
 | ||
|  |             if (prodL < remL) prod = [0].concat(prod); | ||
|  | 
 | ||
|  |             // Subtract product from remainder.
 | ||
|  |             subtract(rem, prod, remL, base); | ||
|  |             remL = rem.length; | ||
|  | 
 | ||
|  |              // If product was < remainder.
 | ||
|  |             if (cmp == -1) { | ||
|  | 
 | ||
|  |               // Compare divisor and new remainder.
 | ||
|  |               // If divisor < new remainder, subtract divisor from remainder.
 | ||
|  |               // Trial digit n too low.
 | ||
|  |               // n is 1 too low about 5% of the time, and very rarely 2 too low.
 | ||
|  |               while (compare(yc, rem, yL, remL) < 1) { | ||
|  |                 n++; | ||
|  | 
 | ||
|  |                 // Subtract divisor from remainder.
 | ||
|  |                 subtract(rem, yL < remL ? yz : yc, remL, base); | ||
|  |                 remL = rem.length; | ||
|  |               } | ||
|  |             } | ||
|  |           } else if (cmp === 0) { | ||
|  |             n++; | ||
|  |             rem = [0]; | ||
|  |           } // else cmp === 1 and n will be 0
 | ||
|  | 
 | ||
|  |           // Add the next digit, n, to the result array.
 | ||
|  |           qc[i++] = n; | ||
|  | 
 | ||
|  |           // Update the remainder.
 | ||
|  |           if (rem[0]) { | ||
|  |             rem[remL++] = xc[xi] || 0; | ||
|  |           } else { | ||
|  |             rem = [xc[xi]]; | ||
|  |             remL = 1; | ||
|  |           } | ||
|  |         } while ((xi++ < xL || rem[0] != null) && s--); | ||
|  | 
 | ||
|  |         more = rem[0] != null; | ||
|  | 
 | ||
|  |         // Leading zero?
 | ||
|  |         if (!qc[0]) qc.splice(0, 1); | ||
|  |       } | ||
|  | 
 | ||
|  |       if (base == BASE) { | ||
|  | 
 | ||
|  |         // To calculate q.e, first get the number of digits of qc[0].
 | ||
|  |         for (i = 1, s = qc[0]; s >= 10; s /= 10, i++); | ||
|  | 
 | ||
|  |         round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more); | ||
|  | 
 | ||
|  |       // Caller is convertBase.
 | ||
|  |       } else { | ||
|  |         q.e = e; | ||
|  |         q.r = +more; | ||
|  |       } | ||
|  | 
 | ||
|  |       return q; | ||
|  |     }; | ||
|  |   })(); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of BigNumber n in fixed-point or exponential | ||
|  |    * notation rounded to the specified decimal places or significant digits. | ||
|  |    * | ||
|  |    * n: a BigNumber. | ||
|  |    * i: the index of the last digit required (i.e. the digit that may be rounded up). | ||
|  |    * rm: the rounding mode. | ||
|  |    * id: 1 (toExponential) or 2 (toPrecision). | ||
|  |    */ | ||
|  |   function format(n, i, rm, id) { | ||
|  |     var c0, e, ne, len, str; | ||
|  | 
 | ||
|  |     if (rm == null) rm = ROUNDING_MODE; | ||
|  |     else intCheck(rm, 0, 8); | ||
|  | 
 | ||
|  |     if (!n.c) return n.toString(); | ||
|  | 
 | ||
|  |     c0 = n.c[0]; | ||
|  |     ne = n.e; | ||
|  | 
 | ||
|  |     if (i == null) { | ||
|  |       str = coeffToString(n.c); | ||
|  |       str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS) | ||
|  |        ? toExponential(str, ne) | ||
|  |        : toFixedPoint(str, ne, '0'); | ||
|  |     } else { | ||
|  |       n = round(new BigNumber(n), i, rm); | ||
|  | 
 | ||
|  |       // n.e may have changed if the value was rounded up.
 | ||
|  |       e = n.e; | ||
|  | 
 | ||
|  |       str = coeffToString(n.c); | ||
|  |       len = str.length; | ||
|  | 
 | ||
|  |       // toPrecision returns exponential notation if the number of significant digits
 | ||
|  |       // specified is less than the number of digits necessary to represent the integer
 | ||
|  |       // part of the value in fixed-point notation.
 | ||
|  | 
 | ||
|  |       // Exponential notation.
 | ||
|  |       if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) { | ||
|  | 
 | ||
|  |         // Append zeros?
 | ||
|  |         for (; len < i; str += '0', len++); | ||
|  |         str = toExponential(str, e); | ||
|  | 
 | ||
|  |       // Fixed-point notation.
 | ||
|  |       } else { | ||
|  |         i -= ne; | ||
|  |         str = toFixedPoint(str, e, '0'); | ||
|  | 
 | ||
|  |         // Append zeros?
 | ||
|  |         if (e + 1 > len) { | ||
|  |           if (--i > 0) for (str += '.'; i--; str += '0'); | ||
|  |         } else { | ||
|  |           i += e - len; | ||
|  |           if (i > 0) { | ||
|  |             if (e + 1 == len) str += '.'; | ||
|  |             for (; i--; str += '0'); | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return n.s < 0 && c0 ? '-' + str : str; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Handle BigNumber.max and BigNumber.min.
 | ||
|  |   function maxOrMin(args, method) { | ||
|  |     var n, | ||
|  |       i = 1, | ||
|  |       m = new BigNumber(args[0]); | ||
|  | 
 | ||
|  |     for (; i < args.length; i++) { | ||
|  |       n = new BigNumber(args[i]); | ||
|  | 
 | ||
|  |       // If any number is NaN, return NaN.
 | ||
|  |       if (!n.s) { | ||
|  |         m = n; | ||
|  |         break; | ||
|  |       } else if (method.call(m, n)) { | ||
|  |         m = n; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return m; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP. | ||
|  |    * Called by minus, plus and times. | ||
|  |    */ | ||
|  |   function normalise(n, c, e) { | ||
|  |     var i = 1, | ||
|  |       j = c.length; | ||
|  | 
 | ||
|  |      // Remove trailing zeros.
 | ||
|  |     for (; !c[--j]; c.pop()); | ||
|  | 
 | ||
|  |     // Calculate the base 10 exponent. First get the number of digits of c[0].
 | ||
|  |     for (j = c[0]; j >= 10; j /= 10, i++); | ||
|  | 
 | ||
|  |     // Overflow?
 | ||
|  |     if ((e = i + e * LOG_BASE - 1) > MAX_EXP) { | ||
|  | 
 | ||
|  |       // Infinity.
 | ||
|  |       n.c = n.e = null; | ||
|  | 
 | ||
|  |     // Underflow?
 | ||
|  |     } else if (e < MIN_EXP) { | ||
|  | 
 | ||
|  |       // Zero.
 | ||
|  |       n.c = [n.e = 0]; | ||
|  |     } else { | ||
|  |       n.e = e; | ||
|  |       n.c = c; | ||
|  |     } | ||
|  | 
 | ||
|  |     return n; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Handle values that fail the validity test in BigNumber.
 | ||
|  |   parseNumeric = (function () { | ||
|  |     var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i, | ||
|  |       dotAfter = /^([^.]+)\.$/, | ||
|  |       dotBefore = /^\.([^.]+)$/, | ||
|  |       isInfinityOrNaN = /^-?(Infinity|NaN)$/, | ||
|  |       whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g; | ||
|  | 
 | ||
|  |     return function (x, str, isNum, b) { | ||
|  |       var base, | ||
|  |         s = isNum ? str : str.replace(whitespaceOrPlus, ''); | ||
|  | 
 | ||
|  |       // No exception on ±Infinity or NaN.
 | ||
|  |       if (isInfinityOrNaN.test(s)) { | ||
|  |         x.s = isNaN(s) ? null : s < 0 ? -1 : 1; | ||
|  |       } else { | ||
|  |         if (!isNum) { | ||
|  | 
 | ||
|  |           // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
 | ||
|  |           s = s.replace(basePrefix, function (m, p1, p2) { | ||
|  |             base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8; | ||
|  |             return !b || b == base ? p1 : m; | ||
|  |           }); | ||
|  | 
 | ||
|  |           if (b) { | ||
|  |             base = b; | ||
|  | 
 | ||
|  |             // E.g. '1.' to '1', '.1' to '0.1'
 | ||
|  |             s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1'); | ||
|  |           } | ||
|  | 
 | ||
|  |           if (str != s) return new BigNumber(s, base); | ||
|  |         } | ||
|  | 
 | ||
|  |         // '[BigNumber Error] Not a number: {n}'
 | ||
|  |         // '[BigNumber Error] Not a base {b} number: {n}'
 | ||
|  |         if (BigNumber.DEBUG) { | ||
|  |           throw Error | ||
|  |             (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str); | ||
|  |         } | ||
|  | 
 | ||
|  |         // NaN
 | ||
|  |         x.s = null; | ||
|  |       } | ||
|  | 
 | ||
|  |       x.c = x.e = null; | ||
|  |     } | ||
|  |   })(); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Round x to sd significant digits using rounding mode rm. Check for over/under-flow. | ||
|  |    * If r is truthy, it is known that there are more digits after the rounding digit. | ||
|  |    */ | ||
|  |   function round(x, sd, rm, r) { | ||
|  |     var d, i, j, k, n, ni, rd, | ||
|  |       xc = x.c, | ||
|  |       pows10 = POWS_TEN; | ||
|  | 
 | ||
|  |     // if x is not Infinity or NaN...
 | ||
|  |     if (xc) { | ||
|  | 
 | ||
|  |       // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
 | ||
|  |       // n is a base 1e14 number, the value of the element of array x.c containing rd.
 | ||
|  |       // ni is the index of n within x.c.
 | ||
|  |       // d is the number of digits of n.
 | ||
|  |       // i is the index of rd within n including leading zeros.
 | ||
|  |       // j is the actual index of rd within n (if < 0, rd is a leading zero).
 | ||
|  |       out: { | ||
|  | 
 | ||
|  |         // Get the number of digits of the first element of xc.
 | ||
|  |         for (d = 1, k = xc[0]; k >= 10; k /= 10, d++); | ||
|  |         i = sd - d; | ||
|  | 
 | ||
|  |         // If the rounding digit is in the first element of xc...
 | ||
|  |         if (i < 0) { | ||
|  |           i += LOG_BASE; | ||
|  |           j = sd; | ||
|  |           n = xc[ni = 0]; | ||
|  | 
 | ||
|  |           // Get the rounding digit at index j of n.
 | ||
|  |           rd = n / pows10[d - j - 1] % 10 | 0; | ||
|  |         } else { | ||
|  |           ni = mathceil((i + 1) / LOG_BASE); | ||
|  | 
 | ||
|  |           if (ni >= xc.length) { | ||
|  | 
 | ||
|  |             if (r) { | ||
|  | 
 | ||
|  |               // Needed by sqrt.
 | ||
|  |               for (; xc.length <= ni; xc.push(0)); | ||
|  |               n = rd = 0; | ||
|  |               d = 1; | ||
|  |               i %= LOG_BASE; | ||
|  |               j = i - LOG_BASE + 1; | ||
|  |             } else { | ||
|  |               break out; | ||
|  |             } | ||
|  |           } else { | ||
|  |             n = k = xc[ni]; | ||
|  | 
 | ||
|  |             // Get the number of digits of n.
 | ||
|  |             for (d = 1; k >= 10; k /= 10, d++); | ||
|  | 
 | ||
|  |             // Get the index of rd within n.
 | ||
|  |             i %= LOG_BASE; | ||
|  | 
 | ||
|  |             // Get the index of rd within n, adjusted for leading zeros.
 | ||
|  |             // The number of leading zeros of n is given by LOG_BASE - d.
 | ||
|  |             j = i - LOG_BASE + d; | ||
|  | 
 | ||
|  |             // Get the rounding digit at index j of n.
 | ||
|  |             rd = j < 0 ? 0 : n / pows10[d - j - 1] % 10 | 0; | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         r = r || sd < 0 || | ||
|  | 
 | ||
|  |         // Are there any non-zero digits after the rounding digit?
 | ||
|  |         // The expression  n % pows10[d - j - 1]  returns all digits of n to the right
 | ||
|  |         // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
 | ||
|  |          xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]); | ||
|  | 
 | ||
|  |         r = rm < 4 | ||
|  |          ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) | ||
|  |          : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 && | ||
|  | 
 | ||
|  |           // Check whether the digit to the left of the rounding digit is odd.
 | ||
|  |           ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 || | ||
|  |            rm == (x.s < 0 ? 8 : 7)); | ||
|  | 
 | ||
|  |         if (sd < 1 || !xc[0]) { | ||
|  |           xc.length = 0; | ||
|  | 
 | ||
|  |           if (r) { | ||
|  | 
 | ||
|  |             // Convert sd to decimal places.
 | ||
|  |             sd -= x.e + 1; | ||
|  | 
 | ||
|  |             // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 | ||
|  |             xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE]; | ||
|  |             x.e = -sd || 0; | ||
|  |           } else { | ||
|  | 
 | ||
|  |             // Zero.
 | ||
|  |             xc[0] = x.e = 0; | ||
|  |           } | ||
|  | 
 | ||
|  |           return x; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Remove excess digits.
 | ||
|  |         if (i == 0) { | ||
|  |           xc.length = ni; | ||
|  |           k = 1; | ||
|  |           ni--; | ||
|  |         } else { | ||
|  |           xc.length = ni + 1; | ||
|  |           k = pows10[LOG_BASE - i]; | ||
|  | 
 | ||
|  |           // E.g. 56700 becomes 56000 if 7 is the rounding digit.
 | ||
|  |           // j > 0 means i > number of leading zeros of n.
 | ||
|  |           xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Round up?
 | ||
|  |         if (r) { | ||
|  | 
 | ||
|  |           for (; ;) { | ||
|  | 
 | ||
|  |             // If the digit to be rounded up is in the first element of xc...
 | ||
|  |             if (ni == 0) { | ||
|  | 
 | ||
|  |               // i will be the length of xc[0] before k is added.
 | ||
|  |               for (i = 1, j = xc[0]; j >= 10; j /= 10, i++); | ||
|  |               j = xc[0] += k; | ||
|  |               for (k = 1; j >= 10; j /= 10, k++); | ||
|  | 
 | ||
|  |               // if i != k the length has increased.
 | ||
|  |               if (i != k) { | ||
|  |                 x.e++; | ||
|  |                 if (xc[0] == BASE) xc[0] = 1; | ||
|  |               } | ||
|  | 
 | ||
|  |               break; | ||
|  |             } else { | ||
|  |               xc[ni] += k; | ||
|  |               if (xc[ni] != BASE) break; | ||
|  |               xc[ni--] = 0; | ||
|  |               k = 1; | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // Remove trailing zeros.
 | ||
|  |         for (i = xc.length; xc[--i] === 0; xc.pop()); | ||
|  |       } | ||
|  | 
 | ||
|  |       // Overflow? Infinity.
 | ||
|  |       if (x.e > MAX_EXP) { | ||
|  |         x.c = x.e = null; | ||
|  | 
 | ||
|  |       // Underflow? Zero.
 | ||
|  |       } else if (x.e < MIN_EXP) { | ||
|  |         x.c = [x.e = 0]; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return x; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   function valueOf(n) { | ||
|  |     var str, | ||
|  |       e = n.e; | ||
|  | 
 | ||
|  |     if (e === null) return n.toString(); | ||
|  | 
 | ||
|  |     str = coeffToString(n.c); | ||
|  | 
 | ||
|  |     str = e <= TO_EXP_NEG || e >= TO_EXP_POS | ||
|  |       ? toExponential(str, e) | ||
|  |       : toFixedPoint(str, e, '0'); | ||
|  | 
 | ||
|  |     return n.s < 0 ? '-' + str : str; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   // PROTOTYPE/INSTANCE METHODS
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the absolute value of this BigNumber. | ||
|  |    */ | ||
|  |   P.absoluteValue = P.abs = function () { | ||
|  |     var x = new BigNumber(this); | ||
|  |     if (x.s < 0) x.s = 1; | ||
|  |     return x; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return | ||
|  |    *   1 if the value of this BigNumber is greater than the value of BigNumber(y, b), | ||
|  |    *   -1 if the value of this BigNumber is less than the value of BigNumber(y, b), | ||
|  |    *   0 if they have the same value, | ||
|  |    *   or null if the value of either is NaN. | ||
|  |    */ | ||
|  |   P.comparedTo = function (y, b) { | ||
|  |     return compare(this, new BigNumber(y, b)); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * If dp is undefined or null or true or false, return the number of decimal places of the | ||
|  |    * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN. | ||
|  |    * | ||
|  |    * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this | ||
|  |    * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or | ||
|  |    * ROUNDING_MODE if rm is omitted. | ||
|  |    * | ||
|  |    * [dp] {number} Decimal places: integer, 0 to MAX inclusive. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' | ||
|  |    */ | ||
|  |   P.decimalPlaces = P.dp = function (dp, rm) { | ||
|  |     var c, n, v, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     if (dp != null) { | ||
|  |       intCheck(dp, 0, MAX); | ||
|  |       if (rm == null) rm = ROUNDING_MODE; | ||
|  |       else intCheck(rm, 0, 8); | ||
|  | 
 | ||
|  |       return round(new BigNumber(x), dp + x.e + 1, rm); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (!(c = x.c)) return null; | ||
|  |     n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE; | ||
|  | 
 | ||
|  |     // Subtract the number of trailing zeros of the last number.
 | ||
|  |     if (v = c[v]) for (; v % 10 == 0; v /= 10, n--); | ||
|  |     if (n < 0) n = 0; | ||
|  | 
 | ||
|  |     return n; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *  n / 0 = I | ||
|  |    *  n / N = N | ||
|  |    *  n / I = 0 | ||
|  |    *  0 / n = 0 | ||
|  |    *  0 / 0 = N | ||
|  |    *  0 / N = N | ||
|  |    *  0 / I = 0 | ||
|  |    *  N / n = N | ||
|  |    *  N / 0 = N | ||
|  |    *  N / N = N | ||
|  |    *  N / I = N | ||
|  |    *  I / n = I | ||
|  |    *  I / 0 = I | ||
|  |    *  I / N = N | ||
|  |    *  I / I = N | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber divided by the value of | ||
|  |    * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE. | ||
|  |    */ | ||
|  |   P.dividedBy = P.div = function (y, b) { | ||
|  |     return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the integer part of dividing the value of this | ||
|  |    * BigNumber by the value of BigNumber(y, b). | ||
|  |    */ | ||
|  |   P.dividedToIntegerBy = P.idiv = function (y, b) { | ||
|  |     return div(this, new BigNumber(y, b), 0, 1); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a BigNumber whose value is the value of this BigNumber exponentiated by n. | ||
|  |    * | ||
|  |    * If m is present, return the result modulo m. | ||
|  |    * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE. | ||
|  |    * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE. | ||
|  |    * | ||
|  |    * The modular power operation works efficiently when x, n, and m are integers, otherwise it | ||
|  |    * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0. | ||
|  |    * | ||
|  |    * n {number|string|BigNumber} The exponent. An integer. | ||
|  |    * [m] {number|string|BigNumber} The modulus. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Exponent not an integer: {n}' | ||
|  |    */ | ||
|  |   P.exponentiatedBy = P.pow = function (n, m) { | ||
|  |     var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     n = new BigNumber(n); | ||
|  | 
 | ||
|  |     // Allow NaN and ±Infinity, but not other non-integers.
 | ||
|  |     if (n.c && !n.isInteger()) { | ||
|  |       throw Error | ||
|  |         (bignumberError + 'Exponent not an integer: ' + valueOf(n)); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (m != null) m = new BigNumber(m); | ||
|  | 
 | ||
|  |     // Exponent of MAX_SAFE_INTEGER is 15.
 | ||
|  |     nIsBig = n.e > 14; | ||
|  | 
 | ||
|  |     // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
 | ||
|  |     if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) { | ||
|  | 
 | ||
|  |       // The sign of the result of pow when x is negative depends on the evenness of n.
 | ||
|  |       // If +n overflows to ±Infinity, the evenness of n would be not be known.
 | ||
|  |       y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? n.s * (2 - isOdd(n)) : +valueOf(n))); | ||
|  |       return m ? y.mod(m) : y; | ||
|  |     } | ||
|  | 
 | ||
|  |     nIsNeg = n.s < 0; | ||
|  | 
 | ||
|  |     if (m) { | ||
|  | 
 | ||
|  |       // x % m returns NaN if abs(m) is zero, or m is NaN.
 | ||
|  |       if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN); | ||
|  | 
 | ||
|  |       isModExp = !nIsNeg && x.isInteger() && m.isInteger(); | ||
|  | 
 | ||
|  |       if (isModExp) x = x.mod(m); | ||
|  | 
 | ||
|  |     // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
 | ||
|  |     // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
 | ||
|  |     } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0 | ||
|  |       // [1, 240000000]
 | ||
|  |       ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7 | ||
|  |       // [80000000000000]  [99999750000000]
 | ||
|  |       : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) { | ||
|  | 
 | ||
|  |       // If x is negative and n is odd, k = -0, else k = 0.
 | ||
|  |       k = x.s < 0 && isOdd(n) ? -0 : 0; | ||
|  | 
 | ||
|  |       // If x >= 1, k = ±Infinity.
 | ||
|  |       if (x.e > -1) k = 1 / k; | ||
|  | 
 | ||
|  |       // If n is negative return ±0, else return ±Infinity.
 | ||
|  |       return new BigNumber(nIsNeg ? 1 / k : k); | ||
|  | 
 | ||
|  |     } else if (POW_PRECISION) { | ||
|  | 
 | ||
|  |       // Truncating each coefficient array to a length of k after each multiplication
 | ||
|  |       // equates to truncating significant digits to POW_PRECISION + [28, 41],
 | ||
|  |       // i.e. there will be a minimum of 28 guard digits retained.
 | ||
|  |       k = mathceil(POW_PRECISION / LOG_BASE + 2); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (nIsBig) { | ||
|  |       half = new BigNumber(0.5); | ||
|  |       if (nIsNeg) n.s = 1; | ||
|  |       nIsOdd = isOdd(n); | ||
|  |     } else { | ||
|  |       i = Math.abs(+valueOf(n)); | ||
|  |       nIsOdd = i % 2; | ||
|  |     } | ||
|  | 
 | ||
|  |     y = new BigNumber(ONE); | ||
|  | 
 | ||
|  |     // Performs 54 loop iterations for n of 9007199254740991.
 | ||
|  |     for (; ;) { | ||
|  | 
 | ||
|  |       if (nIsOdd) { | ||
|  |         y = y.times(x); | ||
|  |         if (!y.c) break; | ||
|  | 
 | ||
|  |         if (k) { | ||
|  |           if (y.c.length > k) y.c.length = k; | ||
|  |         } else if (isModExp) { | ||
|  |           y = y.mod(m);    //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
 | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       if (i) { | ||
|  |         i = mathfloor(i / 2); | ||
|  |         if (i === 0) break; | ||
|  |         nIsOdd = i % 2; | ||
|  |       } else { | ||
|  |         n = n.times(half); | ||
|  |         round(n, n.e + 1, 1); | ||
|  | 
 | ||
|  |         if (n.e > 14) { | ||
|  |           nIsOdd = isOdd(n); | ||
|  |         } else { | ||
|  |           i = +valueOf(n); | ||
|  |           if (i === 0) break; | ||
|  |           nIsOdd = i % 2; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       x = x.times(x); | ||
|  | 
 | ||
|  |       if (k) { | ||
|  |         if (x.c && x.c.length > k) x.c.length = k; | ||
|  |       } else if (isModExp) { | ||
|  |         x = x.mod(m);    //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
 | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (isModExp) return y; | ||
|  |     if (nIsNeg) y = ONE.div(y); | ||
|  | 
 | ||
|  |     return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer | ||
|  |    * using rounding mode rm, or ROUNDING_MODE if rm is omitted. | ||
|  |    * | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}' | ||
|  |    */ | ||
|  |   P.integerValue = function (rm) { | ||
|  |     var n = new BigNumber(this); | ||
|  |     if (rm == null) rm = ROUNDING_MODE; | ||
|  |     else intCheck(rm, 0, 8); | ||
|  |     return round(n, n.e + 1, rm); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b), | ||
|  |    * otherwise return false. | ||
|  |    */ | ||
|  |   P.isEqualTo = P.eq = function (y, b) { | ||
|  |     return compare(this, new BigNumber(y, b)) === 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is a finite number, otherwise return false. | ||
|  |    */ | ||
|  |   P.isFinite = function () { | ||
|  |     return !!this.c; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b), | ||
|  |    * otherwise return false. | ||
|  |    */ | ||
|  |   P.isGreaterThan = P.gt = function (y, b) { | ||
|  |     return compare(this, new BigNumber(y, b)) > 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is greater than or equal to the value of | ||
|  |    * BigNumber(y, b), otherwise return false. | ||
|  |    */ | ||
|  |   P.isGreaterThanOrEqualTo = P.gte = function (y, b) { | ||
|  |     return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0; | ||
|  | 
 | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is an integer, otherwise return false. | ||
|  |    */ | ||
|  |   P.isInteger = function () { | ||
|  |     return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is less than the value of BigNumber(y, b), | ||
|  |    * otherwise return false. | ||
|  |    */ | ||
|  |   P.isLessThan = P.lt = function (y, b) { | ||
|  |     return compare(this, new BigNumber(y, b)) < 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is less than or equal to the value of | ||
|  |    * BigNumber(y, b), otherwise return false. | ||
|  |    */ | ||
|  |   P.isLessThanOrEqualTo = P.lte = function (y, b) { | ||
|  |     return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is NaN, otherwise return false. | ||
|  |    */ | ||
|  |   P.isNaN = function () { | ||
|  |     return !this.s; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is negative, otherwise return false. | ||
|  |    */ | ||
|  |   P.isNegative = function () { | ||
|  |     return this.s < 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is positive, otherwise return false. | ||
|  |    */ | ||
|  |   P.isPositive = function () { | ||
|  |     return this.s > 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return true if the value of this BigNumber is 0 or -0, otherwise return false. | ||
|  |    */ | ||
|  |   P.isZero = function () { | ||
|  |     return !!this.c && this.c[0] == 0; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *  n - 0 = n | ||
|  |    *  n - N = N | ||
|  |    *  n - I = -I | ||
|  |    *  0 - n = -n | ||
|  |    *  0 - 0 = 0 | ||
|  |    *  0 - N = N | ||
|  |    *  0 - I = -I | ||
|  |    *  N - n = N | ||
|  |    *  N - 0 = N | ||
|  |    *  N - N = N | ||
|  |    *  N - I = N | ||
|  |    *  I - n = I | ||
|  |    *  I - 0 = I | ||
|  |    *  I - N = N | ||
|  |    *  I - I = N | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber minus the value of | ||
|  |    * BigNumber(y, b). | ||
|  |    */ | ||
|  |   P.minus = function (y, b) { | ||
|  |     var i, j, t, xLTy, | ||
|  |       x = this, | ||
|  |       a = x.s; | ||
|  | 
 | ||
|  |     y = new BigNumber(y, b); | ||
|  |     b = y.s; | ||
|  | 
 | ||
|  |     // Either NaN?
 | ||
|  |     if (!a || !b) return new BigNumber(NaN); | ||
|  | 
 | ||
|  |     // Signs differ?
 | ||
|  |     if (a != b) { | ||
|  |       y.s = -b; | ||
|  |       return x.plus(y); | ||
|  |     } | ||
|  | 
 | ||
|  |     var xe = x.e / LOG_BASE, | ||
|  |       ye = y.e / LOG_BASE, | ||
|  |       xc = x.c, | ||
|  |       yc = y.c; | ||
|  | 
 | ||
|  |     if (!xe || !ye) { | ||
|  | 
 | ||
|  |       // Either Infinity?
 | ||
|  |       if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN); | ||
|  | 
 | ||
|  |       // Either zero?
 | ||
|  |       if (!xc[0] || !yc[0]) { | ||
|  | 
 | ||
|  |         // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | ||
|  |         return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x : | ||
|  | 
 | ||
|  |          // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
 | ||
|  |          ROUNDING_MODE == 3 ? -0 : 0); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     xe = bitFloor(xe); | ||
|  |     ye = bitFloor(ye); | ||
|  |     xc = xc.slice(); | ||
|  | 
 | ||
|  |     // Determine which is the bigger number.
 | ||
|  |     if (a = xe - ye) { | ||
|  | 
 | ||
|  |       if (xLTy = a < 0) { | ||
|  |         a = -a; | ||
|  |         t = xc; | ||
|  |       } else { | ||
|  |         ye = xe; | ||
|  |         t = yc; | ||
|  |       } | ||
|  | 
 | ||
|  |       t.reverse(); | ||
|  | 
 | ||
|  |       // Prepend zeros to equalise exponents.
 | ||
|  |       for (b = a; b--; t.push(0)); | ||
|  |       t.reverse(); | ||
|  |     } else { | ||
|  | 
 | ||
|  |       // Exponents equal. Check digit by digit.
 | ||
|  |       j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b; | ||
|  | 
 | ||
|  |       for (a = b = 0; b < j; b++) { | ||
|  | 
 | ||
|  |         if (xc[b] != yc[b]) { | ||
|  |           xLTy = xc[b] < yc[b]; | ||
|  |           break; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // x < y? Point xc to the array of the bigger number.
 | ||
|  |     if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s; | ||
|  | 
 | ||
|  |     b = (j = yc.length) - (i = xc.length); | ||
|  | 
 | ||
|  |     // Append zeros to xc if shorter.
 | ||
|  |     // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
 | ||
|  |     if (b > 0) for (; b--; xc[i++] = 0); | ||
|  |     b = BASE - 1; | ||
|  | 
 | ||
|  |     // Subtract yc from xc.
 | ||
|  |     for (; j > a;) { | ||
|  | 
 | ||
|  |       if (xc[--j] < yc[j]) { | ||
|  |         for (i = j; i && !xc[--i]; xc[i] = b); | ||
|  |         --xc[i]; | ||
|  |         xc[j] += BASE; | ||
|  |       } | ||
|  | 
 | ||
|  |       xc[j] -= yc[j]; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Remove leading zeros and adjust exponent accordingly.
 | ||
|  |     for (; xc[0] == 0; xc.splice(0, 1), --ye); | ||
|  | 
 | ||
|  |     // Zero?
 | ||
|  |     if (!xc[0]) { | ||
|  | 
 | ||
|  |       // Following IEEE 754 (2008) 6.3,
 | ||
|  |       // n - n = +0  but  n - n = -0  when rounding towards -Infinity.
 | ||
|  |       y.s = ROUNDING_MODE == 3 ? -1 : 1; | ||
|  |       y.c = [y.e = 0]; | ||
|  |       return y; | ||
|  |     } | ||
|  | 
 | ||
|  |     // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
 | ||
|  |     // for finite x and y.
 | ||
|  |     return normalise(y, xc, ye); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *   n % 0 =  N | ||
|  |    *   n % N =  N | ||
|  |    *   n % I =  n | ||
|  |    *   0 % n =  0 | ||
|  |    *  -0 % n = -0 | ||
|  |    *   0 % 0 =  N | ||
|  |    *   0 % N =  N | ||
|  |    *   0 % I =  0 | ||
|  |    *   N % n =  N | ||
|  |    *   N % 0 =  N | ||
|  |    *   N % N =  N | ||
|  |    *   N % I =  N | ||
|  |    *   I % n =  N | ||
|  |    *   I % 0 =  N | ||
|  |    *   I % N =  N | ||
|  |    *   I % I =  N | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber modulo the value of | ||
|  |    * BigNumber(y, b). The result depends on the value of MODULO_MODE. | ||
|  |    */ | ||
|  |   P.modulo = P.mod = function (y, b) { | ||
|  |     var q, s, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     y = new BigNumber(y, b); | ||
|  | 
 | ||
|  |     // Return NaN if x is Infinity or NaN, or y is NaN or zero.
 | ||
|  |     if (!x.c || !y.s || y.c && !y.c[0]) { | ||
|  |       return new BigNumber(NaN); | ||
|  | 
 | ||
|  |     // Return x if y is Infinity or x is zero.
 | ||
|  |     } else if (!y.c || x.c && !x.c[0]) { | ||
|  |       return new BigNumber(x); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (MODULO_MODE == 9) { | ||
|  | 
 | ||
|  |       // Euclidian division: q = sign(y) * floor(x / abs(y))
 | ||
|  |       // r = x - qy    where  0 <= r < abs(y)
 | ||
|  |       s = y.s; | ||
|  |       y.s = 1; | ||
|  |       q = div(x, y, 0, 3); | ||
|  |       y.s = s; | ||
|  |       q.s *= s; | ||
|  |     } else { | ||
|  |       q = div(x, y, 0, MODULO_MODE); | ||
|  |     } | ||
|  | 
 | ||
|  |     y = x.minus(q.times(y)); | ||
|  | 
 | ||
|  |     // To match JavaScript %, ensure sign of zero is sign of dividend.
 | ||
|  |     if (!y.c[0] && MODULO_MODE == 1) y.s = x.s; | ||
|  | 
 | ||
|  |     return y; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *  n * 0 = 0 | ||
|  |    *  n * N = N | ||
|  |    *  n * I = I | ||
|  |    *  0 * n = 0 | ||
|  |    *  0 * 0 = 0 | ||
|  |    *  0 * N = N | ||
|  |    *  0 * I = N | ||
|  |    *  N * n = N | ||
|  |    *  N * 0 = N | ||
|  |    *  N * N = N | ||
|  |    *  N * I = N | ||
|  |    *  I * n = I | ||
|  |    *  I * 0 = N | ||
|  |    *  I * N = N | ||
|  |    *  I * I = I | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value | ||
|  |    * of BigNumber(y, b). | ||
|  |    */ | ||
|  |   P.multipliedBy = P.times = function (y, b) { | ||
|  |     var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc, | ||
|  |       base, sqrtBase, | ||
|  |       x = this, | ||
|  |       xc = x.c, | ||
|  |       yc = (y = new BigNumber(y, b)).c; | ||
|  | 
 | ||
|  |     // Either NaN, ±Infinity or ±0?
 | ||
|  |     if (!xc || !yc || !xc[0] || !yc[0]) { | ||
|  | 
 | ||
|  |       // Return NaN if either is NaN, or one is 0 and the other is Infinity.
 | ||
|  |       if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) { | ||
|  |         y.c = y.e = y.s = null; | ||
|  |       } else { | ||
|  |         y.s *= x.s; | ||
|  | 
 | ||
|  |         // Return ±Infinity if either is ±Infinity.
 | ||
|  |         if (!xc || !yc) { | ||
|  |           y.c = y.e = null; | ||
|  | 
 | ||
|  |         // Return ±0 if either is ±0.
 | ||
|  |         } else { | ||
|  |           y.c = [0]; | ||
|  |           y.e = 0; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       return y; | ||
|  |     } | ||
|  | 
 | ||
|  |     e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE); | ||
|  |     y.s *= x.s; | ||
|  |     xcL = xc.length; | ||
|  |     ycL = yc.length; | ||
|  | 
 | ||
|  |     // Ensure xc points to longer array and xcL to its length.
 | ||
|  |     if (xcL < ycL) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i; | ||
|  | 
 | ||
|  |     // Initialise the result array with zeros.
 | ||
|  |     for (i = xcL + ycL, zc = []; i--; zc.push(0)); | ||
|  | 
 | ||
|  |     base = BASE; | ||
|  |     sqrtBase = SQRT_BASE; | ||
|  | 
 | ||
|  |     for (i = ycL; --i >= 0;) { | ||
|  |       c = 0; | ||
|  |       ylo = yc[i] % sqrtBase; | ||
|  |       yhi = yc[i] / sqrtBase | 0; | ||
|  | 
 | ||
|  |       for (k = xcL, j = i + k; j > i;) { | ||
|  |         xlo = xc[--k] % sqrtBase; | ||
|  |         xhi = xc[k] / sqrtBase | 0; | ||
|  |         m = yhi * xlo + xhi * ylo; | ||
|  |         xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c; | ||
|  |         c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi; | ||
|  |         zc[j--] = xlo % base; | ||
|  |       } | ||
|  | 
 | ||
|  |       zc[j] = c; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (c) { | ||
|  |       ++e; | ||
|  |     } else { | ||
|  |       zc.splice(0, 1); | ||
|  |     } | ||
|  | 
 | ||
|  |     return normalise(y, zc, e); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber negated, | ||
|  |    * i.e. multiplied by -1. | ||
|  |    */ | ||
|  |   P.negated = function () { | ||
|  |     var x = new BigNumber(this); | ||
|  |     x.s = -x.s || null; | ||
|  |     return x; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *  n + 0 = n | ||
|  |    *  n + N = N | ||
|  |    *  n + I = I | ||
|  |    *  0 + n = n | ||
|  |    *  0 + 0 = 0 | ||
|  |    *  0 + N = N | ||
|  |    *  0 + I = I | ||
|  |    *  N + n = N | ||
|  |    *  N + 0 = N | ||
|  |    *  N + N = N | ||
|  |    *  N + I = N | ||
|  |    *  I + n = I | ||
|  |    *  I + 0 = I | ||
|  |    *  I + N = N | ||
|  |    *  I + I = I | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber plus the value of | ||
|  |    * BigNumber(y, b). | ||
|  |    */ | ||
|  |   P.plus = function (y, b) { | ||
|  |     var t, | ||
|  |       x = this, | ||
|  |       a = x.s; | ||
|  | 
 | ||
|  |     y = new BigNumber(y, b); | ||
|  |     b = y.s; | ||
|  | 
 | ||
|  |     // Either NaN?
 | ||
|  |     if (!a || !b) return new BigNumber(NaN); | ||
|  | 
 | ||
|  |     // Signs differ?
 | ||
|  |      if (a != b) { | ||
|  |       y.s = -b; | ||
|  |       return x.minus(y); | ||
|  |     } | ||
|  | 
 | ||
|  |     var xe = x.e / LOG_BASE, | ||
|  |       ye = y.e / LOG_BASE, | ||
|  |       xc = x.c, | ||
|  |       yc = y.c; | ||
|  | 
 | ||
|  |     if (!xe || !ye) { | ||
|  | 
 | ||
|  |       // Return ±Infinity if either ±Infinity.
 | ||
|  |       if (!xc || !yc) return new BigNumber(a / 0); | ||
|  | 
 | ||
|  |       // Either zero?
 | ||
|  |       // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | ||
|  |       if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0); | ||
|  |     } | ||
|  | 
 | ||
|  |     xe = bitFloor(xe); | ||
|  |     ye = bitFloor(ye); | ||
|  |     xc = xc.slice(); | ||
|  | 
 | ||
|  |     // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
 | ||
|  |     if (a = xe - ye) { | ||
|  |       if (a > 0) { | ||
|  |         ye = xe; | ||
|  |         t = yc; | ||
|  |       } else { | ||
|  |         a = -a; | ||
|  |         t = xc; | ||
|  |       } | ||
|  | 
 | ||
|  |       t.reverse(); | ||
|  |       for (; a--; t.push(0)); | ||
|  |       t.reverse(); | ||
|  |     } | ||
|  | 
 | ||
|  |     a = xc.length; | ||
|  |     b = yc.length; | ||
|  | 
 | ||
|  |     // Point xc to the longer array, and b to the shorter length.
 | ||
|  |     if (a - b < 0) t = yc, yc = xc, xc = t, b = a; | ||
|  | 
 | ||
|  |     // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
 | ||
|  |     for (a = 0; b;) { | ||
|  |       a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0; | ||
|  |       xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (a) { | ||
|  |       xc = [a].concat(xc); | ||
|  |       ++ye; | ||
|  |     } | ||
|  | 
 | ||
|  |     // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 | ||
|  |     // ye = MAX_EXP + 1 possible
 | ||
|  |     return normalise(y, xc, ye); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * If sd is undefined or null or true or false, return the number of significant digits of | ||
|  |    * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN. | ||
|  |    * If sd is true include integer-part trailing zeros in the count. | ||
|  |    * | ||
|  |    * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this | ||
|  |    * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or | ||
|  |    * ROUNDING_MODE if rm is omitted. | ||
|  |    * | ||
|  |    * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive. | ||
|  |    *                     boolean: whether to count integer-part trailing zeros: true or false. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}' | ||
|  |    */ | ||
|  |   P.precision = P.sd = function (sd, rm) { | ||
|  |     var c, n, v, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     if (sd != null && sd !== !!sd) { | ||
|  |       intCheck(sd, 1, MAX); | ||
|  |       if (rm == null) rm = ROUNDING_MODE; | ||
|  |       else intCheck(rm, 0, 8); | ||
|  | 
 | ||
|  |       return round(new BigNumber(x), sd, rm); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (!(c = x.c)) return null; | ||
|  |     v = c.length - 1; | ||
|  |     n = v * LOG_BASE + 1; | ||
|  | 
 | ||
|  |     if (v = c[v]) { | ||
|  | 
 | ||
|  |       // Subtract the number of trailing zeros of the last element.
 | ||
|  |       for (; v % 10 == 0; v /= 10, n--); | ||
|  | 
 | ||
|  |       // Add the number of digits of the first element.
 | ||
|  |       for (v = c[0]; v >= 10; v /= 10, n++); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (sd && x.e + 1 > n) n = x.e + 1; | ||
|  | 
 | ||
|  |     return n; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a new BigNumber whose value is the value of this BigNumber shifted by k places | ||
|  |    * (powers of 10). Shift to the right if n > 0, and to the left if n < 0. | ||
|  |    * | ||
|  |    * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}' | ||
|  |    */ | ||
|  |   P.shiftedBy = function (k) { | ||
|  |     intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER); | ||
|  |     return this.times('1e' + k); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    *  sqrt(-n) =  N | ||
|  |    *  sqrt(N) =  N | ||
|  |    *  sqrt(-I) =  N | ||
|  |    *  sqrt(I) =  I | ||
|  |    *  sqrt(0) =  0 | ||
|  |    *  sqrt(-0) = -0 | ||
|  |    * | ||
|  |    * Return a new BigNumber whose value is the square root of the value of this BigNumber, | ||
|  |    * rounded according to DECIMAL_PLACES and ROUNDING_MODE. | ||
|  |    */ | ||
|  |   P.squareRoot = P.sqrt = function () { | ||
|  |     var m, n, r, rep, t, | ||
|  |       x = this, | ||
|  |       c = x.c, | ||
|  |       s = x.s, | ||
|  |       e = x.e, | ||
|  |       dp = DECIMAL_PLACES + 4, | ||
|  |       half = new BigNumber('0.5'); | ||
|  | 
 | ||
|  |     // Negative/NaN/Infinity/zero?
 | ||
|  |     if (s !== 1 || !c || !c[0]) { | ||
|  |       return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Initial estimate.
 | ||
|  |     s = Math.sqrt(+valueOf(x)); | ||
|  | 
 | ||
|  |     // Math.sqrt underflow/overflow?
 | ||
|  |     // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
 | ||
|  |     if (s == 0 || s == 1 / 0) { | ||
|  |       n = coeffToString(c); | ||
|  |       if ((n.length + e) % 2 == 0) n += '0'; | ||
|  |       s = Math.sqrt(+n); | ||
|  |       e = bitFloor((e + 1) / 2) - (e < 0 || e % 2); | ||
|  | 
 | ||
|  |       if (s == 1 / 0) { | ||
|  |         n = '5e' + e; | ||
|  |       } else { | ||
|  |         n = s.toExponential(); | ||
|  |         n = n.slice(0, n.indexOf('e') + 1) + e; | ||
|  |       } | ||
|  | 
 | ||
|  |       r = new BigNumber(n); | ||
|  |     } else { | ||
|  |       r = new BigNumber(s + ''); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Check for zero.
 | ||
|  |     // r could be zero if MIN_EXP is changed after the this value was created.
 | ||
|  |     // This would cause a division by zero (x/t) and hence Infinity below, which would cause
 | ||
|  |     // coeffToString to throw.
 | ||
|  |     if (r.c[0]) { | ||
|  |       e = r.e; | ||
|  |       s = e + dp; | ||
|  |       if (s < 3) s = 0; | ||
|  | 
 | ||
|  |       // Newton-Raphson iteration.
 | ||
|  |       for (; ;) { | ||
|  |         t = r; | ||
|  |         r = half.times(t.plus(div(x, t, dp, 1))); | ||
|  | 
 | ||
|  |         if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) { | ||
|  | 
 | ||
|  |           // The exponent of r may here be one less than the final result exponent,
 | ||
|  |           // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
 | ||
|  |           // are indexed correctly.
 | ||
|  |           if (r.e < e) --s; | ||
|  |           n = n.slice(s - 3, s + 1); | ||
|  | 
 | ||
|  |           // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
 | ||
|  |           // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
 | ||
|  |           // iteration.
 | ||
|  |           if (n == '9999' || !rep && n == '4999') { | ||
|  | 
 | ||
|  |             // On the first iteration only, check to see if rounding up gives the
 | ||
|  |             // exact result as the nines may infinitely repeat.
 | ||
|  |             if (!rep) { | ||
|  |               round(t, t.e + DECIMAL_PLACES + 2, 0); | ||
|  | 
 | ||
|  |               if (t.times(t).eq(x)) { | ||
|  |                 r = t; | ||
|  |                 break; | ||
|  |               } | ||
|  |             } | ||
|  | 
 | ||
|  |             dp += 4; | ||
|  |             s += 4; | ||
|  |             rep = 1; | ||
|  |           } else { | ||
|  | 
 | ||
|  |             // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
 | ||
|  |             // result. If not, then there are further digits and m will be truthy.
 | ||
|  |             if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | ||
|  | 
 | ||
|  |               // Truncate to the first rounding digit.
 | ||
|  |               round(r, r.e + DECIMAL_PLACES + 2, 1); | ||
|  |               m = !r.times(r).eq(x); | ||
|  |             } | ||
|  | 
 | ||
|  |             break; | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of this BigNumber in exponential notation and | ||
|  |    * rounded using ROUNDING_MODE to dp fixed decimal places. | ||
|  |    * | ||
|  |    * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' | ||
|  |    */ | ||
|  |   P.toExponential = function (dp, rm) { | ||
|  |     if (dp != null) { | ||
|  |       intCheck(dp, 0, MAX); | ||
|  |       dp++; | ||
|  |     } | ||
|  |     return format(this, dp, rm, 1); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of this BigNumber in fixed-point notation rounding | ||
|  |    * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted. | ||
|  |    * | ||
|  |    * Note: as with JavaScript's number type, (-0).toFixed(0) is '0', | ||
|  |    * but e.g. (-0.00001).toFixed(0) is '-0'. | ||
|  |    * | ||
|  |    * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' | ||
|  |    */ | ||
|  |   P.toFixed = function (dp, rm) { | ||
|  |     if (dp != null) { | ||
|  |       intCheck(dp, 0, MAX); | ||
|  |       dp = dp + this.e + 1; | ||
|  |     } | ||
|  |     return format(this, dp, rm); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of this BigNumber in fixed-point notation rounded | ||
|  |    * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties | ||
|  |    * of the format or FORMAT object (see BigNumber.set). | ||
|  |    * | ||
|  |    * The formatting object may contain some or all of the properties shown below. | ||
|  |    * | ||
|  |    * FORMAT = { | ||
|  |    *   prefix: '', | ||
|  |    *   groupSize: 3, | ||
|  |    *   secondaryGroupSize: 0, | ||
|  |    *   groupSeparator: ',', | ||
|  |    *   decimalSeparator: '.', | ||
|  |    *   fractionGroupSize: 0, | ||
|  |    *   fractionGroupSeparator: '\xA0',      // non-breaking space
 | ||
|  |    *   suffix: '' | ||
|  |    * }; | ||
|  |    * | ||
|  |    * [dp] {number} Decimal places. Integer, 0 to MAX inclusive. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * [format] {object} Formatting options. See FORMAT pbject above. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}' | ||
|  |    * '[BigNumber Error] Argument not an object: {format}' | ||
|  |    */ | ||
|  |   P.toFormat = function (dp, rm, format) { | ||
|  |     var str, | ||
|  |       x = this; | ||
|  | 
 | ||
|  |     if (format == null) { | ||
|  |       if (dp != null && rm && typeof rm == 'object') { | ||
|  |         format = rm; | ||
|  |         rm = null; | ||
|  |       } else if (dp && typeof dp == 'object') { | ||
|  |         format = dp; | ||
|  |         dp = rm = null; | ||
|  |       } else { | ||
|  |         format = FORMAT; | ||
|  |       } | ||
|  |     } else if (typeof format != 'object') { | ||
|  |       throw Error | ||
|  |         (bignumberError + 'Argument not an object: ' + format); | ||
|  |     } | ||
|  | 
 | ||
|  |     str = x.toFixed(dp, rm); | ||
|  | 
 | ||
|  |     if (x.c) { | ||
|  |       var i, | ||
|  |         arr = str.split('.'), | ||
|  |         g1 = +format.groupSize, | ||
|  |         g2 = +format.secondaryGroupSize, | ||
|  |         groupSeparator = format.groupSeparator || '', | ||
|  |         intPart = arr[0], | ||
|  |         fractionPart = arr[1], | ||
|  |         isNeg = x.s < 0, | ||
|  |         intDigits = isNeg ? intPart.slice(1) : intPart, | ||
|  |         len = intDigits.length; | ||
|  | 
 | ||
|  |       if (g2) i = g1, g1 = g2, g2 = i, len -= i; | ||
|  | 
 | ||
|  |       if (g1 > 0 && len > 0) { | ||
|  |         i = len % g1 || g1; | ||
|  |         intPart = intDigits.substr(0, i); | ||
|  |         for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1); | ||
|  |         if (g2 > 0) intPart += groupSeparator + intDigits.slice(i); | ||
|  |         if (isNeg) intPart = '-' + intPart; | ||
|  |       } | ||
|  | 
 | ||
|  |       str = fractionPart | ||
|  |        ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize) | ||
|  |         ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'), | ||
|  |          '$&' + (format.fractionGroupSeparator || '')) | ||
|  |         : fractionPart) | ||
|  |        : intPart; | ||
|  |     } | ||
|  | 
 | ||
|  |     return (format.prefix || '') + str + (format.suffix || ''); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return an array of two BigNumbers representing the value of this BigNumber as a simple | ||
|  |    * fraction with an integer numerator and an integer denominator. | ||
|  |    * The denominator will be a positive non-zero value less than or equal to the specified | ||
|  |    * maximum denominator. If a maximum denominator is not specified, the denominator will be | ||
|  |    * the lowest value necessary to represent the number exactly. | ||
|  |    * | ||
|  |    * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not an integer|out of range} : {md}' | ||
|  |    */ | ||
|  |   P.toFraction = function (md) { | ||
|  |     var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s, | ||
|  |       x = this, | ||
|  |       xc = x.c; | ||
|  | 
 | ||
|  |     if (md != null) { | ||
|  |       n = new BigNumber(md); | ||
|  | 
 | ||
|  |       // Throw if md is less than one or is not an integer, unless it is Infinity.
 | ||
|  |       if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) { | ||
|  |         throw Error | ||
|  |           (bignumberError + 'Argument ' + | ||
|  |             (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n)); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (!xc) return new BigNumber(x); | ||
|  | 
 | ||
|  |     d = new BigNumber(ONE); | ||
|  |     n1 = d0 = new BigNumber(ONE); | ||
|  |     d1 = n0 = new BigNumber(ONE); | ||
|  |     s = coeffToString(xc); | ||
|  | 
 | ||
|  |     // Determine initial denominator.
 | ||
|  |     // d is a power of 10 and the minimum max denominator that specifies the value exactly.
 | ||
|  |     e = d.e = s.length - x.e - 1; | ||
|  |     d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp]; | ||
|  |     md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n; | ||
|  | 
 | ||
|  |     exp = MAX_EXP; | ||
|  |     MAX_EXP = 1 / 0; | ||
|  |     n = new BigNumber(s); | ||
|  | 
 | ||
|  |     // n0 = d1 = 0
 | ||
|  |     n0.c[0] = 0; | ||
|  | 
 | ||
|  |     for (; ;)  { | ||
|  |       q = div(n, d, 0, 1); | ||
|  |       d2 = d0.plus(q.times(d1)); | ||
|  |       if (d2.comparedTo(md) == 1) break; | ||
|  |       d0 = d1; | ||
|  |       d1 = d2; | ||
|  |       n1 = n0.plus(q.times(d2 = n1)); | ||
|  |       n0 = d2; | ||
|  |       d = n.minus(q.times(d2 = d)); | ||
|  |       n = d2; | ||
|  |     } | ||
|  | 
 | ||
|  |     d2 = div(md.minus(d0), d1, 0, 1); | ||
|  |     n0 = n0.plus(d2.times(n1)); | ||
|  |     d0 = d0.plus(d2.times(d1)); | ||
|  |     n0.s = n1.s = x.s; | ||
|  |     e = e * 2; | ||
|  | 
 | ||
|  |     // Determine which fraction is closer to x, n0/d0 or n1/d1
 | ||
|  |     r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo( | ||
|  |         div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0]; | ||
|  | 
 | ||
|  |     MAX_EXP = exp; | ||
|  | 
 | ||
|  |     return r; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return the value of this BigNumber converted to a number primitive. | ||
|  |    */ | ||
|  |   P.toNumber = function () { | ||
|  |     return +valueOf(this); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of this BigNumber rounded to sd significant digits | ||
|  |    * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits | ||
|  |    * necessary to represent the integer part of the value in fixed-point notation, then use | ||
|  |    * exponential notation. | ||
|  |    * | ||
|  |    * [sd] {number} Significant digits. Integer, 1 to MAX inclusive. | ||
|  |    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}' | ||
|  |    */ | ||
|  |   P.toPrecision = function (sd, rm) { | ||
|  |     if (sd != null) intCheck(sd, 1, MAX); | ||
|  |     return format(this, sd, rm, 2); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return a string representing the value of this BigNumber in base b, or base 10 if b is | ||
|  |    * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and | ||
|  |    * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent | ||
|  |    * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than | ||
|  |    * TO_EXP_NEG, return exponential notation. | ||
|  |    * | ||
|  |    * [b] {number} Integer, 2 to ALPHABET.length inclusive. | ||
|  |    * | ||
|  |    * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}' | ||
|  |    */ | ||
|  |   P.toString = function (b) { | ||
|  |     var str, | ||
|  |       n = this, | ||
|  |       s = n.s, | ||
|  |       e = n.e; | ||
|  | 
 | ||
|  |     // Infinity or NaN?
 | ||
|  |     if (e === null) { | ||
|  |       if (s) { | ||
|  |         str = 'Infinity'; | ||
|  |         if (s < 0) str = '-' + str; | ||
|  |       } else { | ||
|  |         str = 'NaN'; | ||
|  |       } | ||
|  |     } else { | ||
|  |       if (b == null) { | ||
|  |         str = e <= TO_EXP_NEG || e >= TO_EXP_POS | ||
|  |          ? toExponential(coeffToString(n.c), e) | ||
|  |          : toFixedPoint(coeffToString(n.c), e, '0'); | ||
|  |       } else if (b === 10 && alphabetHasNormalDecimalDigits) { | ||
|  |         n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE); | ||
|  |         str = toFixedPoint(coeffToString(n.c), n.e, '0'); | ||
|  |       } else { | ||
|  |         intCheck(b, 2, ALPHABET.length, 'Base'); | ||
|  |         str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true); | ||
|  |       } | ||
|  | 
 | ||
|  |       if (s < 0 && n.c[0]) str = '-' + str; | ||
|  |     } | ||
|  | 
 | ||
|  |     return str; | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* | ||
|  |    * Return as toString, but do not accept a base argument, and include the minus sign for | ||
|  |    * negative zero. | ||
|  |    */ | ||
|  |   P.valueOf = P.toJSON = function () { | ||
|  |     return valueOf(this); | ||
|  |   }; | ||
|  | 
 | ||
|  | 
 | ||
|  |   P._isBigNumber = true; | ||
|  | 
 | ||
|  |   P[Symbol.toStringTag] = 'BigNumber'; | ||
|  | 
 | ||
|  |   // Node.js v10.12.0+
 | ||
|  |   P[Symbol.for('nodejs.util.inspect.custom')] = P.valueOf; | ||
|  | 
 | ||
|  |   if (configObject != null) BigNumber.set(configObject); | ||
|  | 
 | ||
|  |   return BigNumber; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // PRIVATE HELPER FUNCTIONS
 | ||
|  | 
 | ||
|  | // These functions don't need access to variables,
 | ||
|  | // e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
 | ||
|  | 
 | ||
|  | 
 | ||
|  | function bitFloor(n) { | ||
|  |   var i = n | 0; | ||
|  |   return n > 0 || n === i ? i : i - 1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Return a coefficient array as a string of base 10 digits.
 | ||
|  | function coeffToString(a) { | ||
|  |   var s, z, | ||
|  |     i = 1, | ||
|  |     j = a.length, | ||
|  |     r = a[0] + ''; | ||
|  | 
 | ||
|  |   for (; i < j;) { | ||
|  |     s = a[i++] + ''; | ||
|  |     z = LOG_BASE - s.length; | ||
|  |     for (; z--; s = '0' + s); | ||
|  |     r += s; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Determine trailing zeros.
 | ||
|  |   for (j = r.length; r.charCodeAt(--j) === 48;); | ||
|  | 
 | ||
|  |   return r.slice(0, j + 1 || 1); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Compare the value of BigNumbers x and y.
 | ||
|  | function compare(x, y) { | ||
|  |   var a, b, | ||
|  |     xc = x.c, | ||
|  |     yc = y.c, | ||
|  |     i = x.s, | ||
|  |     j = y.s, | ||
|  |     k = x.e, | ||
|  |     l = y.e; | ||
|  | 
 | ||
|  |   // Either NaN?
 | ||
|  |   if (!i || !j) return null; | ||
|  | 
 | ||
|  |   a = xc && !xc[0]; | ||
|  |   b = yc && !yc[0]; | ||
|  | 
 | ||
|  |   // Either zero?
 | ||
|  |   if (a || b) return a ? b ? 0 : -j : i; | ||
|  | 
 | ||
|  |   // Signs differ?
 | ||
|  |   if (i != j) return i; | ||
|  | 
 | ||
|  |   a = i < 0; | ||
|  |   b = k == l; | ||
|  | 
 | ||
|  |   // Either Infinity?
 | ||
|  |   if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1; | ||
|  | 
 | ||
|  |   // Compare exponents.
 | ||
|  |   if (!b) return k > l ^ a ? 1 : -1; | ||
|  | 
 | ||
|  |   j = (k = xc.length) < (l = yc.length) ? k : l; | ||
|  | 
 | ||
|  |   // Compare digit by digit.
 | ||
|  |   for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1; | ||
|  | 
 | ||
|  |   // Compare lengths.
 | ||
|  |   return k == l ? 0 : k > l ^ a ? 1 : -1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* | ||
|  |  * Check that n is a primitive number, an integer, and in range, otherwise throw. | ||
|  |  */ | ||
|  | function intCheck(n, min, max, name) { | ||
|  |   if (n < min || n > max || n !== mathfloor(n)) { | ||
|  |     throw Error | ||
|  |      (bignumberError + (name || 'Argument') + (typeof n == 'number' | ||
|  |        ? n < min || n > max ? ' out of range: ' : ' not an integer: ' | ||
|  |        : ' not a primitive number: ') + String(n)); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // Assumes finite n.
 | ||
|  | function isOdd(n) { | ||
|  |   var k = n.c.length - 1; | ||
|  |   return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | function toExponential(str, e) { | ||
|  |   return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) + | ||
|  |    (e < 0 ? 'e' : 'e+') + e; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | function toFixedPoint(str, e, z) { | ||
|  |   var len, zs; | ||
|  | 
 | ||
|  |   // Negative exponent?
 | ||
|  |   if (e < 0) { | ||
|  | 
 | ||
|  |     // Prepend zeros.
 | ||
|  |     for (zs = z + '.'; ++e; zs += z); | ||
|  |     str = zs + str; | ||
|  | 
 | ||
|  |   // Positive exponent
 | ||
|  |   } else { | ||
|  |     len = str.length; | ||
|  | 
 | ||
|  |     // Append zeros.
 | ||
|  |     if (++e > len) { | ||
|  |       for (zs = z, e -= len; --e; zs += z); | ||
|  |       str += zs; | ||
|  |     } else if (e < len) { | ||
|  |       str = str.slice(0, e) + '.' + str.slice(e); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return str; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // EXPORT
 | ||
|  | 
 | ||
|  | 
 | ||
|  | export var BigNumber = clone(); | ||
|  | 
 | ||
|  | export default BigNumber; |