You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					169 lines
				
				4.7 KiB
			
		
		
			
		
	
	
					169 lines
				
				4.7 KiB
			| 
											2 years ago
										 | /** | ||
|  |  * RSA Key Generation Worker. | ||
|  |  * | ||
|  |  * @author Dave Longley | ||
|  |  * | ||
|  |  * Copyright (c) 2013 Digital Bazaar, Inc. | ||
|  |  */ | ||
|  | // worker is built using CommonJS syntax to include all code in one worker file
 | ||
|  | //importScripts('jsbn.js');
 | ||
|  | var forge = require('./forge'); | ||
|  | require('./jsbn'); | ||
|  | 
 | ||
|  | // prime constants
 | ||
|  | var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; | ||
|  | var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1]; | ||
|  | 
 | ||
|  | var BigInteger = forge.jsbn.BigInteger; | ||
|  | var BIG_TWO = new BigInteger(null); | ||
|  | BIG_TWO.fromInt(2); | ||
|  | 
 | ||
|  | self.addEventListener('message', function(e) { | ||
|  |   var result = findPrime(e.data); | ||
|  |   self.postMessage(result); | ||
|  | }); | ||
|  | 
 | ||
|  | // start receiving ranges to check
 | ||
|  | self.postMessage({found: false}); | ||
|  | 
 | ||
|  | // primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
 | ||
|  | var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; | ||
|  | 
 | ||
|  | function findPrime(data) { | ||
|  |   // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
 | ||
|  | 
 | ||
|  |   // create BigInteger from given random bytes
 | ||
|  |   var num = new BigInteger(data.hex, 16); | ||
|  | 
 | ||
|  |   /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The | ||
|  |     number we are given is always aligned at 30k + 1. Each time the number is | ||
|  |     determined not to be prime we add to get to the next 'i', eg: if the number | ||
|  |     was at 30k + 1 we add 6. */ | ||
|  |   var deltaIdx = 0; | ||
|  | 
 | ||
|  |   // find nearest prime
 | ||
|  |   var workLoad = data.workLoad; | ||
|  |   for(var i = 0; i < workLoad; ++i) { | ||
|  |     // do primality test
 | ||
|  |     if(isProbablePrime(num)) { | ||
|  |       return {found: true, prime: num.toString(16)}; | ||
|  |     } | ||
|  |     // get next potential prime
 | ||
|  |     num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); | ||
|  |   } | ||
|  | 
 | ||
|  |   return {found: false}; | ||
|  | } | ||
|  | 
 | ||
|  | function isProbablePrime(n) { | ||
|  |   // divide by low primes, ignore even checks, etc (n alread aligned properly)
 | ||
|  |   var i = 1; | ||
|  |   while(i < LOW_PRIMES.length) { | ||
|  |     var m = LOW_PRIMES[i]; | ||
|  |     var j = i + 1; | ||
|  |     while(j < LOW_PRIMES.length && m < LP_LIMIT) { | ||
|  |       m *= LOW_PRIMES[j++]; | ||
|  |     } | ||
|  |     m = n.modInt(m); | ||
|  |     while(i < j) { | ||
|  |       if(m % LOW_PRIMES[i++] === 0) { | ||
|  |         return false; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   return runMillerRabin(n); | ||
|  | } | ||
|  | 
 | ||
|  | // HAC 4.24, Miller-Rabin
 | ||
|  | function runMillerRabin(n) { | ||
|  |   // n1 = n - 1
 | ||
|  |   var n1 = n.subtract(BigInteger.ONE); | ||
|  | 
 | ||
|  |   // get s and d such that n1 = 2^s * d
 | ||
|  |   var s = n1.getLowestSetBit(); | ||
|  |   if(s <= 0) { | ||
|  |     return false; | ||
|  |   } | ||
|  |   var d = n1.shiftRight(s); | ||
|  | 
 | ||
|  |   var k = _getMillerRabinTests(n.bitLength()); | ||
|  |   var prng = getPrng(); | ||
|  |   var a; | ||
|  |   for(var i = 0; i < k; ++i) { | ||
|  |     // select witness 'a' at random from between 1 and n - 1
 | ||
|  |     do { | ||
|  |       a = new BigInteger(n.bitLength(), prng); | ||
|  |     } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); | ||
|  | 
 | ||
|  |     /* See if 'a' is a composite witness. */ | ||
|  | 
 | ||
|  |     // x = a^d mod n
 | ||
|  |     var x = a.modPow(d, n); | ||
|  | 
 | ||
|  |     // probably prime
 | ||
|  |     if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) { | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     var j = s; | ||
|  |     while(--j) { | ||
|  |       // x = x^2 mod a
 | ||
|  |       x = x.modPowInt(2, n); | ||
|  | 
 | ||
|  |       // 'n' is composite because no previous x == -1 mod n
 | ||
|  |       if(x.compareTo(BigInteger.ONE) === 0) { | ||
|  |         return false; | ||
|  |       } | ||
|  |       // x == -1 mod n, so probably prime
 | ||
|  |       if(x.compareTo(n1) === 0) { | ||
|  |         break; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
 | ||
|  |     if(j === 0) { | ||
|  |       return false; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | // get pseudo random number generator
 | ||
|  | function getPrng() { | ||
|  |   // create prng with api that matches BigInteger secure random
 | ||
|  |   return { | ||
|  |     // x is an array to fill with bytes
 | ||
|  |     nextBytes: function(x) { | ||
|  |       for(var i = 0; i < x.length; ++i) { | ||
|  |         x[i] = Math.floor(Math.random() * 0xFF); | ||
|  |       } | ||
|  |     } | ||
|  |   }; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Returns the required number of Miller-Rabin tests to generate a | ||
|  |  * prime with an error probability of (1/2)^80. | ||
|  |  * | ||
|  |  * See Handbook of Applied Cryptography Chapter 4, Table 4.4. | ||
|  |  * | ||
|  |  * @param bits the bit size. | ||
|  |  * | ||
|  |  * @return the required number of iterations. | ||
|  |  */ | ||
|  | function _getMillerRabinTests(bits) { | ||
|  |   if(bits <= 100) return 27; | ||
|  |   if(bits <= 150) return 18; | ||
|  |   if(bits <= 200) return 15; | ||
|  |   if(bits <= 250) return 12; | ||
|  |   if(bits <= 300) return 9; | ||
|  |   if(bits <= 350) return 8; | ||
|  |   if(bits <= 400) return 7; | ||
|  |   if(bits <= 500) return 6; | ||
|  |   if(bits <= 600) return 5; | ||
|  |   if(bits <= 800) return 4; | ||
|  |   if(bits <= 1250) return 3; | ||
|  |   return 2; | ||
|  | } |