You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					1950 lines
				
				59 KiB
			
		
		
			
		
	
	
					1950 lines
				
				59 KiB
			| 
								 
											2 years ago
										 
									 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Javascript implementation of basic RSA algorithms.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @author Dave Longley
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2010-2014 Digital Bazaar, Inc.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The only algorithm currently supported for PKI is RSA.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
							 | 
						||
| 
								 | 
							
								 * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
							 | 
						||
| 
								 | 
							
								 * and a subjectPublicKey of type bit string.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
							 | 
						||
| 
								 | 
							
								 * for the algorithm, if any. In the case of RSA, there aren't any.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * SubjectPublicKeyInfo ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   algorithm AlgorithmIdentifier,
							 | 
						||
| 
								 | 
							
								 *   subjectPublicKey BIT STRING
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * AlgorithmIdentifer ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   algorithm OBJECT IDENTIFIER,
							 | 
						||
| 
								 | 
							
								 *   parameters ANY DEFINED BY algorithm OPTIONAL
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * For an RSA public key, the subjectPublicKey is:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * RSAPublicKey ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   modulus            INTEGER,    -- n
							 | 
						||
| 
								 | 
							
								 *   publicExponent     INTEGER     -- e
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * PrivateKeyInfo ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   version                   Version,
							 | 
						||
| 
								 | 
							
								 *   privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
							 | 
						||
| 
								 | 
							
								 *   privateKey                PrivateKey,
							 | 
						||
| 
								 | 
							
								 *   attributes           [0]  IMPLICIT Attributes OPTIONAL
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Version ::= INTEGER
							 | 
						||
| 
								 | 
							
								 * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
							 | 
						||
| 
								 | 
							
								 * PrivateKey ::= OCTET STRING
							 | 
						||
| 
								 | 
							
								 * Attributes ::= SET OF Attribute
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * An RSA private key as the following structure:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * RSAPrivateKey ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   version Version,
							 | 
						||
| 
								 | 
							
								 *   modulus INTEGER, -- n
							 | 
						||
| 
								 | 
							
								 *   publicExponent INTEGER, -- e
							 | 
						||
| 
								 | 
							
								 *   privateExponent INTEGER, -- d
							 | 
						||
| 
								 | 
							
								 *   prime1 INTEGER, -- p
							 | 
						||
| 
								 | 
							
								 *   prime2 INTEGER, -- q
							 | 
						||
| 
								 | 
							
								 *   exponent1 INTEGER, -- d mod (p-1)
							 | 
						||
| 
								 | 
							
								 *   exponent2 INTEGER, -- d mod (q-1)
							 | 
						||
| 
								 | 
							
								 *   coefficient INTEGER -- (inverse of q) mod p
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Version ::= INTEGER
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								var forge = require('./forge');
							 | 
						||
| 
								 | 
							
								require('./asn1');
							 | 
						||
| 
								 | 
							
								require('./jsbn');
							 | 
						||
| 
								 | 
							
								require('./oids');
							 | 
						||
| 
								 | 
							
								require('./pkcs1');
							 | 
						||
| 
								 | 
							
								require('./prime');
							 | 
						||
| 
								 | 
							
								require('./random');
							 | 
						||
| 
								 | 
							
								require('./util');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								if(typeof BigInteger === 'undefined') {
							 | 
						||
| 
								 | 
							
								  var BigInteger = forge.jsbn.BigInteger;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								var _crypto = forge.util.isNodejs ? require('crypto') : null;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// shortcut for asn.1 API
							 | 
						||
| 
								 | 
							
								var asn1 = forge.asn1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// shortcut for util API
							 | 
						||
| 
								 | 
							
								var util = forge.util;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * RSA encryption and decryption, see RFC 2313.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								forge.pki = forge.pki || {};
							 | 
						||
| 
								 | 
							
								module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {};
							 | 
						||
| 
								 | 
							
								var pki = forge.pki;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
							 | 
						||
| 
								 | 
							
								var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// validator for a PrivateKeyInfo structure
							 | 
						||
| 
								 | 
							
								var privateKeyValidator = {
							 | 
						||
| 
								 | 
							
								  // PrivateKeyInfo
							 | 
						||
| 
								 | 
							
								  name: 'PrivateKeyInfo',
							 | 
						||
| 
								 | 
							
								  tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								  type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								  constructed: true,
							 | 
						||
| 
								 | 
							
								  value: [{
							 | 
						||
| 
								 | 
							
								    // Version (INTEGER)
							 | 
						||
| 
								 | 
							
								    name: 'PrivateKeyInfo.version',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyVersion'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // privateKeyAlgorithm
							 | 
						||
| 
								 | 
							
								    name: 'PrivateKeyInfo.privateKeyAlgorithm',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								    constructed: true,
							 | 
						||
| 
								 | 
							
								    value: [{
							 | 
						||
| 
								 | 
							
								      name: 'AlgorithmIdentifier.algorithm',
							 | 
						||
| 
								 | 
							
								      tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								      type: asn1.Type.OID,
							 | 
						||
| 
								 | 
							
								      constructed: false,
							 | 
						||
| 
								 | 
							
								      capture: 'privateKeyOid'
							 | 
						||
| 
								 | 
							
								    }]
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // PrivateKey
							 | 
						||
| 
								 | 
							
								    name: 'PrivateKeyInfo',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.OCTETSTRING,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKey'
							 | 
						||
| 
								 | 
							
								  }]
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// validator for an RSA private key
							 | 
						||
| 
								 | 
							
								var rsaPrivateKeyValidator = {
							 | 
						||
| 
								 | 
							
								  // RSAPrivateKey
							 | 
						||
| 
								 | 
							
								  name: 'RSAPrivateKey',
							 | 
						||
| 
								 | 
							
								  tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								  type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								  constructed: true,
							 | 
						||
| 
								 | 
							
								  value: [{
							 | 
						||
| 
								 | 
							
								    // Version (INTEGER)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.version',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyVersion'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // modulus (n)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.modulus',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyModulus'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // publicExponent (e)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.publicExponent',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyPublicExponent'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // privateExponent (d)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.privateExponent',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyPrivateExponent'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // prime1 (p)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.prime1',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyPrime1'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // prime2 (q)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.prime2',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyPrime2'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // exponent1 (d mod (p-1))
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.exponent1',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyExponent1'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // exponent2 (d mod (q-1))
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.exponent2',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyExponent2'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // coefficient ((inverse of q) mod p)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPrivateKey.coefficient',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'privateKeyCoefficient'
							 | 
						||
| 
								 | 
							
								  }]
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// validator for an RSA public key
							 | 
						||
| 
								 | 
							
								var rsaPublicKeyValidator = {
							 | 
						||
| 
								 | 
							
								  // RSAPublicKey
							 | 
						||
| 
								 | 
							
								  name: 'RSAPublicKey',
							 | 
						||
| 
								 | 
							
								  tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								  type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								  constructed: true,
							 | 
						||
| 
								 | 
							
								  value: [{
							 | 
						||
| 
								 | 
							
								    // modulus (n)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPublicKey.modulus',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'publicKeyModulus'
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // publicExponent (e)
							 | 
						||
| 
								 | 
							
								    name: 'RSAPublicKey.exponent',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.INTEGER,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'publicKeyExponent'
							 | 
						||
| 
								 | 
							
								  }]
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// validator for an SubjectPublicKeyInfo structure
							 | 
						||
| 
								 | 
							
								// Note: Currently only works with an RSA public key
							 | 
						||
| 
								 | 
							
								var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
							 | 
						||
| 
								 | 
							
								  name: 'SubjectPublicKeyInfo',
							 | 
						||
| 
								 | 
							
								  tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								  type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								  constructed: true,
							 | 
						||
| 
								 | 
							
								  captureAsn1: 'subjectPublicKeyInfo',
							 | 
						||
| 
								 | 
							
								  value: [{
							 | 
						||
| 
								 | 
							
								    name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								    constructed: true,
							 | 
						||
| 
								 | 
							
								    value: [{
							 | 
						||
| 
								 | 
							
								      name: 'AlgorithmIdentifier.algorithm',
							 | 
						||
| 
								 | 
							
								      tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								      type: asn1.Type.OID,
							 | 
						||
| 
								 | 
							
								      constructed: false,
							 | 
						||
| 
								 | 
							
								      capture: 'publicKeyOid'
							 | 
						||
| 
								 | 
							
								    }]
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // subjectPublicKey
							 | 
						||
| 
								 | 
							
								    name: 'SubjectPublicKeyInfo.subjectPublicKey',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.BITSTRING,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    value: [{
							 | 
						||
| 
								 | 
							
								      // RSAPublicKey
							 | 
						||
| 
								 | 
							
								      name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
							 | 
						||
| 
								 | 
							
								      tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								      type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								      constructed: true,
							 | 
						||
| 
								 | 
							
								      optional: true,
							 | 
						||
| 
								 | 
							
								      captureAsn1: 'rsaPublicKey'
							 | 
						||
| 
								 | 
							
								    }]
							 | 
						||
| 
								 | 
							
								  }]
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// validator for a DigestInfo structure
							 | 
						||
| 
								 | 
							
								var digestInfoValidator = {
							 | 
						||
| 
								 | 
							
								  name: 'DigestInfo',
							 | 
						||
| 
								 | 
							
								  tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								  type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								  constructed: true,
							 | 
						||
| 
								 | 
							
								  value: [{
							 | 
						||
| 
								 | 
							
								    name: 'DigestInfo.DigestAlgorithm',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.SEQUENCE,
							 | 
						||
| 
								 | 
							
								    constructed: true,
							 | 
						||
| 
								 | 
							
								    value: [{
							 | 
						||
| 
								 | 
							
								      name: 'DigestInfo.DigestAlgorithm.algorithmIdentifier',
							 | 
						||
| 
								 | 
							
								      tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								      type: asn1.Type.OID,
							 | 
						||
| 
								 | 
							
								      constructed: false,
							 | 
						||
| 
								 | 
							
								      capture: 'algorithmIdentifier'
							 | 
						||
| 
								 | 
							
								    }, {
							 | 
						||
| 
								 | 
							
								      // NULL paramters
							 | 
						||
| 
								 | 
							
								      name: 'DigestInfo.DigestAlgorithm.parameters',
							 | 
						||
| 
								 | 
							
								      tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								      type: asn1.Type.NULL,
							 | 
						||
| 
								 | 
							
								      // captured only to check existence for md2 and md5
							 | 
						||
| 
								 | 
							
								      capture: 'parameters',
							 | 
						||
| 
								 | 
							
								      optional: true,
							 | 
						||
| 
								 | 
							
								      constructed: false
							 | 
						||
| 
								 | 
							
								    }]
							 | 
						||
| 
								 | 
							
								  }, {
							 | 
						||
| 
								 | 
							
								    // digest
							 | 
						||
| 
								 | 
							
								    name: 'DigestInfo.digest',
							 | 
						||
| 
								 | 
							
								    tagClass: asn1.Class.UNIVERSAL,
							 | 
						||
| 
								 | 
							
								    type: asn1.Type.OCTETSTRING,
							 | 
						||
| 
								 | 
							
								    constructed: false,
							 | 
						||
| 
								 | 
							
								    capture: 'digest'
							 | 
						||
| 
								 | 
							
								  }]
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Wrap digest in DigestInfo object.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * DigestInfo ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								 *   digestAlgorithm DigestAlgorithmIdentifier,
							 | 
						||
| 
								 | 
							
								 *   digest Digest
							 | 
						||
| 
								 | 
							
								 * }
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
							 | 
						||
| 
								 | 
							
								 * Digest ::= OCTET STRING
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param md the message digest object with the hash to sign.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the encoded message (ready for RSA encrytion)
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								var emsaPkcs1v15encode = function(md) {
							 | 
						||
| 
								 | 
							
								  // get the oid for the algorithm
							 | 
						||
| 
								 | 
							
								  var oid;
							 | 
						||
| 
								 | 
							
								  if(md.algorithm in pki.oids) {
							 | 
						||
| 
								 | 
							
								    oid = pki.oids[md.algorithm];
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    var error = new Error('Unknown message digest algorithm.');
							 | 
						||
| 
								 | 
							
								    error.algorithm = md.algorithm;
							 | 
						||
| 
								 | 
							
								    throw error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  var oidBytes = asn1.oidToDer(oid).getBytes();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create the digest info
							 | 
						||
| 
								 | 
							
								  var digestInfo = asn1.create(
							 | 
						||
| 
								 | 
							
								    asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
							 | 
						||
| 
								 | 
							
								  var digestAlgorithm = asn1.create(
							 | 
						||
| 
								 | 
							
								    asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
							 | 
						||
| 
								 | 
							
								  digestAlgorithm.value.push(asn1.create(
							 | 
						||
| 
								 | 
							
								    asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
							 | 
						||
| 
								 | 
							
								  digestAlgorithm.value.push(asn1.create(
							 | 
						||
| 
								 | 
							
								    asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
							 | 
						||
| 
								 | 
							
								  var digest = asn1.create(
							 | 
						||
| 
								 | 
							
								    asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
							 | 
						||
| 
								 | 
							
								    false, md.digest().getBytes());
							 | 
						||
| 
								 | 
							
								  digestInfo.value.push(digestAlgorithm);
							 | 
						||
| 
								 | 
							
								  digestInfo.value.push(digest);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // encode digest info
							 | 
						||
| 
								 | 
							
								  return asn1.toDer(digestInfo).getBytes();
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Performs x^c mod n (RSA encryption or decryption operation).
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param x the number to raise and mod.
							 | 
						||
| 
								 | 
							
								 * @param key the key to use.
							 | 
						||
| 
								 | 
							
								 * @param pub true if the key is public, false if private.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the result of x^c mod n.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								var _modPow = function(x, key, pub) {
							 | 
						||
| 
								 | 
							
								  if(pub) {
							 | 
						||
| 
								 | 
							
								    return x.modPow(key.e, key.n);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if(!key.p || !key.q) {
							 | 
						||
| 
								 | 
							
								    // allow calculation without CRT params (slow)
							 | 
						||
| 
								 | 
							
								    return x.modPow(key.d, key.n);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // pre-compute dP, dQ, and qInv if necessary
							 | 
						||
| 
								 | 
							
								  if(!key.dP) {
							 | 
						||
| 
								 | 
							
								    key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if(!key.dQ) {
							 | 
						||
| 
								 | 
							
								    key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if(!key.qInv) {
							 | 
						||
| 
								 | 
							
								    key.qInv = key.q.modInverse(key.p);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* Chinese remainder theorem (CRT) states:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Suppose n1, n2, ..., nk are positive integers which are pairwise
							 | 
						||
| 
								 | 
							
								    coprime (n1 and n2 have no common factors other than 1). For any
							 | 
						||
| 
								 | 
							
								    integers x1, x2, ..., xk there exists an integer x solving the
							 | 
						||
| 
								 | 
							
								    system of simultaneous congruences (where ~= means modularly
							 | 
						||
| 
								 | 
							
								    congruent so a ~= b mod n means a mod n = b mod n):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x ~= x1 mod n1
							 | 
						||
| 
								 | 
							
								    x ~= x2 mod n2
							 | 
						||
| 
								 | 
							
								    ...
							 | 
						||
| 
								 | 
							
								    x ~= xk mod nk
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This system of congruences has a single simultaneous solution x
							 | 
						||
| 
								 | 
							
								    between 0 and n - 1. Furthermore, each xk solution and x itself
							 | 
						||
| 
								 | 
							
								    is congruent modulo the product n = n1*n2*...*nk.
							 | 
						||
| 
								 | 
							
								    So x1 mod n = x2 mod n = xk mod n = x mod n.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The single simultaneous solution x can be solved with the following
							 | 
						||
| 
								 | 
							
								    equation:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Where x is less than n, xi = x mod ni.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    For RSA we are only concerned with k = 2. The modulus n = pq, where
							 | 
						||
| 
								 | 
							
								    p and q are coprime. The RSA decryption algorithm is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = x^d mod n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Given the above:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x1 = x^d mod p
							 | 
						||
| 
								 | 
							
								    r1 = n/p = q
							 | 
						||
| 
								 | 
							
								    s1 = q^-1 mod p
							 | 
						||
| 
								 | 
							
								    x2 = x^d mod q
							 | 
						||
| 
								 | 
							
								    r2 = n/q = p
							 | 
						||
| 
								 | 
							
								    s2 = p^-1 mod q
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    So y = (x1r1s1 + x2r2s2) mod n
							 | 
						||
| 
								 | 
							
								         = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    According to Fermat's Little Theorem, if the modulus P is prime,
							 | 
						||
| 
								 | 
							
								    for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
							 | 
						||
| 
								 | 
							
								    Since A is not divisible by P it follows that if:
							 | 
						||
| 
								 | 
							
								    N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
							 | 
						||
| 
								 | 
							
								    to calculate). In order to calculate x^d mod p more quickly the
							 | 
						||
| 
								 | 
							
								    exponent d mod (p - 1) is stored in the RSA private key (the same
							 | 
						||
| 
								 | 
							
								    is done for x^d mod q). These values are referred to as dP and dQ
							 | 
						||
| 
								 | 
							
								    respectively. Therefore we now have:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Since we'll be reducing x^dP by modulo p (same for q) we can also
							 | 
						||
| 
								 | 
							
								    reduce x by p (and q respectively) before hand. Therefore, let
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    xp = ((x mod p)^dP mod p), and
							 | 
						||
| 
								 | 
							
								    xq = ((x mod q)^dQ mod q), yielding:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    This can be further reduced to a simple algorithm that only
							 | 
						||
| 
								 | 
							
								    requires 1 inverse (the q inverse is used) to be used and stored.
							 | 
						||
| 
								 | 
							
								    The algorithm is called Garner's algorithm. If qInv is the
							 | 
						||
| 
								 | 
							
								    inverse of q, we simply calculate:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    y = (qInv*(xp - xq) mod p) * q + xq
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    However, there are two further complications. First, we need to
							 | 
						||
| 
								 | 
							
								    ensure that xp > xq to prevent signed BigIntegers from being used
							 | 
						||
| 
								 | 
							
								    so we add p until this is true (since we will be mod'ing with
							 | 
						||
| 
								 | 
							
								    p anyway). Then, there is a known timing attack on algorithms
							 | 
						||
| 
								 | 
							
								    using the CRT. To mitigate this risk, "cryptographic blinding"
							 | 
						||
| 
								 | 
							
								    should be used. This requires simply generating a random number r
							 | 
						||
| 
								 | 
							
								    between 0 and n-1 and its inverse and multiplying x by r^e before
							 | 
						||
| 
								 | 
							
								    calculating y and then multiplying y by r^-1 afterwards. Note that
							 | 
						||
| 
								 | 
							
								    r must be coprime with n (gcd(r, n) === 1) in order to have an
							 | 
						||
| 
								 | 
							
								    inverse.
							 | 
						||
| 
								 | 
							
								  */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // cryptographic blinding
							 | 
						||
| 
								 | 
							
								  var r;
							 | 
						||
| 
								 | 
							
								  do {
							 | 
						||
| 
								 | 
							
								    r = new BigInteger(
							 | 
						||
| 
								 | 
							
								      forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
							 | 
						||
| 
								 | 
							
								      16);
							 | 
						||
| 
								 | 
							
								  } while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE));
							 | 
						||
| 
								 | 
							
								  x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // calculate xp and xq
							 | 
						||
| 
								 | 
							
								  var xp = x.mod(key.p).modPow(key.dP, key.p);
							 | 
						||
| 
								 | 
							
								  var xq = x.mod(key.q).modPow(key.dQ, key.q);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // xp must be larger than xq to avoid signed bit usage
							 | 
						||
| 
								 | 
							
								  while(xp.compareTo(xq) < 0) {
							 | 
						||
| 
								 | 
							
								    xp = xp.add(key.p);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // do last step
							 | 
						||
| 
								 | 
							
								  var y = xp.subtract(xq)
							 | 
						||
| 
								 | 
							
								    .multiply(key.qInv).mod(key.p)
							 | 
						||
| 
								 | 
							
								    .multiply(key.q).add(xq);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // remove effect of random for cryptographic blinding
							 | 
						||
| 
								 | 
							
								  y = y.multiply(r.modInverse(key.n)).mod(key.n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return y;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
							 | 
						||
| 
								 | 
							
								 * 'encrypt' on a public key object instead.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Performs RSA encryption.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The parameter bt controls whether to put padding bytes before the
							 | 
						||
| 
								 | 
							
								 * message passed in. Set bt to either true or false to disable padding
							 | 
						||
| 
								 | 
							
								 * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
							 | 
						||
| 
								 | 
							
								 * signaling whether the encryption operation is a public key operation
							 | 
						||
| 
								 | 
							
								 * (i.e. encrypting data) or not, i.e. private key operation (data signing).
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
							 | 
						||
| 
								 | 
							
								 * (for signing) or 0x02 (for encryption). The key operation mode (private
							 | 
						||
| 
								 | 
							
								 * or public) is derived from this flag in that case).
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param m the message to encrypt as a byte string.
							 | 
						||
| 
								 | 
							
								 * @param key the RSA key to use.
							 | 
						||
| 
								 | 
							
								 * @param bt for PKCS#1 v1.5 padding, the block type to use
							 | 
						||
| 
								 | 
							
								 *   (0x01 for private key, 0x02 for public),
							 | 
						||
| 
								 | 
							
								 *   to disable padding: true = public key, false = private key.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the encrypted bytes as a string.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.rsa.encrypt = function(m, key, bt) {
							 | 
						||
| 
								 | 
							
								  var pub = bt;
							 | 
						||
| 
								 | 
							
								  var eb;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // get the length of the modulus in bytes
							 | 
						||
| 
								 | 
							
								  var k = Math.ceil(key.n.bitLength() / 8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if(bt !== false && bt !== true) {
							 | 
						||
| 
								 | 
							
								    // legacy, default to PKCS#1 v1.5 padding
							 | 
						||
| 
								 | 
							
								    pub = (bt === 0x02);
							 | 
						||
| 
								 | 
							
								    eb = _encodePkcs1_v1_5(m, key, bt);
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    eb = forge.util.createBuffer();
							 | 
						||
| 
								 | 
							
								    eb.putBytes(m);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // load encryption block as big integer 'x'
							 | 
						||
| 
								 | 
							
								  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
							 | 
						||
| 
								 | 
							
								  var x = new BigInteger(eb.toHex(), 16);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // do RSA encryption
							 | 
						||
| 
								 | 
							
								  var y = _modPow(x, key, pub);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // convert y into the encrypted data byte string, if y is shorter in
							 | 
						||
| 
								 | 
							
								  // bytes than k, then prepend zero bytes to fill up ed
							 | 
						||
| 
								 | 
							
								  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
							 | 
						||
| 
								 | 
							
								  var yhex = y.toString(16);
							 | 
						||
| 
								 | 
							
								  var ed = forge.util.createBuffer();
							 | 
						||
| 
								 | 
							
								  var zeros = k - Math.ceil(yhex.length / 2);
							 | 
						||
| 
								 | 
							
								  while(zeros > 0) {
							 | 
						||
| 
								 | 
							
								    ed.putByte(0x00);
							 | 
						||
| 
								 | 
							
								    --zeros;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  ed.putBytes(forge.util.hexToBytes(yhex));
							 | 
						||
| 
								 | 
							
								  return ed.getBytes();
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
							 | 
						||
| 
								 | 
							
								 * 'verify' on a public key object instead.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Performs RSA decryption.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The parameter ml controls whether to apply PKCS#1 v1.5 padding
							 | 
						||
| 
								 | 
							
								 * or not.  Set ml = false to disable padding removal completely
							 | 
						||
| 
								 | 
							
								 * (in order to handle e.g. EMSA-PSS later on) and simply pass back
							 | 
						||
| 
								 | 
							
								 * the RSA encryption block.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param ed the encrypted data to decrypt in as a byte string.
							 | 
						||
| 
								 | 
							
								 * @param key the RSA key to use.
							 | 
						||
| 
								 | 
							
								 * @param pub true for a public key operation, false for private.
							 | 
						||
| 
								 | 
							
								 * @param ml the message length, if known, false to disable padding.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the decrypted message as a byte string.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.rsa.decrypt = function(ed, key, pub, ml) {
							 | 
						||
| 
								 | 
							
								  // get the length of the modulus in bytes
							 | 
						||
| 
								 | 
							
								  var k = Math.ceil(key.n.bitLength() / 8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // error if the length of the encrypted data ED is not k
							 | 
						||
| 
								 | 
							
								  if(ed.length !== k) {
							 | 
						||
| 
								 | 
							
								    var error = new Error('Encrypted message length is invalid.');
							 | 
						||
| 
								 | 
							
								    error.length = ed.length;
							 | 
						||
| 
								 | 
							
								    error.expected = k;
							 | 
						||
| 
								 | 
							
								    throw error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // convert encrypted data into a big integer
							 | 
						||
| 
								 | 
							
								  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
							 | 
						||
| 
								 | 
							
								  var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // y must be less than the modulus or it wasn't the result of
							 | 
						||
| 
								 | 
							
								  // a previous mod operation (encryption) using that modulus
							 | 
						||
| 
								 | 
							
								  if(y.compareTo(key.n) >= 0) {
							 | 
						||
| 
								 | 
							
								    throw new Error('Encrypted message is invalid.');
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // do RSA decryption
							 | 
						||
| 
								 | 
							
								  var x = _modPow(y, key, pub);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create the encryption block, if x is shorter in bytes than k, then
							 | 
						||
| 
								 | 
							
								  // prepend zero bytes to fill up eb
							 | 
						||
| 
								 | 
							
								  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
							 | 
						||
| 
								 | 
							
								  var xhex = x.toString(16);
							 | 
						||
| 
								 | 
							
								  var eb = forge.util.createBuffer();
							 | 
						||
| 
								 | 
							
								  var zeros = k - Math.ceil(xhex.length / 2);
							 | 
						||
| 
								 | 
							
								  while(zeros > 0) {
							 | 
						||
| 
								 | 
							
								    eb.putByte(0x00);
							 | 
						||
| 
								 | 
							
								    --zeros;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  eb.putBytes(forge.util.hexToBytes(xhex));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if(ml !== false) {
							 | 
						||
| 
								 | 
							
								    // legacy, default to PKCS#1 v1.5 padding
							 | 
						||
| 
								 | 
							
								    return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // return message
							 | 
						||
| 
								 | 
							
								  return eb.getBytes();
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Creates an RSA key-pair generation state object. It is used to allow
							 | 
						||
| 
								 | 
							
								 * key-generation to be performed in steps. It also allows for a UI to
							 | 
						||
| 
								 | 
							
								 * display progress updates.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param bits the size for the private key in bits, defaults to 2048.
							 | 
						||
| 
								 | 
							
								 * @param e the public exponent to use, defaults to 65537 (0x10001).
							 | 
						||
| 
								 | 
							
								 * @param [options] the options to use.
							 | 
						||
| 
								 | 
							
								 *          prng a custom crypto-secure pseudo-random number generator to use,
							 | 
						||
| 
								 | 
							
								 *            that must define "getBytesSync".
							 | 
						||
| 
								 | 
							
								 *          algorithm the algorithm to use (default: 'PRIMEINC').
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the state object to use to generate the key-pair.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
							 | 
						||
| 
								 | 
							
								  // TODO: migrate step-based prime generation code to forge.prime
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // set default bits
							 | 
						||
| 
								 | 
							
								  if(typeof(bits) === 'string') {
							 | 
						||
| 
								 | 
							
								    bits = parseInt(bits, 10);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  bits = bits || 2048;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create prng with api that matches BigInteger secure random
							 | 
						||
| 
								 | 
							
								  options = options || {};
							 | 
						||
| 
								 | 
							
								  var prng = options.prng || forge.random;
							 | 
						||
| 
								 | 
							
								  var rng = {
							 | 
						||
| 
								 | 
							
								    // x is an array to fill with bytes
							 | 
						||
| 
								 | 
							
								    nextBytes: function(x) {
							 | 
						||
| 
								 | 
							
								      var b = prng.getBytesSync(x.length);
							 | 
						||
| 
								 | 
							
								      for(var i = 0; i < x.length; ++i) {
							 | 
						||
| 
								 | 
							
								        x[i] = b.charCodeAt(i);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  var algorithm = options.algorithm || 'PRIMEINC';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create PRIMEINC algorithm state
							 | 
						||
| 
								 | 
							
								  var rval;
							 | 
						||
| 
								 | 
							
								  if(algorithm === 'PRIMEINC') {
							 | 
						||
| 
								 | 
							
								    rval = {
							 | 
						||
| 
								 | 
							
								      algorithm: algorithm,
							 | 
						||
| 
								 | 
							
								      state: 0,
							 | 
						||
| 
								 | 
							
								      bits: bits,
							 | 
						||
| 
								 | 
							
								      rng: rng,
							 | 
						||
| 
								 | 
							
								      eInt: e || 65537,
							 | 
						||
| 
								 | 
							
								      e: new BigInteger(null),
							 | 
						||
| 
								 | 
							
								      p: null,
							 | 
						||
| 
								 | 
							
								      q: null,
							 | 
						||
| 
								 | 
							
								      qBits: bits >> 1,
							 | 
						||
| 
								 | 
							
								      pBits: bits - (bits >> 1),
							 | 
						||
| 
								 | 
							
								      pqState: 0,
							 | 
						||
| 
								 | 
							
								      num: null,
							 | 
						||
| 
								 | 
							
								      keys: null
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								    rval.e.fromInt(rval.eInt);
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    throw new Error('Invalid key generation algorithm: ' + algorithm);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return rval;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Attempts to runs the key-generation algorithm for at most n seconds
							 | 
						||
| 
								 | 
							
								 * (approximately) using the given state. When key-generation has completed,
							 | 
						||
| 
								 | 
							
								 * the keys will be stored in state.keys.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * To use this function to update a UI while generating a key or to prevent
							 | 
						||
| 
								 | 
							
								 * causing browser lockups/warnings, set "n" to a value other than 0. A
							 | 
						||
| 
								 | 
							
								 * simple pattern for generating a key and showing a progress indicator is:
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * var state = pki.rsa.createKeyPairGenerationState(2048);
							 | 
						||
| 
								 | 
							
								 * var step = function() {
							 | 
						||
| 
								 | 
							
								 *   // step key-generation, run algorithm for 100 ms, repeat
							 | 
						||
| 
								 | 
							
								 *   if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
							 | 
						||
| 
								 | 
							
								 *     setTimeout(step, 1);
							 | 
						||
| 
								 | 
							
								 *   } else {
							 | 
						||
| 
								 | 
							
								 *     // key-generation complete
							 | 
						||
| 
								 | 
							
								 *     // TODO: turn off progress indicator here
							 | 
						||
| 
								 | 
							
								 *     // TODO: use the generated key-pair in "state.keys"
							 | 
						||
| 
								 | 
							
								 *   }
							 | 
						||
| 
								 | 
							
								 * };
							 | 
						||
| 
								 | 
							
								 * // TODO: turn on progress indicator here
							 | 
						||
| 
								 | 
							
								 * setTimeout(step, 0);
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param state the state to use.
							 | 
						||
| 
								 | 
							
								 * @param n the maximum number of milliseconds to run the algorithm for, 0
							 | 
						||
| 
								 | 
							
								 *          to run the algorithm to completion.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return true if the key-generation completed, false if not.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.rsa.stepKeyPairGenerationState = function(state, n) {
							 | 
						||
| 
								 | 
							
								  // set default algorithm if not set
							 | 
						||
| 
								 | 
							
								  if(!('algorithm' in state)) {
							 | 
						||
| 
								 | 
							
								    state.algorithm = 'PRIMEINC';
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // TODO: migrate step-based prime generation code to forge.prime
							 | 
						||
| 
								 | 
							
								  // TODO: abstract as PRIMEINC algorithm
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
							 | 
						||
| 
								 | 
							
								  // with some minor optimizations and designed to run in steps
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // local state vars
							 | 
						||
| 
								 | 
							
								  var THIRTY = new BigInteger(null);
							 | 
						||
| 
								 | 
							
								  THIRTY.fromInt(30);
							 | 
						||
| 
								 | 
							
								  var deltaIdx = 0;
							 | 
						||
| 
								 | 
							
								  var op_or = function(x, y) {return x | y;};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // keep stepping until time limit is reached or done
							 | 
						||
| 
								 | 
							
								  var t1 = +new Date();
							 | 
						||
| 
								 | 
							
								  var t2;
							 | 
						||
| 
								 | 
							
								  var total = 0;
							 | 
						||
| 
								 | 
							
								  while(state.keys === null && (n <= 0 || total < n)) {
							 | 
						||
| 
								 | 
							
								    // generate p or q
							 | 
						||
| 
								 | 
							
								    if(state.state === 0) {
							 | 
						||
| 
								 | 
							
								      /* Note: All primes are of the form:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        When we generate a random number, we always align it at 30k + 1. Each
							 | 
						||
| 
								 | 
							
								        time the number is determined not to be prime we add to get to the
							 | 
						||
| 
								 | 
							
								        next 'i', eg: if the number was at 30k + 1 we add 6. */
							 | 
						||
| 
								 | 
							
								      var bits = (state.p === null) ? state.pBits : state.qBits;
							 | 
						||
| 
								 | 
							
								      var bits1 = bits - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // get a random number
							 | 
						||
| 
								 | 
							
								      if(state.pqState === 0) {
							 | 
						||
| 
								 | 
							
								        state.num = new BigInteger(bits, state.rng);
							 | 
						||
| 
								 | 
							
								        // force MSB set
							 | 
						||
| 
								 | 
							
								        if(!state.num.testBit(bits1)) {
							 | 
						||
| 
								 | 
							
								          state.num.bitwiseTo(
							 | 
						||
| 
								 | 
							
								            BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        // align number on 30k+1 boundary
							 | 
						||
| 
								 | 
							
								        state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
							 | 
						||
| 
								 | 
							
								        deltaIdx = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        ++state.pqState;
							 | 
						||
| 
								 | 
							
								      } else if(state.pqState === 1) {
							 | 
						||
| 
								 | 
							
								        // try to make the number a prime
							 | 
						||
| 
								 | 
							
								        if(state.num.bitLength() > bits) {
							 | 
						||
| 
								 | 
							
								          // overflow, try again
							 | 
						||
| 
								 | 
							
								          state.pqState = 0;
							 | 
						||
| 
								 | 
							
								          // do primality test
							 | 
						||
| 
								 | 
							
								        } else if(state.num.isProbablePrime(
							 | 
						||
| 
								 | 
							
								          _getMillerRabinTests(state.num.bitLength()))) {
							 | 
						||
| 
								 | 
							
								          ++state.pqState;
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								          // get next potential prime
							 | 
						||
| 
								 | 
							
								          state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      } else if(state.pqState === 2) {
							 | 
						||
| 
								 | 
							
								        // ensure number is coprime with e
							 | 
						||
| 
								 | 
							
								        state.pqState =
							 | 
						||
| 
								 | 
							
								          (state.num.subtract(BigInteger.ONE).gcd(state.e)
							 | 
						||
| 
								 | 
							
								            .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
							 | 
						||
| 
								 | 
							
								      } else if(state.pqState === 3) {
							 | 
						||
| 
								 | 
							
								        // store p or q
							 | 
						||
| 
								 | 
							
								        state.pqState = 0;
							 | 
						||
| 
								 | 
							
								        if(state.p === null) {
							 | 
						||
| 
								 | 
							
								          state.p = state.num;
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								          state.q = state.num;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        // advance state if both p and q are ready
							 | 
						||
| 
								 | 
							
								        if(state.p !== null && state.q !== null) {
							 | 
						||
| 
								 | 
							
								          ++state.state;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        state.num = null;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else if(state.state === 1) {
							 | 
						||
| 
								 | 
							
								      // ensure p is larger than q (swap them if not)
							 | 
						||
| 
								 | 
							
								      if(state.p.compareTo(state.q) < 0) {
							 | 
						||
| 
								 | 
							
								        state.num = state.p;
							 | 
						||
| 
								 | 
							
								        state.p = state.q;
							 | 
						||
| 
								 | 
							
								        state.q = state.num;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      ++state.state;
							 | 
						||
| 
								 | 
							
								    } else if(state.state === 2) {
							 | 
						||
| 
								 | 
							
								      // compute phi: (p - 1)(q - 1) (Euler's totient function)
							 | 
						||
| 
								 | 
							
								      state.p1 = state.p.subtract(BigInteger.ONE);
							 | 
						||
| 
								 | 
							
								      state.q1 = state.q.subtract(BigInteger.ONE);
							 | 
						||
| 
								 | 
							
								      state.phi = state.p1.multiply(state.q1);
							 | 
						||
| 
								 | 
							
								      ++state.state;
							 | 
						||
| 
								 | 
							
								    } else if(state.state === 3) {
							 | 
						||
| 
								 | 
							
								      // ensure e and phi are coprime
							 | 
						||
| 
								 | 
							
								      if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
							 | 
						||
| 
								 | 
							
								        // phi and e are coprime, advance
							 | 
						||
| 
								 | 
							
								        ++state.state;
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
								        // phi and e aren't coprime, so generate a new p and q
							 | 
						||
| 
								 | 
							
								        state.p = null;
							 | 
						||
| 
								 | 
							
								        state.q = null;
							 | 
						||
| 
								 | 
							
								        state.state = 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else if(state.state === 4) {
							 | 
						||
| 
								 | 
							
								      // create n, ensure n is has the right number of bits
							 | 
						||
| 
								 | 
							
								      state.n = state.p.multiply(state.q);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // ensure n is right number of bits
							 | 
						||
| 
								 | 
							
								      if(state.n.bitLength() === state.bits) {
							 | 
						||
| 
								 | 
							
								        // success, advance
							 | 
						||
| 
								 | 
							
								        ++state.state;
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
								        // failed, get new q
							 | 
						||
| 
								 | 
							
								        state.q = null;
							 | 
						||
| 
								 | 
							
								        state.state = 0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else if(state.state === 5) {
							 | 
						||
| 
								 | 
							
								      // set keys
							 | 
						||
| 
								 | 
							
								      var d = state.e.modInverse(state.phi);
							 | 
						||
| 
								 | 
							
								      state.keys = {
							 | 
						||
| 
								 | 
							
								        privateKey: pki.rsa.setPrivateKey(
							 | 
						||
| 
								 | 
							
								          state.n, state.e, d, state.p, state.q,
							 | 
						||
| 
								 | 
							
								          d.mod(state.p1), d.mod(state.q1),
							 | 
						||
| 
								 | 
							
								          state.q.modInverse(state.p)),
							 | 
						||
| 
								 | 
							
								        publicKey: pki.rsa.setPublicKey(state.n, state.e)
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // update timing
							 | 
						||
| 
								 | 
							
								    t2 = +new Date();
							 | 
						||
| 
								 | 
							
								    total += t2 - t1;
							 | 
						||
| 
								 | 
							
								    t1 = t2;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return state.keys !== null;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Generates an RSA public-private key pair in a single call.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * To generate a key-pair in steps (to allow for progress updates and to
							 | 
						||
| 
								 | 
							
								 * prevent blocking or warnings in slow browsers) then use the key-pair
							 | 
						||
| 
								 | 
							
								 * generation state functions.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * To generate a key-pair asynchronously (either through web-workers, if
							 | 
						||
| 
								 | 
							
								 * available, or by breaking up the work on the main thread), pass a
							 | 
						||
| 
								 | 
							
								 * callback function.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param [bits] the size for the private key in bits, defaults to 2048.
							 | 
						||
| 
								 | 
							
								 * @param [e] the public exponent to use, defaults to 65537.
							 | 
						||
| 
								 | 
							
								 * @param [options] options for key-pair generation, if given then 'bits'
							 | 
						||
| 
								 | 
							
								 *            and 'e' must *not* be given:
							 | 
						||
| 
								 | 
							
								 *          bits the size for the private key in bits, (default: 2048).
							 | 
						||
| 
								 | 
							
								 *          e the public exponent to use, (default: 65537 (0x10001)).
							 | 
						||
| 
								 | 
							
								 *          workerScript the worker script URL.
							 | 
						||
| 
								 | 
							
								 *          workers the number of web workers (if supported) to use,
							 | 
						||
| 
								 | 
							
								 *            (default: 2).
							 | 
						||
| 
								 | 
							
								 *          workLoad the size of the work load, ie: number of possible prime
							 | 
						||
| 
								 | 
							
								 *            numbers for each web worker to check per work assignment,
							 | 
						||
| 
								 | 
							
								 *            (default: 100).
							 | 
						||
| 
								 | 
							
								 *          prng a custom crypto-secure pseudo-random number generator to use,
							 | 
						||
| 
								 | 
							
								 *            that must define "getBytesSync". Disables use of native APIs.
							 | 
						||
| 
								 | 
							
								 *          algorithm the algorithm to use (default: 'PRIMEINC').
							 | 
						||
| 
								 | 
							
								 * @param [callback(err, keypair)] called once the operation completes.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return an object with privateKey and publicKey properties.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.rsa.generateKeyPair = function(bits, e, options, callback) {
							 | 
						||
| 
								 | 
							
								  // (bits), (options), (callback)
							 | 
						||
| 
								 | 
							
								  if(arguments.length === 1) {
							 | 
						||
| 
								 | 
							
								    if(typeof bits === 'object') {
							 | 
						||
| 
								 | 
							
								      options = bits;
							 | 
						||
| 
								 | 
							
								      bits = undefined;
							 | 
						||
| 
								 | 
							
								    } else if(typeof bits === 'function') {
							 | 
						||
| 
								 | 
							
								      callback = bits;
							 | 
						||
| 
								 | 
							
								      bits = undefined;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else if(arguments.length === 2) {
							 | 
						||
| 
								 | 
							
								    // (bits, e), (bits, options), (bits, callback), (options, callback)
							 | 
						||
| 
								 | 
							
								    if(typeof bits === 'number') {
							 | 
						||
| 
								 | 
							
								      if(typeof e === 'function') {
							 | 
						||
| 
								 | 
							
								        callback = e;
							 | 
						||
| 
								 | 
							
								        e = undefined;
							 | 
						||
| 
								 | 
							
								      } else if(typeof e !== 'number') {
							 | 
						||
| 
								 | 
							
								        options = e;
							 | 
						||
| 
								 | 
							
								        e = undefined;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      options = bits;
							 | 
						||
| 
								 | 
							
								      callback = e;
							 | 
						||
| 
								 | 
							
								      bits = undefined;
							 | 
						||
| 
								 | 
							
								      e = undefined;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else if(arguments.length === 3) {
							 | 
						||
| 
								 | 
							
								    // (bits, e, options), (bits, e, callback), (bits, options, callback)
							 | 
						||
| 
								 | 
							
								    if(typeof e === 'number') {
							 | 
						||
| 
								 | 
							
								      if(typeof options === 'function') {
							 | 
						||
| 
								 | 
							
								        callback = options;
							 | 
						||
| 
								 | 
							
								        options = undefined;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      callback = options;
							 | 
						||
| 
								 | 
							
								      options = e;
							 | 
						||
| 
								 | 
							
								      e = undefined;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  options = options || {};
							 | 
						||
| 
								 | 
							
								  if(bits === undefined) {
							 | 
						||
| 
								 | 
							
								    bits = options.bits || 2048;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if(e === undefined) {
							 | 
						||
| 
								 | 
							
								    e = options.e || 0x10001;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // use native code if permitted, available, and parameters are acceptable
							 | 
						||
| 
								 | 
							
								  if(!forge.options.usePureJavaScript && !options.prng &&
							 | 
						||
| 
								 | 
							
								    bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) {
							 | 
						||
| 
								 | 
							
								    if(callback) {
							 | 
						||
| 
								 | 
							
								      // try native async
							 | 
						||
| 
								 | 
							
								      if(_detectNodeCrypto('generateKeyPair')) {
							 | 
						||
| 
								 | 
							
								        return _crypto.generateKeyPair('rsa', {
							 | 
						||
| 
								 | 
							
								          modulusLength: bits,
							 | 
						||
| 
								 | 
							
								          publicExponent: e,
							 | 
						||
| 
								 | 
							
								          publicKeyEncoding: {
							 | 
						||
| 
								 | 
							
								            type: 'spki',
							 | 
						||
| 
								 | 
							
								            format: 'pem'
							 | 
						||
| 
								 | 
							
								          },
							 | 
						||
| 
								 | 
							
								          privateKeyEncoding: {
							 | 
						||
| 
								 | 
							
								            type: 'pkcs8',
							 | 
						||
| 
								 | 
							
								            format: 'pem'
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        }, function(err, pub, priv) {
							 | 
						||
| 
								 | 
							
								          if(err) {
							 | 
						||
| 
								 | 
							
								            return callback(err);
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								          callback(null, {
							 | 
						||
| 
								 | 
							
								            privateKey: pki.privateKeyFromPem(priv),
							 | 
						||
| 
								 | 
							
								            publicKey: pki.publicKeyFromPem(pub)
							 | 
						||
| 
								 | 
							
								          });
							 | 
						||
| 
								 | 
							
								        });
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if(_detectSubtleCrypto('generateKey') &&
							 | 
						||
| 
								 | 
							
								        _detectSubtleCrypto('exportKey')) {
							 | 
						||
| 
								 | 
							
								        // use standard native generateKey
							 | 
						||
| 
								 | 
							
								        return util.globalScope.crypto.subtle.generateKey({
							 | 
						||
| 
								 | 
							
								          name: 'RSASSA-PKCS1-v1_5',
							 | 
						||
| 
								 | 
							
								          modulusLength: bits,
							 | 
						||
| 
								 | 
							
								          publicExponent: _intToUint8Array(e),
							 | 
						||
| 
								 | 
							
								          hash: {name: 'SHA-256'}
							 | 
						||
| 
								 | 
							
								        }, true /* key can be exported*/, ['sign', 'verify'])
							 | 
						||
| 
								 | 
							
								        .then(function(pair) {
							 | 
						||
| 
								 | 
							
								          return util.globalScope.crypto.subtle.exportKey(
							 | 
						||
| 
								 | 
							
								            'pkcs8', pair.privateKey);
							 | 
						||
| 
								 | 
							
								        // avoiding catch(function(err) {...}) to support IE <= 8
							 | 
						||
| 
								 | 
							
								        }).then(undefined, function(err) {
							 | 
						||
| 
								 | 
							
								          callback(err);
							 | 
						||
| 
								 | 
							
								        }).then(function(pkcs8) {
							 | 
						||
| 
								 | 
							
								          if(pkcs8) {
							 | 
						||
| 
								 | 
							
								            var privateKey = pki.privateKeyFromAsn1(
							 | 
						||
| 
								 | 
							
								              asn1.fromDer(forge.util.createBuffer(pkcs8)));
							 | 
						||
| 
								 | 
							
								            callback(null, {
							 | 
						||
| 
								 | 
							
								              privateKey: privateKey,
							 | 
						||
| 
								 | 
							
								              publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
							 | 
						||
| 
								 | 
							
								            });
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        });
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if(_detectSubtleMsCrypto('generateKey') &&
							 | 
						||
| 
								 | 
							
								        _detectSubtleMsCrypto('exportKey')) {
							 | 
						||
| 
								 | 
							
								        var genOp = util.globalScope.msCrypto.subtle.generateKey({
							 | 
						||
| 
								 | 
							
								          name: 'RSASSA-PKCS1-v1_5',
							 | 
						||
| 
								 | 
							
								          modulusLength: bits,
							 | 
						||
| 
								 | 
							
								          publicExponent: _intToUint8Array(e),
							 | 
						||
| 
								 | 
							
								          hash: {name: 'SHA-256'}
							 | 
						||
| 
								 | 
							
								        }, true /* key can be exported*/, ['sign', 'verify']);
							 | 
						||
| 
								 | 
							
								        genOp.oncomplete = function(e) {
							 | 
						||
| 
								 | 
							
								          var pair = e.target.result;
							 | 
						||
| 
								 | 
							
								          var exportOp = util.globalScope.msCrypto.subtle.exportKey(
							 | 
						||
| 
								 | 
							
								            'pkcs8', pair.privateKey);
							 | 
						||
| 
								 | 
							
								          exportOp.oncomplete = function(e) {
							 | 
						||
| 
								 | 
							
								            var pkcs8 = e.target.result;
							 | 
						||
| 
								 | 
							
								            var privateKey = pki.privateKeyFromAsn1(
							 | 
						||
| 
								 | 
							
								              asn1.fromDer(forge.util.createBuffer(pkcs8)));
							 | 
						||
| 
								 | 
							
								            callback(null, {
							 | 
						||
| 
								 | 
							
								              privateKey: privateKey,
							 | 
						||
| 
								 | 
							
								              publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
							 | 
						||
| 
								 | 
							
								            });
							 | 
						||
| 
								 | 
							
								          };
							 | 
						||
| 
								 | 
							
								          exportOp.onerror = function(err) {
							 | 
						||
| 
								 | 
							
								            callback(err);
							 | 
						||
| 
								 | 
							
								          };
							 | 
						||
| 
								 | 
							
								        };
							 | 
						||
| 
								 | 
							
								        genOp.onerror = function(err) {
							 | 
						||
| 
								 | 
							
								          callback(err);
							 | 
						||
| 
								 | 
							
								        };
							 | 
						||
| 
								 | 
							
								        return;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      // try native sync
							 | 
						||
| 
								 | 
							
								      if(_detectNodeCrypto('generateKeyPairSync')) {
							 | 
						||
| 
								 | 
							
								        var keypair = _crypto.generateKeyPairSync('rsa', {
							 | 
						||
| 
								 | 
							
								          modulusLength: bits,
							 | 
						||
| 
								 | 
							
								          publicExponent: e,
							 | 
						||
| 
								 | 
							
								          publicKeyEncoding: {
							 | 
						||
| 
								 | 
							
								            type: 'spki',
							 | 
						||
| 
								 | 
							
								            format: 'pem'
							 | 
						||
| 
								 | 
							
								          },
							 | 
						||
| 
								 | 
							
								          privateKeyEncoding: {
							 | 
						||
| 
								 | 
							
								            type: 'pkcs8',
							 | 
						||
| 
								 | 
							
								            format: 'pem'
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								        });
							 | 
						||
| 
								 | 
							
								        return {
							 | 
						||
| 
								 | 
							
								          privateKey: pki.privateKeyFromPem(keypair.privateKey),
							 | 
						||
| 
								 | 
							
								          publicKey: pki.publicKeyFromPem(keypair.publicKey)
							 | 
						||
| 
								 | 
							
								        };
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // use JavaScript implementation
							 | 
						||
| 
								 | 
							
								  var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
							 | 
						||
| 
								 | 
							
								  if(!callback) {
							 | 
						||
| 
								 | 
							
								    pki.rsa.stepKeyPairGenerationState(state, 0);
							 | 
						||
| 
								 | 
							
								    return state.keys;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  _generateKeyPair(state, options, callback);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Sets an RSA public key from BigIntegers modulus and exponent.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param n the modulus.
							 | 
						||
| 
								 | 
							
								 * @param e the exponent.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the public key.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
							 | 
						||
| 
								 | 
							
								  var key = {
							 | 
						||
| 
								 | 
							
								    n: n,
							 | 
						||
| 
								 | 
							
								    e: e
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   * Encrypts the given data with this public key. Newer applications
							 | 
						||
| 
								 | 
							
								   * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
							 | 
						||
| 
								 | 
							
								   * legacy applications.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @param data the byte string to encrypt.
							 | 
						||
| 
								 | 
							
								   * @param scheme the encryption scheme to use:
							 | 
						||
| 
								 | 
							
								   *          'RSAES-PKCS1-V1_5' (default),
							 | 
						||
| 
								 | 
							
								   *          'RSA-OAEP',
							 | 
						||
| 
								 | 
							
								   *          'RAW', 'NONE', or null to perform raw RSA encryption,
							 | 
						||
| 
								 | 
							
								   *          an object with an 'encode' property set to a function
							 | 
						||
| 
								 | 
							
								   *          with the signature 'function(data, key)' that returns
							 | 
						||
| 
								 | 
							
								   *          a binary-encoded string representing the encoded data.
							 | 
						||
| 
								 | 
							
								   * @param schemeOptions any scheme-specific options.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @return the encrypted byte string.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  key.encrypt = function(data, scheme, schemeOptions) {
							 | 
						||
| 
								 | 
							
								    if(typeof scheme === 'string') {
							 | 
						||
| 
								 | 
							
								      scheme = scheme.toUpperCase();
							 | 
						||
| 
								 | 
							
								    } else if(scheme === undefined) {
							 | 
						||
| 
								 | 
							
								      scheme = 'RSAES-PKCS1-V1_5';
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(scheme === 'RSAES-PKCS1-V1_5') {
							 | 
						||
| 
								 | 
							
								      scheme = {
							 | 
						||
| 
								 | 
							
								        encode: function(m, key, pub) {
							 | 
						||
| 
								 | 
							
								          return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
							 | 
						||
| 
								 | 
							
								      scheme = {
							 | 
						||
| 
								 | 
							
								        encode: function(m, key) {
							 | 
						||
| 
								 | 
							
								          return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
							 | 
						||
| 
								 | 
							
								      scheme = {encode: function(e) {return e;}};
							 | 
						||
| 
								 | 
							
								    } else if(typeof scheme === 'string') {
							 | 
						||
| 
								 | 
							
								      throw new Error('Unsupported encryption scheme: "' + scheme + '".');
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // do scheme-based encoding then rsa encryption
							 | 
						||
| 
								 | 
							
								    var e = scheme.encode(data, key, true);
							 | 
						||
| 
								 | 
							
								    return pki.rsa.encrypt(e, key, true);
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   * Verifies the given signature against the given digest.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * PKCS#1 supports multiple (currently two) signature schemes:
							 | 
						||
| 
								 | 
							
								   * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * By default this implementation uses the "old scheme", i.e.
							 | 
						||
| 
								 | 
							
								   * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
							 | 
						||
| 
								 | 
							
								   * signature is an OCTET STRING that holds a DigestInfo.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * DigestInfo ::= SEQUENCE {
							 | 
						||
| 
								 | 
							
								   *   digestAlgorithm DigestAlgorithmIdentifier,
							 | 
						||
| 
								 | 
							
								   *   digest Digest
							 | 
						||
| 
								 | 
							
								   * }
							 | 
						||
| 
								 | 
							
								   * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
							 | 
						||
| 
								 | 
							
								   * Digest ::= OCTET STRING
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * To perform PSS signature verification, provide an instance
							 | 
						||
| 
								 | 
							
								   * of Forge PSS object as the scheme parameter.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @param digest the message digest hash to compare against the signature,
							 | 
						||
| 
								 | 
							
								   *          as a binary-encoded string.
							 | 
						||
| 
								 | 
							
								   * @param signature the signature to verify, as a binary-encoded string.
							 | 
						||
| 
								 | 
							
								   * @param scheme signature verification scheme to use:
							 | 
						||
| 
								 | 
							
								   *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
							 | 
						||
| 
								 | 
							
								   *          a Forge PSS object for RSASSA-PSS,
							 | 
						||
| 
								 | 
							
								   *          'NONE' or null for none, DigestInfo will not be expected, but
							 | 
						||
| 
								 | 
							
								   *            PKCS#1 v1.5 padding will still be used.
							 | 
						||
| 
								 | 
							
								   * @param options optional verify options
							 | 
						||
| 
								 | 
							
								   *          _parseAllDigestBytes testing flag to control parsing of all
							 | 
						||
| 
								 | 
							
								   *            digest bytes. Unsupported and not for general usage.
							 | 
						||
| 
								 | 
							
								   *            (default: true)
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @return true if the signature was verified, false if not.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  key.verify = function(digest, signature, scheme, options) {
							 | 
						||
| 
								 | 
							
								    if(typeof scheme === 'string') {
							 | 
						||
| 
								 | 
							
								      scheme = scheme.toUpperCase();
							 | 
						||
| 
								 | 
							
								    } else if(scheme === undefined) {
							 | 
						||
| 
								 | 
							
								      scheme = 'RSASSA-PKCS1-V1_5';
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if(options === undefined) {
							 | 
						||
| 
								 | 
							
								      options = {
							 | 
						||
| 
								 | 
							
								        _parseAllDigestBytes: true
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if(!('_parseAllDigestBytes' in options)) {
							 | 
						||
| 
								 | 
							
								      options._parseAllDigestBytes = true;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(scheme === 'RSASSA-PKCS1-V1_5') {
							 | 
						||
| 
								 | 
							
								      scheme = {
							 | 
						||
| 
								 | 
							
								        verify: function(digest, d) {
							 | 
						||
| 
								 | 
							
								          // remove padding
							 | 
						||
| 
								 | 
							
								          d = _decodePkcs1_v1_5(d, key, true);
							 | 
						||
| 
								 | 
							
								          // d is ASN.1 BER-encoded DigestInfo
							 | 
						||
| 
								 | 
							
								          var obj = asn1.fromDer(d, {
							 | 
						||
| 
								 | 
							
								            parseAllBytes: options._parseAllDigestBytes
							 | 
						||
| 
								 | 
							
								          });
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								          // validate DigestInfo
							 | 
						||
| 
								 | 
							
								          var capture = {};
							 | 
						||
| 
								 | 
							
								          var errors = [];
							 | 
						||
| 
								 | 
							
								          if(!asn1.validate(obj, digestInfoValidator, capture, errors)) {
							 | 
						||
| 
								 | 
							
								            var error = new Error(
							 | 
						||
| 
								 | 
							
								              'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' +
							 | 
						||
| 
								 | 
							
								              'DigestInfo value.');
							 | 
						||
| 
								 | 
							
								            error.errors = errors;
							 | 
						||
| 
								 | 
							
								            throw error;
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								          // check hash algorithm identifier
							 | 
						||
| 
								 | 
							
								          // see PKCS1-v1-5DigestAlgorithms in RFC 8017
							 | 
						||
| 
								 | 
							
								          // FIXME: add support to vaidator for strict value choices
							 | 
						||
| 
								 | 
							
								          var oid = asn1.derToOid(capture.algorithmIdentifier);
							 | 
						||
| 
								 | 
							
								          if(!(oid === forge.oids.md2 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.md5 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.sha1 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.sha224 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.sha256 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.sha384 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids.sha512 ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids['sha512-224'] ||
							 | 
						||
| 
								 | 
							
								            oid === forge.oids['sha512-256'])) {
							 | 
						||
| 
								 | 
							
								            var error = new Error(
							 | 
						||
| 
								 | 
							
								              'Unknown RSASSA-PKCS1-v1_5 DigestAlgorithm identifier.');
							 | 
						||
| 
								 | 
							
								            error.oid = oid;
							 | 
						||
| 
								 | 
							
								            throw error;
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								          // special check for md2 and md5 that NULL parameters exist
							 | 
						||
| 
								 | 
							
								          if(oid === forge.oids.md2 || oid === forge.oids.md5) {
							 | 
						||
| 
								 | 
							
								            if(!('parameters' in capture)) {
							 | 
						||
| 
								 | 
							
								              throw new Error(
							 | 
						||
| 
								 | 
							
								                'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' +
							 | 
						||
| 
								 | 
							
								                'DigestInfo value. ' +
							 | 
						||
| 
								 | 
							
								                'Missing algorithm identifer NULL parameters.');
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								          }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								          // compare the given digest to the decrypted one
							 | 
						||
| 
								 | 
							
								          return digest === capture.digest;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
							 | 
						||
| 
								 | 
							
								      scheme = {
							 | 
						||
| 
								 | 
							
								        verify: function(digest, d) {
							 | 
						||
| 
								 | 
							
								          // remove padding
							 | 
						||
| 
								 | 
							
								          d = _decodePkcs1_v1_5(d, key, true);
							 | 
						||
| 
								 | 
							
								          return digest === d;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // do rsa decryption w/o any decoding, then verify -- which does decoding
							 | 
						||
| 
								 | 
							
								    var d = pki.rsa.decrypt(signature, key, true, false);
							 | 
						||
| 
								 | 
							
								    return scheme.verify(digest, d, key.n.bitLength());
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return key;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Sets an RSA private key from BigIntegers modulus, exponent, primes,
							 | 
						||
| 
								 | 
							
								 * prime exponents, and modular multiplicative inverse.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param n the modulus.
							 | 
						||
| 
								 | 
							
								 * @param e the public exponent.
							 | 
						||
| 
								 | 
							
								 * @param d the private exponent ((inverse of e) mod n).
							 | 
						||
| 
								 | 
							
								 * @param p the first prime.
							 | 
						||
| 
								 | 
							
								 * @param q the second prime.
							 | 
						||
| 
								 | 
							
								 * @param dP exponent1 (d mod (p-1)).
							 | 
						||
| 
								 | 
							
								 * @param dQ exponent2 (d mod (q-1)).
							 | 
						||
| 
								 | 
							
								 * @param qInv ((inverse of q) mod p)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the private key.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
							 | 
						||
| 
								 | 
							
								  n, e, d, p, q, dP, dQ, qInv) {
							 | 
						||
| 
								 | 
							
								  var key = {
							 | 
						||
| 
								 | 
							
								    n: n,
							 | 
						||
| 
								 | 
							
								    e: e,
							 | 
						||
| 
								 | 
							
								    d: d,
							 | 
						||
| 
								 | 
							
								    p: p,
							 | 
						||
| 
								 | 
							
								    q: q,
							 | 
						||
| 
								 | 
							
								    dP: dP,
							 | 
						||
| 
								 | 
							
								    dQ: dQ,
							 | 
						||
| 
								 | 
							
								    qInv: qInv
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   * Decrypts the given data with this private key. The decryption scheme
							 | 
						||
| 
								 | 
							
								   * must match the one used to encrypt the data.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @param data the byte string to decrypt.
							 | 
						||
| 
								 | 
							
								   * @param scheme the decryption scheme to use:
							 | 
						||
| 
								 | 
							
								   *          'RSAES-PKCS1-V1_5' (default),
							 | 
						||
| 
								 | 
							
								   *          'RSA-OAEP',
							 | 
						||
| 
								 | 
							
								   *          'RAW', 'NONE', or null to perform raw RSA decryption.
							 | 
						||
| 
								 | 
							
								   * @param schemeOptions any scheme-specific options.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @return the decrypted byte string.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  key.decrypt = function(data, scheme, schemeOptions) {
							 | 
						||
| 
								 | 
							
								    if(typeof scheme === 'string') {
							 | 
						||
| 
								 | 
							
								      scheme = scheme.toUpperCase();
							 | 
						||
| 
								 | 
							
								    } else if(scheme === undefined) {
							 | 
						||
| 
								 | 
							
								      scheme = 'RSAES-PKCS1-V1_5';
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // do rsa decryption w/o any decoding
							 | 
						||
| 
								 | 
							
								    var d = pki.rsa.decrypt(data, key, false, false);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(scheme === 'RSAES-PKCS1-V1_5') {
							 | 
						||
| 
								 | 
							
								      scheme = {decode: _decodePkcs1_v1_5};
							 | 
						||
| 
								 | 
							
								    } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
							 | 
						||
| 
								 | 
							
								      scheme = {
							 | 
						||
| 
								 | 
							
								        decode: function(d, key) {
							 | 
						||
| 
								 | 
							
								          return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      };
							 | 
						||
| 
								 | 
							
								    } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
							 | 
						||
| 
								 | 
							
								      scheme = {decode: function(d) {return d;}};
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      throw new Error('Unsupported encryption scheme: "' + scheme + '".');
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // decode according to scheme
							 | 
						||
| 
								 | 
							
								    return scheme.decode(d, key, false);
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /**
							 | 
						||
| 
								 | 
							
								   * Signs the given digest, producing a signature.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * PKCS#1 supports multiple (currently two) signature schemes:
							 | 
						||
| 
								 | 
							
								   * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * By default this implementation uses the "old scheme", i.e.
							 | 
						||
| 
								 | 
							
								   * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
							 | 
						||
| 
								 | 
							
								   * an instance of Forge PSS object as the scheme parameter.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @param md the message digest object with the hash to sign.
							 | 
						||
| 
								 | 
							
								   * @param scheme the signature scheme to use:
							 | 
						||
| 
								 | 
							
								   *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
							 | 
						||
| 
								 | 
							
								   *          a Forge PSS object for RSASSA-PSS,
							 | 
						||
| 
								 | 
							
								   *          'NONE' or null for none, DigestInfo will not be used but
							 | 
						||
| 
								 | 
							
								   *            PKCS#1 v1.5 padding will still be used.
							 | 
						||
| 
								 | 
							
								   *
							 | 
						||
| 
								 | 
							
								   * @return the signature as a byte string.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  key.sign = function(md, scheme) {
							 | 
						||
| 
								 | 
							
								    /* Note: The internal implementation of RSA operations is being
							 | 
						||
| 
								 | 
							
								      transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
							 | 
						||
| 
								 | 
							
								      code like the use of an encoding block identifier 'bt' will eventually
							 | 
						||
| 
								 | 
							
								      be removed. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // private key operation
							 | 
						||
| 
								 | 
							
								    var bt = false;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(typeof scheme === 'string') {
							 | 
						||
| 
								 | 
							
								      scheme = scheme.toUpperCase();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
							 | 
						||
| 
								 | 
							
								      scheme = {encode: emsaPkcs1v15encode};
							 | 
						||
| 
								 | 
							
								      bt = 0x01;
							 | 
						||
| 
								 | 
							
								    } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
							 | 
						||
| 
								 | 
							
								      scheme = {encode: function() {return md;}};
							 | 
						||
| 
								 | 
							
								      bt = 0x01;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // encode and then encrypt
							 | 
						||
| 
								 | 
							
								    var d = scheme.encode(md, key.n.bitLength());
							 | 
						||
| 
								 | 
							
								    return pki.rsa.encrypt(d, key, bt);
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return key;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param rsaKey the ASN.1 RSAPrivateKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the ASN.1 PrivateKeyInfo.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.wrapRsaPrivateKey = function(rsaKey) {
							 | 
						||
| 
								 | 
							
								  // PrivateKeyInfo
							 | 
						||
| 
								 | 
							
								  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								    // version (0)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      asn1.integerToDer(0).getBytes()),
							 | 
						||
| 
								 | 
							
								    // privateKeyAlgorithm
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								      asn1.create(
							 | 
						||
| 
								 | 
							
								        asn1.Class.UNIVERSAL, asn1.Type.OID, false,
							 | 
						||
| 
								 | 
							
								        asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
							 | 
						||
| 
								 | 
							
								      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
							 | 
						||
| 
								 | 
							
								    ]),
							 | 
						||
| 
								 | 
							
								    // PrivateKey
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
							 | 
						||
| 
								 | 
							
								      asn1.toDer(rsaKey).getBytes())
							 | 
						||
| 
								 | 
							
								  ]);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a private key from an ASN.1 object.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
							 | 
						||
| 
								 | 
							
								 *          RSAPrivateKey or an RSAPrivateKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the private key.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.privateKeyFromAsn1 = function(obj) {
							 | 
						||
| 
								 | 
							
								  // get PrivateKeyInfo
							 | 
						||
| 
								 | 
							
								  var capture = {};
							 | 
						||
| 
								 | 
							
								  var errors = [];
							 | 
						||
| 
								 | 
							
								  if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
							 | 
						||
| 
								 | 
							
								    obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // get RSAPrivateKey
							 | 
						||
| 
								 | 
							
								  capture = {};
							 | 
						||
| 
								 | 
							
								  errors = [];
							 | 
						||
| 
								 | 
							
								  if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
							 | 
						||
| 
								 | 
							
								    var error = new Error('Cannot read private key. ' +
							 | 
						||
| 
								 | 
							
								      'ASN.1 object does not contain an RSAPrivateKey.');
							 | 
						||
| 
								 | 
							
								    error.errors = errors;
							 | 
						||
| 
								 | 
							
								    throw error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Note: Version is currently ignored.
							 | 
						||
| 
								 | 
							
								  // capture.privateKeyVersion
							 | 
						||
| 
								 | 
							
								  // FIXME: inefficient, get a BigInteger that uses byte strings
							 | 
						||
| 
								 | 
							
								  var n, e, d, p, q, dP, dQ, qInv;
							 | 
						||
| 
								 | 
							
								  n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
							 | 
						||
| 
								 | 
							
								  e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
							 | 
						||
| 
								 | 
							
								  d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
							 | 
						||
| 
								 | 
							
								  p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
							 | 
						||
| 
								 | 
							
								  q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
							 | 
						||
| 
								 | 
							
								  dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
							 | 
						||
| 
								 | 
							
								  dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
							 | 
						||
| 
								 | 
							
								  qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // set private key
							 | 
						||
| 
								 | 
							
								  return pki.setRsaPrivateKey(
							 | 
						||
| 
								 | 
							
								    new BigInteger(n, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(e, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(d, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(p, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(q, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(dP, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(dQ, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(qInv, 16));
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a private key to an ASN.1 RSAPrivateKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param key the private key.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the ASN.1 representation of an RSAPrivateKey.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
							 | 
						||
| 
								 | 
							
								  // RSAPrivateKey
							 | 
						||
| 
								 | 
							
								  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								    // version (0 = only 2 primes, 1 multiple primes)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      asn1.integerToDer(0).getBytes()),
							 | 
						||
| 
								 | 
							
								    // modulus (n)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.n)),
							 | 
						||
| 
								 | 
							
								    // publicExponent (e)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.e)),
							 | 
						||
| 
								 | 
							
								    // privateExponent (d)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.d)),
							 | 
						||
| 
								 | 
							
								    // privateKeyPrime1 (p)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.p)),
							 | 
						||
| 
								 | 
							
								    // privateKeyPrime2 (q)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.q)),
							 | 
						||
| 
								 | 
							
								    // privateKeyExponent1 (dP)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.dP)),
							 | 
						||
| 
								 | 
							
								    // privateKeyExponent2 (dQ)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.dQ)),
							 | 
						||
| 
								 | 
							
								    // coefficient (qInv)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.qInv))
							 | 
						||
| 
								 | 
							
								  ]);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the public key.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.publicKeyFromAsn1 = function(obj) {
							 | 
						||
| 
								 | 
							
								  // get SubjectPublicKeyInfo
							 | 
						||
| 
								 | 
							
								  var capture = {};
							 | 
						||
| 
								 | 
							
								  var errors = [];
							 | 
						||
| 
								 | 
							
								  if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
							 | 
						||
| 
								 | 
							
								    // get oid
							 | 
						||
| 
								 | 
							
								    var oid = asn1.derToOid(capture.publicKeyOid);
							 | 
						||
| 
								 | 
							
								    if(oid !== pki.oids.rsaEncryption) {
							 | 
						||
| 
								 | 
							
								      var error = new Error('Cannot read public key. Unknown OID.');
							 | 
						||
| 
								 | 
							
								      error.oid = oid;
							 | 
						||
| 
								 | 
							
								      throw error;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    obj = capture.rsaPublicKey;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // get RSA params
							 | 
						||
| 
								 | 
							
								  errors = [];
							 | 
						||
| 
								 | 
							
								  if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
							 | 
						||
| 
								 | 
							
								    var error = new Error('Cannot read public key. ' +
							 | 
						||
| 
								 | 
							
								      'ASN.1 object does not contain an RSAPublicKey.');
							 | 
						||
| 
								 | 
							
								    error.errors = errors;
							 | 
						||
| 
								 | 
							
								    throw error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // FIXME: inefficient, get a BigInteger that uses byte strings
							 | 
						||
| 
								 | 
							
								  var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
							 | 
						||
| 
								 | 
							
								  var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // set public key
							 | 
						||
| 
								 | 
							
								  return pki.setRsaPublicKey(
							 | 
						||
| 
								 | 
							
								    new BigInteger(n, 16),
							 | 
						||
| 
								 | 
							
								    new BigInteger(e, 16));
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param key the public key.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the asn1 representation of a SubjectPublicKeyInfo.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
							 | 
						||
| 
								 | 
							
								  // SubjectPublicKeyInfo
							 | 
						||
| 
								 | 
							
								  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								    // AlgorithmIdentifier
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								      // algorithm
							 | 
						||
| 
								 | 
							
								      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
							 | 
						||
| 
								 | 
							
								        asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
							 | 
						||
| 
								 | 
							
								      // parameters (null)
							 | 
						||
| 
								 | 
							
								      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
							 | 
						||
| 
								 | 
							
								    ]),
							 | 
						||
| 
								 | 
							
								    // subjectPublicKey
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
							 | 
						||
| 
								 | 
							
								      pki.publicKeyToRSAPublicKey(key)
							 | 
						||
| 
								 | 
							
								    ])
							 | 
						||
| 
								 | 
							
								  ]);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a public key to an ASN.1 RSAPublicKey.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param key the public key.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the asn1 representation of a RSAPublicKey.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								pki.publicKeyToRSAPublicKey = function(key) {
							 | 
						||
| 
								 | 
							
								  // RSAPublicKey
							 | 
						||
| 
								 | 
							
								  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
							 | 
						||
| 
								 | 
							
								    // modulus (n)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.n)),
							 | 
						||
| 
								 | 
							
								    // publicExponent (e)
							 | 
						||
| 
								 | 
							
								    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
							 | 
						||
| 
								 | 
							
								      _bnToBytes(key.e))
							 | 
						||
| 
								 | 
							
								  ]);
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Encodes a message using PKCS#1 v1.5 padding.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param m the message to encode.
							 | 
						||
| 
								 | 
							
								 * @param key the RSA key to use.
							 | 
						||
| 
								 | 
							
								 * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
							 | 
						||
| 
								 | 
							
								 *          (for encryption).
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the padded byte buffer.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _encodePkcs1_v1_5(m, key, bt) {
							 | 
						||
| 
								 | 
							
								  var eb = forge.util.createBuffer();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // get the length of the modulus in bytes
							 | 
						||
| 
								 | 
							
								  var k = Math.ceil(key.n.bitLength() / 8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* use PKCS#1 v1.5 padding */
							 | 
						||
| 
								 | 
							
								  if(m.length > (k - 11)) {
							 | 
						||
| 
								 | 
							
								    var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
							 | 
						||
| 
								 | 
							
								    error.length = m.length;
							 | 
						||
| 
								 | 
							
								    error.max = k - 11;
							 | 
						||
| 
								 | 
							
								    throw error;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* A block type BT, a padding string PS, and the data D shall be
							 | 
						||
| 
								 | 
							
								    formatted into an octet string EB, the encryption block:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    EB = 00 || BT || PS || 00 || D
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The block type BT shall be a single octet indicating the structure of
							 | 
						||
| 
								 | 
							
								    the encryption block. For this version of the document it shall have
							 | 
						||
| 
								 | 
							
								    value 00, 01, or 02. For a private-key operation, the block type
							 | 
						||
| 
								 | 
							
								    shall be 00 or 01. For a public-key operation, it shall be 02.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    The padding string PS shall consist of k-3-||D|| octets. For block
							 | 
						||
| 
								 | 
							
								    type 00, the octets shall have value 00; for block type 01, they
							 | 
						||
| 
								 | 
							
								    shall have value FF; and for block type 02, they shall be
							 | 
						||
| 
								 | 
							
								    pseudorandomly generated and nonzero. This makes the length of the
							 | 
						||
| 
								 | 
							
								    encryption block EB equal to k. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // build the encryption block
							 | 
						||
| 
								 | 
							
								  eb.putByte(0x00);
							 | 
						||
| 
								 | 
							
								  eb.putByte(bt);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create the padding
							 | 
						||
| 
								 | 
							
								  var padNum = k - 3 - m.length;
							 | 
						||
| 
								 | 
							
								  var padByte;
							 | 
						||
| 
								 | 
							
								  // private key op
							 | 
						||
| 
								 | 
							
								  if(bt === 0x00 || bt === 0x01) {
							 | 
						||
| 
								 | 
							
								    padByte = (bt === 0x00) ? 0x00 : 0xFF;
							 | 
						||
| 
								 | 
							
								    for(var i = 0; i < padNum; ++i) {
							 | 
						||
| 
								 | 
							
								      eb.putByte(padByte);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    // public key op
							 | 
						||
| 
								 | 
							
								    // pad with random non-zero values
							 | 
						||
| 
								 | 
							
								    while(padNum > 0) {
							 | 
						||
| 
								 | 
							
								      var numZeros = 0;
							 | 
						||
| 
								 | 
							
								      var padBytes = forge.random.getBytes(padNum);
							 | 
						||
| 
								 | 
							
								      for(var i = 0; i < padNum; ++i) {
							 | 
						||
| 
								 | 
							
								        padByte = padBytes.charCodeAt(i);
							 | 
						||
| 
								 | 
							
								        if(padByte === 0) {
							 | 
						||
| 
								 | 
							
								          ++numZeros;
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								          eb.putByte(padByte);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      padNum = numZeros;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // zero followed by message
							 | 
						||
| 
								 | 
							
								  eb.putByte(0x00);
							 | 
						||
| 
								 | 
							
								  eb.putBytes(m);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return eb;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Decodes a message using PKCS#1 v1.5 padding.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param em the message to decode.
							 | 
						||
| 
								 | 
							
								 * @param key the RSA key to use.
							 | 
						||
| 
								 | 
							
								 * @param pub true if the key is a public key, false if it is private.
							 | 
						||
| 
								 | 
							
								 * @param ml the message length, if specified.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the decoded bytes.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _decodePkcs1_v1_5(em, key, pub, ml) {
							 | 
						||
| 
								 | 
							
								  // get the length of the modulus in bytes
							 | 
						||
| 
								 | 
							
								  var k = Math.ceil(key.n.bitLength() / 8);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* It is an error if any of the following conditions occurs:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    1. The encryption block EB cannot be parsed unambiguously.
							 | 
						||
| 
								 | 
							
								    2. The padding string PS consists of fewer than eight octets
							 | 
						||
| 
								 | 
							
								      or is inconsisent with the block type BT.
							 | 
						||
| 
								 | 
							
								    3. The decryption process is a public-key operation and the block
							 | 
						||
| 
								 | 
							
								      type BT is not 00 or 01, or the decryption process is a
							 | 
						||
| 
								 | 
							
								      private-key operation and the block type is not 02.
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // parse the encryption block
							 | 
						||
| 
								 | 
							
								  var eb = forge.util.createBuffer(em);
							 | 
						||
| 
								 | 
							
								  var first = eb.getByte();
							 | 
						||
| 
								 | 
							
								  var bt = eb.getByte();
							 | 
						||
| 
								 | 
							
								  if(first !== 0x00 ||
							 | 
						||
| 
								 | 
							
								    (pub && bt !== 0x00 && bt !== 0x01) ||
							 | 
						||
| 
								 | 
							
								    (!pub && bt != 0x02) ||
							 | 
						||
| 
								 | 
							
								    (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
							 | 
						||
| 
								 | 
							
								    throw new Error('Encryption block is invalid.');
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  var padNum = 0;
							 | 
						||
| 
								 | 
							
								  if(bt === 0x00) {
							 | 
						||
| 
								 | 
							
								    // check all padding bytes for 0x00
							 | 
						||
| 
								 | 
							
								    padNum = k - 3 - ml;
							 | 
						||
| 
								 | 
							
								    for(var i = 0; i < padNum; ++i) {
							 | 
						||
| 
								 | 
							
								      if(eb.getByte() !== 0x00) {
							 | 
						||
| 
								 | 
							
								        throw new Error('Encryption block is invalid.');
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else if(bt === 0x01) {
							 | 
						||
| 
								 | 
							
								    // find the first byte that isn't 0xFF, should be after all padding
							 | 
						||
| 
								 | 
							
								    padNum = 0;
							 | 
						||
| 
								 | 
							
								    while(eb.length() > 1) {
							 | 
						||
| 
								 | 
							
								      if(eb.getByte() !== 0xFF) {
							 | 
						||
| 
								 | 
							
								        --eb.read;
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      ++padNum;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else if(bt === 0x02) {
							 | 
						||
| 
								 | 
							
								    // look for 0x00 byte
							 | 
						||
| 
								 | 
							
								    padNum = 0;
							 | 
						||
| 
								 | 
							
								    while(eb.length() > 1) {
							 | 
						||
| 
								 | 
							
								      if(eb.getByte() === 0x00) {
							 | 
						||
| 
								 | 
							
								        --eb.read;
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      ++padNum;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // zero must be 0x00 and padNum must be (k - 3 - message length)
							 | 
						||
| 
								 | 
							
								  var zero = eb.getByte();
							 | 
						||
| 
								 | 
							
								  if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
							 | 
						||
| 
								 | 
							
								    throw new Error('Encryption block is invalid.');
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return eb.getBytes();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Runs the key-generation algorithm asynchronously, either in the background
							 | 
						||
| 
								 | 
							
								 * via Web Workers, or using the main thread and setImmediate.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param state the key-pair generation state.
							 | 
						||
| 
								 | 
							
								 * @param [options] options for key-pair generation:
							 | 
						||
| 
								 | 
							
								 *          workerScript the worker script URL.
							 | 
						||
| 
								 | 
							
								 *          workers the number of web workers (if supported) to use,
							 | 
						||
| 
								 | 
							
								 *            (default: 2, -1 to use estimated cores minus one).
							 | 
						||
| 
								 | 
							
								 *          workLoad the size of the work load, ie: number of possible prime
							 | 
						||
| 
								 | 
							
								 *            numbers for each web worker to check per work assignment,
							 | 
						||
| 
								 | 
							
								 *            (default: 100).
							 | 
						||
| 
								 | 
							
								 * @param callback(err, keypair) called once the operation completes.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _generateKeyPair(state, options, callback) {
							 | 
						||
| 
								 | 
							
								  if(typeof options === 'function') {
							 | 
						||
| 
								 | 
							
								    callback = options;
							 | 
						||
| 
								 | 
							
								    options = {};
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  options = options || {};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  var opts = {
							 | 
						||
| 
								 | 
							
								    algorithm: {
							 | 
						||
| 
								 | 
							
								      name: options.algorithm || 'PRIMEINC',
							 | 
						||
| 
								 | 
							
								      options: {
							 | 
						||
| 
								 | 
							
								        workers: options.workers || 2,
							 | 
						||
| 
								 | 
							
								        workLoad: options.workLoad || 100,
							 | 
						||
| 
								 | 
							
								        workerScript: options.workerScript
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								  if('prng' in options) {
							 | 
						||
| 
								 | 
							
								    opts.prng = options.prng;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  generate();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  function generate() {
							 | 
						||
| 
								 | 
							
								    // find p and then q (done in series to simplify)
							 | 
						||
| 
								 | 
							
								    getPrime(state.pBits, function(err, num) {
							 | 
						||
| 
								 | 
							
								      if(err) {
							 | 
						||
| 
								 | 
							
								        return callback(err);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      state.p = num;
							 | 
						||
| 
								 | 
							
								      if(state.q !== null) {
							 | 
						||
| 
								 | 
							
								        return finish(err, state.q);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      getPrime(state.qBits, finish);
							 | 
						||
| 
								 | 
							
								    });
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  function getPrime(bits, callback) {
							 | 
						||
| 
								 | 
							
								    forge.prime.generateProbablePrime(bits, opts, callback);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  function finish(err, num) {
							 | 
						||
| 
								 | 
							
								    if(err) {
							 | 
						||
| 
								 | 
							
								      return callback(err);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // set q
							 | 
						||
| 
								 | 
							
								    state.q = num;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // ensure p is larger than q (swap them if not)
							 | 
						||
| 
								 | 
							
								    if(state.p.compareTo(state.q) < 0) {
							 | 
						||
| 
								 | 
							
								      var tmp = state.p;
							 | 
						||
| 
								 | 
							
								      state.p = state.q;
							 | 
						||
| 
								 | 
							
								      state.q = tmp;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // ensure p is coprime with e
							 | 
						||
| 
								 | 
							
								    if(state.p.subtract(BigInteger.ONE).gcd(state.e)
							 | 
						||
| 
								 | 
							
								      .compareTo(BigInteger.ONE) !== 0) {
							 | 
						||
| 
								 | 
							
								      state.p = null;
							 | 
						||
| 
								 | 
							
								      generate();
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // ensure q is coprime with e
							 | 
						||
| 
								 | 
							
								    if(state.q.subtract(BigInteger.ONE).gcd(state.e)
							 | 
						||
| 
								 | 
							
								      .compareTo(BigInteger.ONE) !== 0) {
							 | 
						||
| 
								 | 
							
								      state.q = null;
							 | 
						||
| 
								 | 
							
								      getPrime(state.qBits, finish);
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // compute phi: (p - 1)(q - 1) (Euler's totient function)
							 | 
						||
| 
								 | 
							
								    state.p1 = state.p.subtract(BigInteger.ONE);
							 | 
						||
| 
								 | 
							
								    state.q1 = state.q.subtract(BigInteger.ONE);
							 | 
						||
| 
								 | 
							
								    state.phi = state.p1.multiply(state.q1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // ensure e and phi are coprime
							 | 
						||
| 
								 | 
							
								    if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
							 | 
						||
| 
								 | 
							
								      // phi and e aren't coprime, so generate a new p and q
							 | 
						||
| 
								 | 
							
								      state.p = state.q = null;
							 | 
						||
| 
								 | 
							
								      generate();
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // create n, ensure n is has the right number of bits
							 | 
						||
| 
								 | 
							
								    state.n = state.p.multiply(state.q);
							 | 
						||
| 
								 | 
							
								    if(state.n.bitLength() !== state.bits) {
							 | 
						||
| 
								 | 
							
								      // failed, get new q
							 | 
						||
| 
								 | 
							
								      state.q = null;
							 | 
						||
| 
								 | 
							
								      getPrime(state.qBits, finish);
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // set keys
							 | 
						||
| 
								 | 
							
								    var d = state.e.modInverse(state.phi);
							 | 
						||
| 
								 | 
							
								    state.keys = {
							 | 
						||
| 
								 | 
							
								      privateKey: pki.rsa.setPrivateKey(
							 | 
						||
| 
								 | 
							
								        state.n, state.e, d, state.p, state.q,
							 | 
						||
| 
								 | 
							
								        d.mod(state.p1), d.mod(state.q1),
							 | 
						||
| 
								 | 
							
								        state.q.modInverse(state.p)),
							 | 
						||
| 
								 | 
							
								      publicKey: pki.rsa.setPublicKey(state.n, state.e)
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    callback(null, state.keys);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Converts a positive BigInteger into 2's-complement big-endian bytes.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param b the big integer to convert.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the bytes.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _bnToBytes(b) {
							 | 
						||
| 
								 | 
							
								  // prepend 0x00 if first byte >= 0x80
							 | 
						||
| 
								 | 
							
								  var hex = b.toString(16);
							 | 
						||
| 
								 | 
							
								  if(hex[0] >= '8') {
							 | 
						||
| 
								 | 
							
								    hex = '00' + hex;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  var bytes = forge.util.hexToBytes(hex);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // ensure integer is minimally-encoded
							 | 
						||
| 
								 | 
							
								  if(bytes.length > 1 &&
							 | 
						||
| 
								 | 
							
								    // leading 0x00 for positive integer
							 | 
						||
| 
								 | 
							
								    ((bytes.charCodeAt(0) === 0 &&
							 | 
						||
| 
								 | 
							
								    (bytes.charCodeAt(1) & 0x80) === 0) ||
							 | 
						||
| 
								 | 
							
								    // leading 0xFF for negative integer
							 | 
						||
| 
								 | 
							
								    (bytes.charCodeAt(0) === 0xFF &&
							 | 
						||
| 
								 | 
							
								    (bytes.charCodeAt(1) & 0x80) === 0x80))) {
							 | 
						||
| 
								 | 
							
								    return bytes.substr(1);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return bytes;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Returns the required number of Miller-Rabin tests to generate a
							 | 
						||
| 
								 | 
							
								 * prime with an error probability of (1/2)^80.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param bits the bit size.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the required number of iterations.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _getMillerRabinTests(bits) {
							 | 
						||
| 
								 | 
							
								  if(bits <= 100) return 27;
							 | 
						||
| 
								 | 
							
								  if(bits <= 150) return 18;
							 | 
						||
| 
								 | 
							
								  if(bits <= 200) return 15;
							 | 
						||
| 
								 | 
							
								  if(bits <= 250) return 12;
							 | 
						||
| 
								 | 
							
								  if(bits <= 300) return 9;
							 | 
						||
| 
								 | 
							
								  if(bits <= 350) return 8;
							 | 
						||
| 
								 | 
							
								  if(bits <= 400) return 7;
							 | 
						||
| 
								 | 
							
								  if(bits <= 500) return 6;
							 | 
						||
| 
								 | 
							
								  if(bits <= 600) return 5;
							 | 
						||
| 
								 | 
							
								  if(bits <= 800) return 4;
							 | 
						||
| 
								 | 
							
								  if(bits <= 1250) return 3;
							 | 
						||
| 
								 | 
							
								  return 2;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Performs feature detection on the Node crypto interface.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param fn the feature (function) to detect.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return true if detected, false if not.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _detectNodeCrypto(fn) {
							 | 
						||
| 
								 | 
							
								  return forge.util.isNodejs && typeof _crypto[fn] === 'function';
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Performs feature detection on the SubtleCrypto interface.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param fn the feature (function) to detect.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return true if detected, false if not.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _detectSubtleCrypto(fn) {
							 | 
						||
| 
								 | 
							
								  return (typeof util.globalScope !== 'undefined' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.crypto === 'object' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.crypto.subtle === 'object' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.crypto.subtle[fn] === 'function');
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Performs feature detection on the deprecated Microsoft Internet Explorer
							 | 
						||
| 
								 | 
							
								 * outdated SubtleCrypto interface. This function should only be used after
							 | 
						||
| 
								 | 
							
								 * checking for the modern, standard SubtleCrypto interface.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param fn the feature (function) to detect.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return true if detected, false if not.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _detectSubtleMsCrypto(fn) {
							 | 
						||
| 
								 | 
							
								  return (typeof util.globalScope !== 'undefined' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.msCrypto === 'object' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.msCrypto.subtle === 'object' &&
							 | 
						||
| 
								 | 
							
								    typeof util.globalScope.msCrypto.subtle[fn] === 'function');
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function _intToUint8Array(x) {
							 | 
						||
| 
								 | 
							
								  var bytes = forge.util.hexToBytes(x.toString(16));
							 | 
						||
| 
								 | 
							
								  var buffer = new Uint8Array(bytes.length);
							 | 
						||
| 
								 | 
							
								  for(var i = 0; i < bytes.length; ++i) {
							 | 
						||
| 
								 | 
							
								    buffer[i] = bytes.charCodeAt(i);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return buffer;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function _privateKeyFromJwk(jwk) {
							 | 
						||
| 
								 | 
							
								  if(jwk.kty !== 'RSA') {
							 | 
						||
| 
								 | 
							
								    throw new Error(
							 | 
						||
| 
								 | 
							
								      'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".');
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return pki.setRsaPrivateKey(
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.n),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.e),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.d),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.p),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.q),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.dp),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.dq),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.qi));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function _publicKeyFromJwk(jwk) {
							 | 
						||
| 
								 | 
							
								  if(jwk.kty !== 'RSA') {
							 | 
						||
| 
								 | 
							
								    throw new Error('Key algorithm must be "RSA".');
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return pki.setRsaPublicKey(
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.n),
							 | 
						||
| 
								 | 
							
								    _base64ToBigInt(jwk.e));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function _base64ToBigInt(b64) {
							 | 
						||
| 
								 | 
							
								  return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16);
							 | 
						||
| 
								 | 
							
								}
							 |