You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					1223 lines
				
				39 KiB
			
		
		
			
		
	
	
					1223 lines
				
				39 KiB
			| 
											2 years ago
										 | 'use strict'; | ||
|  | 
 | ||
|  | // (C) 1995-2013 Jean-loup Gailly and Mark Adler
 | ||
|  | // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
 | ||
|  | //
 | ||
|  | // This software is provided 'as-is', without any express or implied
 | ||
|  | // warranty. In no event will the authors be held liable for any damages
 | ||
|  | // arising from the use of this software.
 | ||
|  | //
 | ||
|  | // Permission is granted to anyone to use this software for any purpose,
 | ||
|  | // including commercial applications, and to alter it and redistribute it
 | ||
|  | // freely, subject to the following restrictions:
 | ||
|  | //
 | ||
|  | // 1. The origin of this software must not be misrepresented; you must not
 | ||
|  | //   claim that you wrote the original software. If you use this software
 | ||
|  | //   in a product, an acknowledgment in the product documentation would be
 | ||
|  | //   appreciated but is not required.
 | ||
|  | // 2. Altered source versions must be plainly marked as such, and must not be
 | ||
|  | //   misrepresented as being the original software.
 | ||
|  | // 3. This notice may not be removed or altered from any source distribution.
 | ||
|  | 
 | ||
|  | /* eslint-disable space-unary-ops */ | ||
|  | 
 | ||
|  | var utils = require('../utils/common'); | ||
|  | 
 | ||
|  | /* Public constants ==========================================================*/ | ||
|  | /* ===========================================================================*/ | ||
|  | 
 | ||
|  | 
 | ||
|  | //var Z_FILTERED          = 1;
 | ||
|  | //var Z_HUFFMAN_ONLY      = 2;
 | ||
|  | //var Z_RLE               = 3;
 | ||
|  | var Z_FIXED               = 4; | ||
|  | //var Z_DEFAULT_STRATEGY  = 0;
 | ||
|  | 
 | ||
|  | /* Possible values of the data_type field (though see inflate()) */ | ||
|  | var Z_BINARY              = 0; | ||
|  | var Z_TEXT                = 1; | ||
|  | //var Z_ASCII             = 1; // = Z_TEXT
 | ||
|  | var Z_UNKNOWN             = 2; | ||
|  | 
 | ||
|  | /*============================================================================*/ | ||
|  | 
 | ||
|  | 
 | ||
|  | function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } | ||
|  | 
 | ||
|  | // From zutil.h
 | ||
|  | 
 | ||
|  | var STORED_BLOCK = 0; | ||
|  | var STATIC_TREES = 1; | ||
|  | var DYN_TREES    = 2; | ||
|  | /* The three kinds of block type */ | ||
|  | 
 | ||
|  | var MIN_MATCH    = 3; | ||
|  | var MAX_MATCH    = 258; | ||
|  | /* The minimum and maximum match lengths */ | ||
|  | 
 | ||
|  | // From deflate.h
 | ||
|  | /* =========================================================================== | ||
|  |  * Internal compression state. | ||
|  |  */ | ||
|  | 
 | ||
|  | var LENGTH_CODES  = 29; | ||
|  | /* number of length codes, not counting the special END_BLOCK code */ | ||
|  | 
 | ||
|  | var LITERALS      = 256; | ||
|  | /* number of literal bytes 0..255 */ | ||
|  | 
 | ||
|  | var L_CODES       = LITERALS + 1 + LENGTH_CODES; | ||
|  | /* number of Literal or Length codes, including the END_BLOCK code */ | ||
|  | 
 | ||
|  | var D_CODES       = 30; | ||
|  | /* number of distance codes */ | ||
|  | 
 | ||
|  | var BL_CODES      = 19; | ||
|  | /* number of codes used to transfer the bit lengths */ | ||
|  | 
 | ||
|  | var HEAP_SIZE     = 2 * L_CODES + 1; | ||
|  | /* maximum heap size */ | ||
|  | 
 | ||
|  | var MAX_BITS      = 15; | ||
|  | /* All codes must not exceed MAX_BITS bits */ | ||
|  | 
 | ||
|  | var Buf_size      = 16; | ||
|  | /* size of bit buffer in bi_buf */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Constants | ||
|  |  */ | ||
|  | 
 | ||
|  | var MAX_BL_BITS = 7; | ||
|  | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
|  | 
 | ||
|  | var END_BLOCK   = 256; | ||
|  | /* end of block literal code */ | ||
|  | 
 | ||
|  | var REP_3_6     = 16; | ||
|  | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
|  | 
 | ||
|  | var REPZ_3_10   = 17; | ||
|  | /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | ||
|  | 
 | ||
|  | var REPZ_11_138 = 18; | ||
|  | /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | ||
|  | 
 | ||
|  | /* eslint-disable comma-spacing,array-bracket-spacing */ | ||
|  | var extra_lbits =   /* extra bits for each length code */ | ||
|  |   [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; | ||
|  | 
 | ||
|  | var extra_dbits =   /* extra bits for each distance code */ | ||
|  |   [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; | ||
|  | 
 | ||
|  | var extra_blbits =  /* extra bits for each bit length code */ | ||
|  |   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; | ||
|  | 
 | ||
|  | var bl_order = | ||
|  |   [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; | ||
|  | /* eslint-enable comma-spacing,array-bracket-spacing */ | ||
|  | 
 | ||
|  | /* The lengths of the bit length codes are sent in order of decreasing | ||
|  |  * probability, to avoid transmitting the lengths for unused bit length codes. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Local data. These are initialized only once. | ||
|  |  */ | ||
|  | 
 | ||
|  | // We pre-fill arrays with 0 to avoid uninitialized gaps
 | ||
|  | 
 | ||
|  | var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ | ||
|  | 
 | ||
|  | // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
 | ||
|  | var static_ltree  = new Array((L_CODES + 2) * 2); | ||
|  | zero(static_ltree); | ||
|  | /* The static literal tree. Since the bit lengths are imposed, there is no | ||
|  |  * need for the L_CODES extra codes used during heap construction. However | ||
|  |  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | ||
|  |  * below). | ||
|  |  */ | ||
|  | 
 | ||
|  | var static_dtree  = new Array(D_CODES * 2); | ||
|  | zero(static_dtree); | ||
|  | /* The static distance tree. (Actually a trivial tree since all codes use | ||
|  |  * 5 bits.) | ||
|  |  */ | ||
|  | 
 | ||
|  | var _dist_code    = new Array(DIST_CODE_LEN); | ||
|  | zero(_dist_code); | ||
|  | /* Distance codes. The first 256 values correspond to the distances | ||
|  |  * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
|  |  * the 15 bit distances. | ||
|  |  */ | ||
|  | 
 | ||
|  | var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1); | ||
|  | zero(_length_code); | ||
|  | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
|  | 
 | ||
|  | var base_length   = new Array(LENGTH_CODES); | ||
|  | zero(base_length); | ||
|  | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
|  | 
 | ||
|  | var base_dist     = new Array(D_CODES); | ||
|  | zero(base_dist); | ||
|  | /* First normalized distance for each code (0 = distance of 1) */ | ||
|  | 
 | ||
|  | 
 | ||
|  | function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { | ||
|  | 
 | ||
|  |   this.static_tree  = static_tree;  /* static tree or NULL */ | ||
|  |   this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */ | ||
|  |   this.extra_base   = extra_base;   /* base index for extra_bits */ | ||
|  |   this.elems        = elems;        /* max number of elements in the tree */ | ||
|  |   this.max_length   = max_length;   /* max bit length for the codes */ | ||
|  | 
 | ||
|  |   // show if `static_tree` has data or dummy - needed for monomorphic objects
 | ||
|  |   this.has_stree    = static_tree && static_tree.length; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | var static_l_desc; | ||
|  | var static_d_desc; | ||
|  | var static_bl_desc; | ||
|  | 
 | ||
|  | 
 | ||
|  | function TreeDesc(dyn_tree, stat_desc) { | ||
|  |   this.dyn_tree = dyn_tree;     /* the dynamic tree */ | ||
|  |   this.max_code = 0;            /* largest code with non zero frequency */ | ||
|  |   this.stat_desc = stat_desc;   /* the corresponding static tree */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | function d_code(dist) { | ||
|  |   return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Output a short LSB first on the stream. | ||
|  |  * IN assertion: there is enough room in pendingBuf. | ||
|  |  */ | ||
|  | function put_short(s, w) { | ||
|  | //    put_byte(s, (uch)((w) & 0xff));
 | ||
|  | //    put_byte(s, (uch)((ush)(w) >> 8));
 | ||
|  |   s.pending_buf[s.pending++] = (w) & 0xff; | ||
|  |   s.pending_buf[s.pending++] = (w >>> 8) & 0xff; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send a value on a given number of bits. | ||
|  |  * IN assertion: length <= 16 and value fits in length bits. | ||
|  |  */ | ||
|  | function send_bits(s, value, length) { | ||
|  |   if (s.bi_valid > (Buf_size - length)) { | ||
|  |     s.bi_buf |= (value << s.bi_valid) & 0xffff; | ||
|  |     put_short(s, s.bi_buf); | ||
|  |     s.bi_buf = value >> (Buf_size - s.bi_valid); | ||
|  |     s.bi_valid += length - Buf_size; | ||
|  |   } else { | ||
|  |     s.bi_buf |= (value << s.bi_valid) & 0xffff; | ||
|  |     s.bi_valid += length; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | function send_code(s, c, tree) { | ||
|  |   send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Reverse the first len bits of a code, using straightforward code (a faster | ||
|  |  * method would use a table) | ||
|  |  * IN assertion: 1 <= len <= 15 | ||
|  |  */ | ||
|  | function bi_reverse(code, len) { | ||
|  |   var res = 0; | ||
|  |   do { | ||
|  |     res |= code & 1; | ||
|  |     code >>>= 1; | ||
|  |     res <<= 1; | ||
|  |   } while (--len > 0); | ||
|  |   return res >>> 1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Flush the bit buffer, keeping at most 7 bits in it. | ||
|  |  */ | ||
|  | function bi_flush(s) { | ||
|  |   if (s.bi_valid === 16) { | ||
|  |     put_short(s, s.bi_buf); | ||
|  |     s.bi_buf = 0; | ||
|  |     s.bi_valid = 0; | ||
|  | 
 | ||
|  |   } else if (s.bi_valid >= 8) { | ||
|  |     s.pending_buf[s.pending++] = s.bi_buf & 0xff; | ||
|  |     s.bi_buf >>= 8; | ||
|  |     s.bi_valid -= 8; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Compute the optimal bit lengths for a tree and update the total bit length | ||
|  |  * for the current block. | ||
|  |  * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
|  |  *    above are the tree nodes sorted by increasing frequency. | ||
|  |  * OUT assertions: the field len is set to the optimal bit length, the | ||
|  |  *     array bl_count contains the frequencies for each bit length. | ||
|  |  *     The length opt_len is updated; static_len is also updated if stree is | ||
|  |  *     not null. | ||
|  |  */ | ||
|  | function gen_bitlen(s, desc) | ||
|  | //    deflate_state *s;
 | ||
|  | //    tree_desc *desc;    /* the tree descriptor */
 | ||
|  | { | ||
|  |   var tree            = desc.dyn_tree; | ||
|  |   var max_code        = desc.max_code; | ||
|  |   var stree           = desc.stat_desc.static_tree; | ||
|  |   var has_stree       = desc.stat_desc.has_stree; | ||
|  |   var extra           = desc.stat_desc.extra_bits; | ||
|  |   var base            = desc.stat_desc.extra_base; | ||
|  |   var max_length      = desc.stat_desc.max_length; | ||
|  |   var h;              /* heap index */ | ||
|  |   var n, m;           /* iterate over the tree elements */ | ||
|  |   var bits;           /* bit length */ | ||
|  |   var xbits;          /* extra bits */ | ||
|  |   var f;              /* frequency */ | ||
|  |   var overflow = 0;   /* number of elements with bit length too large */ | ||
|  | 
 | ||
|  |   for (bits = 0; bits <= MAX_BITS; bits++) { | ||
|  |     s.bl_count[bits] = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* In a first pass, compute the optimal bit lengths (which may | ||
|  |    * overflow in the case of the bit length tree). | ||
|  |    */ | ||
|  |   tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ | ||
|  | 
 | ||
|  |   for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { | ||
|  |     n = s.heap[h]; | ||
|  |     bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; | ||
|  |     if (bits > max_length) { | ||
|  |       bits = max_length; | ||
|  |       overflow++; | ||
|  |     } | ||
|  |     tree[n * 2 + 1]/*.Len*/ = bits; | ||
|  |     /* We overwrite tree[n].Dad which is no longer needed */ | ||
|  | 
 | ||
|  |     if (n > max_code) { continue; } /* not a leaf node */ | ||
|  | 
 | ||
|  |     s.bl_count[bits]++; | ||
|  |     xbits = 0; | ||
|  |     if (n >= base) { | ||
|  |       xbits = extra[n - base]; | ||
|  |     } | ||
|  |     f = tree[n * 2]/*.Freq*/; | ||
|  |     s.opt_len += f * (bits + xbits); | ||
|  |     if (has_stree) { | ||
|  |       s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); | ||
|  |     } | ||
|  |   } | ||
|  |   if (overflow === 0) { return; } | ||
|  | 
 | ||
|  |   // Trace((stderr,"\nbit length overflow\n"));
 | ||
|  |   /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
|  | 
 | ||
|  |   /* Find the first bit length which could increase: */ | ||
|  |   do { | ||
|  |     bits = max_length - 1; | ||
|  |     while (s.bl_count[bits] === 0) { bits--; } | ||
|  |     s.bl_count[bits]--;      /* move one leaf down the tree */ | ||
|  |     s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ | ||
|  |     s.bl_count[max_length]--; | ||
|  |     /* The brother of the overflow item also moves one step up, | ||
|  |      * but this does not affect bl_count[max_length] | ||
|  |      */ | ||
|  |     overflow -= 2; | ||
|  |   } while (overflow > 0); | ||
|  | 
 | ||
|  |   /* Now recompute all bit lengths, scanning in increasing frequency. | ||
|  |    * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
|  |    * lengths instead of fixing only the wrong ones. This idea is taken | ||
|  |    * from 'ar' written by Haruhiko Okumura.) | ||
|  |    */ | ||
|  |   for (bits = max_length; bits !== 0; bits--) { | ||
|  |     n = s.bl_count[bits]; | ||
|  |     while (n !== 0) { | ||
|  |       m = s.heap[--h]; | ||
|  |       if (m > max_code) { continue; } | ||
|  |       if (tree[m * 2 + 1]/*.Len*/ !== bits) { | ||
|  |         // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 | ||
|  |         s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; | ||
|  |         tree[m * 2 + 1]/*.Len*/ = bits; | ||
|  |       } | ||
|  |       n--; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Generate the codes for a given tree and bit counts (which need not be | ||
|  |  * optimal). | ||
|  |  * IN assertion: the array bl_count contains the bit length statistics for | ||
|  |  * the given tree and the field len is set for all tree elements. | ||
|  |  * OUT assertion: the field code is set for all tree elements of non | ||
|  |  *     zero code length. | ||
|  |  */ | ||
|  | function gen_codes(tree, max_code, bl_count) | ||
|  | //    ct_data *tree;             /* the tree to decorate */
 | ||
|  | //    int max_code;              /* largest code with non zero frequency */
 | ||
|  | //    ushf *bl_count;            /* number of codes at each bit length */
 | ||
|  | { | ||
|  |   var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ | ||
|  |   var code = 0;              /* running code value */ | ||
|  |   var bits;                  /* bit index */ | ||
|  |   var n;                     /* code index */ | ||
|  | 
 | ||
|  |   /* The distribution counts are first used to generate the code values | ||
|  |    * without bit reversal. | ||
|  |    */ | ||
|  |   for (bits = 1; bits <= MAX_BITS; bits++) { | ||
|  |     next_code[bits] = code = (code + bl_count[bits - 1]) << 1; | ||
|  |   } | ||
|  |   /* Check that the bit counts in bl_count are consistent. The last code | ||
|  |    * must be all ones. | ||
|  |    */ | ||
|  |   //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | ||
|  |   //        "inconsistent bit counts");
 | ||
|  |   //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | ||
|  | 
 | ||
|  |   for (n = 0;  n <= max_code; n++) { | ||
|  |     var len = tree[n * 2 + 1]/*.Len*/; | ||
|  |     if (len === 0) { continue; } | ||
|  |     /* Now reverse the bits */ | ||
|  |     tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len); | ||
|  | 
 | ||
|  |     //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | ||
|  |     //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Initialize the various 'constant' tables. | ||
|  |  */ | ||
|  | function tr_static_init() { | ||
|  |   var n;        /* iterates over tree elements */ | ||
|  |   var bits;     /* bit counter */ | ||
|  |   var length;   /* length value */ | ||
|  |   var code;     /* code value */ | ||
|  |   var dist;     /* distance index */ | ||
|  |   var bl_count = new Array(MAX_BITS + 1); | ||
|  |   /* number of codes at each bit length for an optimal tree */ | ||
|  | 
 | ||
|  |   // do check in _tr_init()
 | ||
|  |   //if (static_init_done) return;
 | ||
|  | 
 | ||
|  |   /* For some embedded targets, global variables are not initialized: */ | ||
|  | /*#ifdef NO_INIT_GLOBAL_POINTERS | ||
|  |   static_l_desc.static_tree = static_ltree; | ||
|  |   static_l_desc.extra_bits = extra_lbits; | ||
|  |   static_d_desc.static_tree = static_dtree; | ||
|  |   static_d_desc.extra_bits = extra_dbits; | ||
|  |   static_bl_desc.extra_bits = extra_blbits; | ||
|  | #endif*/ | ||
|  | 
 | ||
|  |   /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
|  |   length = 0; | ||
|  |   for (code = 0; code < LENGTH_CODES - 1; code++) { | ||
|  |     base_length[code] = length; | ||
|  |     for (n = 0; n < (1 << extra_lbits[code]); n++) { | ||
|  |       _length_code[length++] = code; | ||
|  |     } | ||
|  |   } | ||
|  |   //Assert (length == 256, "tr_static_init: length != 256");
 | ||
|  |   /* Note that the length 255 (match length 258) can be represented | ||
|  |    * in two different ways: code 284 + 5 bits or code 285, so we | ||
|  |    * overwrite length_code[255] to use the best encoding: | ||
|  |    */ | ||
|  |   _length_code[length - 1] = code; | ||
|  | 
 | ||
|  |   /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
|  |   dist = 0; | ||
|  |   for (code = 0; code < 16; code++) { | ||
|  |     base_dist[code] = dist; | ||
|  |     for (n = 0; n < (1 << extra_dbits[code]); n++) { | ||
|  |       _dist_code[dist++] = code; | ||
|  |     } | ||
|  |   } | ||
|  |   //Assert (dist == 256, "tr_static_init: dist != 256");
 | ||
|  |   dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
|  |   for (; code < D_CODES; code++) { | ||
|  |     base_dist[code] = dist << 7; | ||
|  |     for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { | ||
|  |       _dist_code[256 + dist++] = code; | ||
|  |     } | ||
|  |   } | ||
|  |   //Assert (dist == 256, "tr_static_init: 256+dist != 512");
 | ||
|  | 
 | ||
|  |   /* Construct the codes of the static literal tree */ | ||
|  |   for (bits = 0; bits <= MAX_BITS; bits++) { | ||
|  |     bl_count[bits] = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   n = 0; | ||
|  |   while (n <= 143) { | ||
|  |     static_ltree[n * 2 + 1]/*.Len*/ = 8; | ||
|  |     n++; | ||
|  |     bl_count[8]++; | ||
|  |   } | ||
|  |   while (n <= 255) { | ||
|  |     static_ltree[n * 2 + 1]/*.Len*/ = 9; | ||
|  |     n++; | ||
|  |     bl_count[9]++; | ||
|  |   } | ||
|  |   while (n <= 279) { | ||
|  |     static_ltree[n * 2 + 1]/*.Len*/ = 7; | ||
|  |     n++; | ||
|  |     bl_count[7]++; | ||
|  |   } | ||
|  |   while (n <= 287) { | ||
|  |     static_ltree[n * 2 + 1]/*.Len*/ = 8; | ||
|  |     n++; | ||
|  |     bl_count[8]++; | ||
|  |   } | ||
|  |   /* Codes 286 and 287 do not exist, but we must include them in the | ||
|  |    * tree construction to get a canonical Huffman tree (longest code | ||
|  |    * all ones) | ||
|  |    */ | ||
|  |   gen_codes(static_ltree, L_CODES + 1, bl_count); | ||
|  | 
 | ||
|  |   /* The static distance tree is trivial: */ | ||
|  |   for (n = 0; n < D_CODES; n++) { | ||
|  |     static_dtree[n * 2 + 1]/*.Len*/ = 5; | ||
|  |     static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Now data ready and we can init static trees
 | ||
|  |   static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); | ||
|  |   static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS); | ||
|  |   static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS); | ||
|  | 
 | ||
|  |   //static_init_done = true;
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Initialize a new block. | ||
|  |  */ | ||
|  | function init_block(s) { | ||
|  |   var n; /* iterates over tree elements */ | ||
|  | 
 | ||
|  |   /* Initialize the trees. */ | ||
|  |   for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } | ||
|  |   for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } | ||
|  |   for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } | ||
|  | 
 | ||
|  |   s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; | ||
|  |   s.opt_len = s.static_len = 0; | ||
|  |   s.last_lit = s.matches = 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Flush the bit buffer and align the output on a byte boundary | ||
|  |  */ | ||
|  | function bi_windup(s) | ||
|  | { | ||
|  |   if (s.bi_valid > 8) { | ||
|  |     put_short(s, s.bi_buf); | ||
|  |   } else if (s.bi_valid > 0) { | ||
|  |     //put_byte(s, (Byte)s->bi_buf);
 | ||
|  |     s.pending_buf[s.pending++] = s.bi_buf; | ||
|  |   } | ||
|  |   s.bi_buf = 0; | ||
|  |   s.bi_valid = 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Copy a stored block, storing first the length and its | ||
|  |  * one's complement if requested. | ||
|  |  */ | ||
|  | function copy_block(s, buf, len, header) | ||
|  | //DeflateState *s;
 | ||
|  | //charf    *buf;    /* the input data */
 | ||
|  | //unsigned len;     /* its length */
 | ||
|  | //int      header;  /* true if block header must be written */
 | ||
|  | { | ||
|  |   bi_windup(s);        /* align on byte boundary */ | ||
|  | 
 | ||
|  |   if (header) { | ||
|  |     put_short(s, len); | ||
|  |     put_short(s, ~len); | ||
|  |   } | ||
|  | //  while (len--) {
 | ||
|  | //    put_byte(s, *buf++);
 | ||
|  | //  }
 | ||
|  |   utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); | ||
|  |   s.pending += len; | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Compares to subtrees, using the tree depth as tie breaker when | ||
|  |  * the subtrees have equal frequency. This minimizes the worst case length. | ||
|  |  */ | ||
|  | function smaller(tree, n, m, depth) { | ||
|  |   var _n2 = n * 2; | ||
|  |   var _m2 = m * 2; | ||
|  |   return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || | ||
|  |          (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Restore the heap property by moving down the tree starting at node k, | ||
|  |  * exchanging a node with the smallest of its two sons if necessary, stopping | ||
|  |  * when the heap property is re-established (each father smaller than its | ||
|  |  * two sons). | ||
|  |  */ | ||
|  | function pqdownheap(s, tree, k) | ||
|  | //    deflate_state *s;
 | ||
|  | //    ct_data *tree;  /* the tree to restore */
 | ||
|  | //    int k;               /* node to move down */
 | ||
|  | { | ||
|  |   var v = s.heap[k]; | ||
|  |   var j = k << 1;  /* left son of k */ | ||
|  |   while (j <= s.heap_len) { | ||
|  |     /* Set j to the smallest of the two sons: */ | ||
|  |     if (j < s.heap_len && | ||
|  |       smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { | ||
|  |       j++; | ||
|  |     } | ||
|  |     /* Exit if v is smaller than both sons */ | ||
|  |     if (smaller(tree, v, s.heap[j], s.depth)) { break; } | ||
|  | 
 | ||
|  |     /* Exchange v with the smallest son */ | ||
|  |     s.heap[k] = s.heap[j]; | ||
|  |     k = j; | ||
|  | 
 | ||
|  |     /* And continue down the tree, setting j to the left son of k */ | ||
|  |     j <<= 1; | ||
|  |   } | ||
|  |   s.heap[k] = v; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | // inlined manually
 | ||
|  | // var SMALLEST = 1;
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send the block data compressed using the given Huffman trees | ||
|  |  */ | ||
|  | function compress_block(s, ltree, dtree) | ||
|  | //    deflate_state *s;
 | ||
|  | //    const ct_data *ltree; /* literal tree */
 | ||
|  | //    const ct_data *dtree; /* distance tree */
 | ||
|  | { | ||
|  |   var dist;           /* distance of matched string */ | ||
|  |   var lc;             /* match length or unmatched char (if dist == 0) */ | ||
|  |   var lx = 0;         /* running index in l_buf */ | ||
|  |   var code;           /* the code to send */ | ||
|  |   var extra;          /* number of extra bits to send */ | ||
|  | 
 | ||
|  |   if (s.last_lit !== 0) { | ||
|  |     do { | ||
|  |       dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); | ||
|  |       lc = s.pending_buf[s.l_buf + lx]; | ||
|  |       lx++; | ||
|  | 
 | ||
|  |       if (dist === 0) { | ||
|  |         send_code(s, lc, ltree); /* send a literal byte */ | ||
|  |         //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | ||
|  |       } else { | ||
|  |         /* Here, lc is the match length - MIN_MATCH */ | ||
|  |         code = _length_code[lc]; | ||
|  |         send_code(s, code + LITERALS + 1, ltree); /* send the length code */ | ||
|  |         extra = extra_lbits[code]; | ||
|  |         if (extra !== 0) { | ||
|  |           lc -= base_length[code]; | ||
|  |           send_bits(s, lc, extra);       /* send the extra length bits */ | ||
|  |         } | ||
|  |         dist--; /* dist is now the match distance - 1 */ | ||
|  |         code = d_code(dist); | ||
|  |         //Assert (code < D_CODES, "bad d_code");
 | ||
|  | 
 | ||
|  |         send_code(s, code, dtree);       /* send the distance code */ | ||
|  |         extra = extra_dbits[code]; | ||
|  |         if (extra !== 0) { | ||
|  |           dist -= base_dist[code]; | ||
|  |           send_bits(s, dist, extra);   /* send the extra distance bits */ | ||
|  |         } | ||
|  |       } /* literal or match pair ? */ | ||
|  | 
 | ||
|  |       /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
|  |       //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 | ||
|  |       //       "pendingBuf overflow");
 | ||
|  | 
 | ||
|  |     } while (lx < s.last_lit); | ||
|  |   } | ||
|  | 
 | ||
|  |   send_code(s, END_BLOCK, ltree); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
|  |  * Update the total bit length for the current block. | ||
|  |  * IN assertion: the field freq is set for all tree elements. | ||
|  |  * OUT assertions: the fields len and code are set to the optimal bit length | ||
|  |  *     and corresponding code. The length opt_len is updated; static_len is | ||
|  |  *     also updated if stree is not null. The field max_code is set. | ||
|  |  */ | ||
|  | function build_tree(s, desc) | ||
|  | //    deflate_state *s;
 | ||
|  | //    tree_desc *desc; /* the tree descriptor */
 | ||
|  | { | ||
|  |   var tree     = desc.dyn_tree; | ||
|  |   var stree    = desc.stat_desc.static_tree; | ||
|  |   var has_stree = desc.stat_desc.has_stree; | ||
|  |   var elems    = desc.stat_desc.elems; | ||
|  |   var n, m;          /* iterate over heap elements */ | ||
|  |   var max_code = -1; /* largest code with non zero frequency */ | ||
|  |   var node;          /* new node being created */ | ||
|  | 
 | ||
|  |   /* Construct the initial heap, with least frequent element in | ||
|  |    * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
|  |    * heap[0] is not used. | ||
|  |    */ | ||
|  |   s.heap_len = 0; | ||
|  |   s.heap_max = HEAP_SIZE; | ||
|  | 
 | ||
|  |   for (n = 0; n < elems; n++) { | ||
|  |     if (tree[n * 2]/*.Freq*/ !== 0) { | ||
|  |       s.heap[++s.heap_len] = max_code = n; | ||
|  |       s.depth[n] = 0; | ||
|  | 
 | ||
|  |     } else { | ||
|  |       tree[n * 2 + 1]/*.Len*/ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* The pkzip format requires that at least one distance code exists, | ||
|  |    * and that at least one bit should be sent even if there is only one | ||
|  |    * possible code. So to avoid special checks later on we force at least | ||
|  |    * two codes of non zero frequency. | ||
|  |    */ | ||
|  |   while (s.heap_len < 2) { | ||
|  |     node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); | ||
|  |     tree[node * 2]/*.Freq*/ = 1; | ||
|  |     s.depth[node] = 0; | ||
|  |     s.opt_len--; | ||
|  | 
 | ||
|  |     if (has_stree) { | ||
|  |       s.static_len -= stree[node * 2 + 1]/*.Len*/; | ||
|  |     } | ||
|  |     /* node is 0 or 1 so it does not have extra bits */ | ||
|  |   } | ||
|  |   desc.max_code = max_code; | ||
|  | 
 | ||
|  |   /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
|  |    * establish sub-heaps of increasing lengths: | ||
|  |    */ | ||
|  |   for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } | ||
|  | 
 | ||
|  |   /* Construct the Huffman tree by repeatedly combining the least two | ||
|  |    * frequent nodes. | ||
|  |    */ | ||
|  |   node = elems;              /* next internal node of the tree */ | ||
|  |   do { | ||
|  |     //pqremove(s, tree, n);  /* n = node of least frequency */
 | ||
|  |     /*** pqremove ***/ | ||
|  |     n = s.heap[1/*SMALLEST*/]; | ||
|  |     s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; | ||
|  |     pqdownheap(s, tree, 1/*SMALLEST*/); | ||
|  |     /***/ | ||
|  | 
 | ||
|  |     m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ | ||
|  | 
 | ||
|  |     s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ | ||
|  |     s.heap[--s.heap_max] = m; | ||
|  | 
 | ||
|  |     /* Create a new node father of n and m */ | ||
|  |     tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; | ||
|  |     s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; | ||
|  |     tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; | ||
|  | 
 | ||
|  |     /* and insert the new node in the heap */ | ||
|  |     s.heap[1/*SMALLEST*/] = node++; | ||
|  |     pqdownheap(s, tree, 1/*SMALLEST*/); | ||
|  | 
 | ||
|  |   } while (s.heap_len >= 2); | ||
|  | 
 | ||
|  |   s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; | ||
|  | 
 | ||
|  |   /* At this point, the fields freq and dad are set. We can now | ||
|  |    * generate the bit lengths. | ||
|  |    */ | ||
|  |   gen_bitlen(s, desc); | ||
|  | 
 | ||
|  |   /* The field len is now set, we can generate the bit codes */ | ||
|  |   gen_codes(tree, max_code, s.bl_count); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Scan a literal or distance tree to determine the frequencies of the codes | ||
|  |  * in the bit length tree. | ||
|  |  */ | ||
|  | function scan_tree(s, tree, max_code) | ||
|  | //    deflate_state *s;
 | ||
|  | //    ct_data *tree;   /* the tree to be scanned */
 | ||
|  | //    int max_code;    /* and its largest code of non zero frequency */
 | ||
|  | { | ||
|  |   var n;                     /* iterates over all tree elements */ | ||
|  |   var prevlen = -1;          /* last emitted length */ | ||
|  |   var curlen;                /* length of current code */ | ||
|  | 
 | ||
|  |   var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | ||
|  | 
 | ||
|  |   var count = 0;             /* repeat count of the current code */ | ||
|  |   var max_count = 7;         /* max repeat count */ | ||
|  |   var min_count = 4;         /* min repeat count */ | ||
|  | 
 | ||
|  |   if (nextlen === 0) { | ||
|  |     max_count = 138; | ||
|  |     min_count = 3; | ||
|  |   } | ||
|  |   tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ | ||
|  | 
 | ||
|  |   for (n = 0; n <= max_code; n++) { | ||
|  |     curlen = nextlen; | ||
|  |     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | ||
|  | 
 | ||
|  |     if (++count < max_count && curlen === nextlen) { | ||
|  |       continue; | ||
|  | 
 | ||
|  |     } else if (count < min_count) { | ||
|  |       s.bl_tree[curlen * 2]/*.Freq*/ += count; | ||
|  | 
 | ||
|  |     } else if (curlen !== 0) { | ||
|  | 
 | ||
|  |       if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } | ||
|  |       s.bl_tree[REP_3_6 * 2]/*.Freq*/++; | ||
|  | 
 | ||
|  |     } else if (count <= 10) { | ||
|  |       s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; | ||
|  | 
 | ||
|  |     } else { | ||
|  |       s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; | ||
|  |     } | ||
|  | 
 | ||
|  |     count = 0; | ||
|  |     prevlen = curlen; | ||
|  | 
 | ||
|  |     if (nextlen === 0) { | ||
|  |       max_count = 138; | ||
|  |       min_count = 3; | ||
|  | 
 | ||
|  |     } else if (curlen === nextlen) { | ||
|  |       max_count = 6; | ||
|  |       min_count = 3; | ||
|  | 
 | ||
|  |     } else { | ||
|  |       max_count = 7; | ||
|  |       min_count = 4; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send a literal or distance tree in compressed form, using the codes in | ||
|  |  * bl_tree. | ||
|  |  */ | ||
|  | function send_tree(s, tree, max_code) | ||
|  | //    deflate_state *s;
 | ||
|  | //    ct_data *tree; /* the tree to be scanned */
 | ||
|  | //    int max_code;       /* and its largest code of non zero frequency */
 | ||
|  | { | ||
|  |   var n;                     /* iterates over all tree elements */ | ||
|  |   var prevlen = -1;          /* last emitted length */ | ||
|  |   var curlen;                /* length of current code */ | ||
|  | 
 | ||
|  |   var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ | ||
|  | 
 | ||
|  |   var count = 0;             /* repeat count of the current code */ | ||
|  |   var max_count = 7;         /* max repeat count */ | ||
|  |   var min_count = 4;         /* min repeat count */ | ||
|  | 
 | ||
|  |   /* tree[max_code+1].Len = -1; */  /* guard already set */ | ||
|  |   if (nextlen === 0) { | ||
|  |     max_count = 138; | ||
|  |     min_count = 3; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (n = 0; n <= max_code; n++) { | ||
|  |     curlen = nextlen; | ||
|  |     nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; | ||
|  | 
 | ||
|  |     if (++count < max_count && curlen === nextlen) { | ||
|  |       continue; | ||
|  | 
 | ||
|  |     } else if (count < min_count) { | ||
|  |       do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); | ||
|  | 
 | ||
|  |     } else if (curlen !== 0) { | ||
|  |       if (curlen !== prevlen) { | ||
|  |         send_code(s, curlen, s.bl_tree); | ||
|  |         count--; | ||
|  |       } | ||
|  |       //Assert(count >= 3 && count <= 6, " 3_6?");
 | ||
|  |       send_code(s, REP_3_6, s.bl_tree); | ||
|  |       send_bits(s, count - 3, 2); | ||
|  | 
 | ||
|  |     } else if (count <= 10) { | ||
|  |       send_code(s, REPZ_3_10, s.bl_tree); | ||
|  |       send_bits(s, count - 3, 3); | ||
|  | 
 | ||
|  |     } else { | ||
|  |       send_code(s, REPZ_11_138, s.bl_tree); | ||
|  |       send_bits(s, count - 11, 7); | ||
|  |     } | ||
|  | 
 | ||
|  |     count = 0; | ||
|  |     prevlen = curlen; | ||
|  |     if (nextlen === 0) { | ||
|  |       max_count = 138; | ||
|  |       min_count = 3; | ||
|  | 
 | ||
|  |     } else if (curlen === nextlen) { | ||
|  |       max_count = 6; | ||
|  |       min_count = 3; | ||
|  | 
 | ||
|  |     } else { | ||
|  |       max_count = 7; | ||
|  |       min_count = 4; | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Construct the Huffman tree for the bit lengths and return the index in | ||
|  |  * bl_order of the last bit length code to send. | ||
|  |  */ | ||
|  | function build_bl_tree(s) { | ||
|  |   var max_blindex;  /* index of last bit length code of non zero freq */ | ||
|  | 
 | ||
|  |   /* Determine the bit length frequencies for literal and distance trees */ | ||
|  |   scan_tree(s, s.dyn_ltree, s.l_desc.max_code); | ||
|  |   scan_tree(s, s.dyn_dtree, s.d_desc.max_code); | ||
|  | 
 | ||
|  |   /* Build the bit length tree: */ | ||
|  |   build_tree(s, s.bl_desc); | ||
|  |   /* opt_len now includes the length of the tree representations, except | ||
|  |    * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /* Determine the number of bit length codes to send. The pkzip format | ||
|  |    * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
|  |    * 3 but the actual value used is 4.) | ||
|  |    */ | ||
|  |   for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { | ||
|  |     if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   /* Update opt_len to include the bit length tree and counts */ | ||
|  |   s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | ||
|  |   //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | ||
|  |   //        s->opt_len, s->static_len));
 | ||
|  | 
 | ||
|  |   return max_blindex; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send the header for a block using dynamic Huffman trees: the counts, the | ||
|  |  * lengths of the bit length codes, the literal tree and the distance tree. | ||
|  |  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
|  |  */ | ||
|  | function send_all_trees(s, lcodes, dcodes, blcodes) | ||
|  | //    deflate_state *s;
 | ||
|  | //    int lcodes, dcodes, blcodes; /* number of codes for each tree */
 | ||
|  | { | ||
|  |   var rank;                    /* index in bl_order */ | ||
|  | 
 | ||
|  |   //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | ||
|  |   //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | ||
|  |   //        "too many codes");
 | ||
|  |   //Tracev((stderr, "\nbl counts: "));
 | ||
|  |   send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ | ||
|  |   send_bits(s, dcodes - 1,   5); | ||
|  |   send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */ | ||
|  |   for (rank = 0; rank < blcodes; rank++) { | ||
|  |     //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | ||
|  |     send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); | ||
|  |   } | ||
|  |   //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 | ||
|  | 
 | ||
|  |   send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ | ||
|  |   //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 | ||
|  | 
 | ||
|  |   send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ | ||
|  |   //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Check if the data type is TEXT or BINARY, using the following algorithm: | ||
|  |  * - TEXT if the two conditions below are satisfied: | ||
|  |  *    a) There are no non-portable control characters belonging to the | ||
|  |  *       "black list" (0..6, 14..25, 28..31). | ||
|  |  *    b) There is at least one printable character belonging to the | ||
|  |  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | ||
|  |  * - BINARY otherwise. | ||
|  |  * - The following partially-portable control characters form a | ||
|  |  *   "gray list" that is ignored in this detection algorithm: | ||
|  |  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | ||
|  |  * IN assertion: the fields Freq of dyn_ltree are set. | ||
|  |  */ | ||
|  | function detect_data_type(s) { | ||
|  |   /* black_mask is the bit mask of black-listed bytes | ||
|  |    * set bits 0..6, 14..25, and 28..31 | ||
|  |    * 0xf3ffc07f = binary 11110011111111111100000001111111 | ||
|  |    */ | ||
|  |   var black_mask = 0xf3ffc07f; | ||
|  |   var n; | ||
|  | 
 | ||
|  |   /* Check for non-textual ("black-listed") bytes. */ | ||
|  |   for (n = 0; n <= 31; n++, black_mask >>>= 1) { | ||
|  |     if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { | ||
|  |       return Z_BINARY; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* Check for textual ("white-listed") bytes. */ | ||
|  |   if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || | ||
|  |       s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { | ||
|  |     return Z_TEXT; | ||
|  |   } | ||
|  |   for (n = 32; n < LITERALS; n++) { | ||
|  |     if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { | ||
|  |       return Z_TEXT; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* There are no "black-listed" or "white-listed" bytes: | ||
|  |    * this stream either is empty or has tolerated ("gray-listed") bytes only. | ||
|  |    */ | ||
|  |   return Z_BINARY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | var static_init_done = false; | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Initialize the tree data structures for a new zlib stream. | ||
|  |  */ | ||
|  | function _tr_init(s) | ||
|  | { | ||
|  | 
 | ||
|  |   if (!static_init_done) { | ||
|  |     tr_static_init(); | ||
|  |     static_init_done = true; | ||
|  |   } | ||
|  | 
 | ||
|  |   s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc); | ||
|  |   s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc); | ||
|  |   s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); | ||
|  | 
 | ||
|  |   s.bi_buf = 0; | ||
|  |   s.bi_valid = 0; | ||
|  | 
 | ||
|  |   /* Initialize the first block of the first file: */ | ||
|  |   init_block(s); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send a stored block | ||
|  |  */ | ||
|  | function _tr_stored_block(s, buf, stored_len, last) | ||
|  | //DeflateState *s;
 | ||
|  | //charf *buf;       /* input block */
 | ||
|  | //ulg stored_len;   /* length of input block */
 | ||
|  | //int last;         /* one if this is the last block for a file */
 | ||
|  | { | ||
|  |   send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */ | ||
|  |   copy_block(s, buf, stored_len, true); /* with header */ | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Send one empty static block to give enough lookahead for inflate. | ||
|  |  * This takes 10 bits, of which 7 may remain in the bit buffer. | ||
|  |  */ | ||
|  | function _tr_align(s) { | ||
|  |   send_bits(s, STATIC_TREES << 1, 3); | ||
|  |   send_code(s, END_BLOCK, static_ltree); | ||
|  |   bi_flush(s); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Determine the best encoding for the current block: dynamic trees, static | ||
|  |  * trees or store, and output the encoded block to the zip file. | ||
|  |  */ | ||
|  | function _tr_flush_block(s, buf, stored_len, last) | ||
|  | //DeflateState *s;
 | ||
|  | //charf *buf;       /* input block, or NULL if too old */
 | ||
|  | //ulg stored_len;   /* length of input block */
 | ||
|  | //int last;         /* one if this is the last block for a file */
 | ||
|  | { | ||
|  |   var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */ | ||
|  |   var max_blindex = 0;        /* index of last bit length code of non zero freq */ | ||
|  | 
 | ||
|  |   /* Build the Huffman trees unless a stored block is forced */ | ||
|  |   if (s.level > 0) { | ||
|  | 
 | ||
|  |     /* Check if the file is binary or text */ | ||
|  |     if (s.strm.data_type === Z_UNKNOWN) { | ||
|  |       s.strm.data_type = detect_data_type(s); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Construct the literal and distance trees */ | ||
|  |     build_tree(s, s.l_desc); | ||
|  |     // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 | ||
|  |     //        s->static_len));
 | ||
|  | 
 | ||
|  |     build_tree(s, s.d_desc); | ||
|  |     // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 | ||
|  |     //        s->static_len));
 | ||
|  |     /* At this point, opt_len and static_len are the total bit lengths of | ||
|  |      * the compressed block data, excluding the tree representations. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* Build the bit length tree for the above two trees, and get the index | ||
|  |      * in bl_order of the last bit length code to send. | ||
|  |      */ | ||
|  |     max_blindex = build_bl_tree(s); | ||
|  | 
 | ||
|  |     /* Determine the best encoding. Compute the block lengths in bytes. */ | ||
|  |     opt_lenb = (s.opt_len + 3 + 7) >>> 3; | ||
|  |     static_lenb = (s.static_len + 3 + 7) >>> 3; | ||
|  | 
 | ||
|  |     // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 | ||
|  |     //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 | ||
|  |     //        s->last_lit));
 | ||
|  | 
 | ||
|  |     if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } | ||
|  | 
 | ||
|  |   } else { | ||
|  |     // Assert(buf != (char*)0, "lost buf");
 | ||
|  |     opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { | ||
|  |     /* 4: two words for the lengths */ | ||
|  | 
 | ||
|  |     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
|  |      * Otherwise we can't have processed more than WSIZE input bytes since | ||
|  |      * the last block flush, because compression would have been | ||
|  |      * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
|  |      * transform a block into a stored block. | ||
|  |      */ | ||
|  |     _tr_stored_block(s, buf, stored_len, last); | ||
|  | 
 | ||
|  |   } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { | ||
|  | 
 | ||
|  |     send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); | ||
|  |     compress_block(s, static_ltree, static_dtree); | ||
|  | 
 | ||
|  |   } else { | ||
|  |     send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); | ||
|  |     send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); | ||
|  |     compress_block(s, s.dyn_ltree, s.dyn_dtree); | ||
|  |   } | ||
|  |   // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 | ||
|  |   /* The above check is made mod 2^32, for files larger than 512 MB | ||
|  |    * and uLong implemented on 32 bits. | ||
|  |    */ | ||
|  |   init_block(s); | ||
|  | 
 | ||
|  |   if (last) { | ||
|  |     bi_windup(s); | ||
|  |   } | ||
|  |   // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 | ||
|  |   //       s->compressed_len-7*last));
 | ||
|  | } | ||
|  | 
 | ||
|  | /* =========================================================================== | ||
|  |  * Save the match info and tally the frequency counts. Return true if | ||
|  |  * the current block must be flushed. | ||
|  |  */ | ||
|  | function _tr_tally(s, dist, lc) | ||
|  | //    deflate_state *s;
 | ||
|  | //    unsigned dist;  /* distance of matched string */
 | ||
|  | //    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 | ||
|  | { | ||
|  |   //var out_length, in_length, dcode;
 | ||
|  | 
 | ||
|  |   s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff; | ||
|  |   s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; | ||
|  | 
 | ||
|  |   s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; | ||
|  |   s.last_lit++; | ||
|  | 
 | ||
|  |   if (dist === 0) { | ||
|  |     /* lc is the unmatched char */ | ||
|  |     s.dyn_ltree[lc * 2]/*.Freq*/++; | ||
|  |   } else { | ||
|  |     s.matches++; | ||
|  |     /* Here, lc is the match length - MIN_MATCH */ | ||
|  |     dist--;             /* dist = match distance - 1 */ | ||
|  |     //Assert((ush)dist < (ush)MAX_DIST(s) &&
 | ||
|  |     //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | ||
|  |     //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 | ||
|  | 
 | ||
|  |     s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; | ||
|  |     s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; | ||
|  |   } | ||
|  | 
 | ||
|  | // (!) This block is disabled in zlib defaults,
 | ||
|  | // don't enable it for binary compatibility
 | ||
|  | 
 | ||
|  | //#ifdef TRUNCATE_BLOCK
 | ||
|  | //  /* Try to guess if it is profitable to stop the current block here */
 | ||
|  | //  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
 | ||
|  | //    /* Compute an upper bound for the compressed length */
 | ||
|  | //    out_length = s.last_lit*8;
 | ||
|  | //    in_length = s.strstart - s.block_start;
 | ||
|  | //
 | ||
|  | //    for (dcode = 0; dcode < D_CODES; dcode++) {
 | ||
|  | //      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
 | ||
|  | //    }
 | ||
|  | //    out_length >>>= 3;
 | ||
|  | //    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 | ||
|  | //    //       s->last_lit, in_length, out_length,
 | ||
|  | //    //       100L - out_length*100L/in_length));
 | ||
|  | //    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
 | ||
|  | //      return true;
 | ||
|  | //    }
 | ||
|  | //  }
 | ||
|  | //#endif
 | ||
|  | 
 | ||
|  |   return (s.last_lit === s.lit_bufsize - 1); | ||
|  |   /* We avoid equality with lit_bufsize because of wraparound at 64K | ||
|  |    * on 16 bit machines and because stored blocks are restricted to | ||
|  |    * 64K-1 bytes. | ||
|  |    */ | ||
|  | } | ||
|  | 
 | ||
|  | exports._tr_init  = _tr_init; | ||
|  | exports._tr_stored_block = _tr_stored_block; | ||
|  | exports._tr_flush_block  = _tr_flush_block; | ||
|  | exports._tr_tally = _tr_tally; | ||
|  | exports._tr_align = _tr_align; |