You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					1358 lines
				
				41 KiB
			
		
		
			
		
	
	
					1358 lines
				
				41 KiB
			| 
											3 years ago
										 | (function(){ | ||
|  | 
 | ||
|  |     // Copyright (c) 2005  Tom Wu
 | ||
|  |     // All Rights Reserved.
 | ||
|  |     // See "LICENSE" for details.
 | ||
|  | 
 | ||
|  |     // Basic JavaScript BN library - subset useful for RSA encryption.
 | ||
|  | 
 | ||
|  |     // Bits per digit
 | ||
|  |     var dbits; | ||
|  | 
 | ||
|  |     // JavaScript engine analysis
 | ||
|  |     var canary = 0xdeadbeefcafe; | ||
|  |     var j_lm = ((canary&0xffffff)==0xefcafe); | ||
|  | 
 | ||
|  |     // (public) Constructor
 | ||
|  |     function BigInteger(a,b,c) { | ||
|  |       if(a != null) | ||
|  |         if("number" == typeof a) this.fromNumber(a,b,c); | ||
|  |         else if(b == null && "string" != typeof a) this.fromString(a,256); | ||
|  |         else this.fromString(a,b); | ||
|  |     } | ||
|  | 
 | ||
|  |     // return new, unset BigInteger
 | ||
|  |     function nbi() { return new BigInteger(null); } | ||
|  | 
 | ||
|  |     // am: Compute w_j += (x*this_i), propagate carries,
 | ||
|  |     // c is initial carry, returns final carry.
 | ||
|  |     // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
 | ||
|  |     // We need to select the fastest one that works in this environment.
 | ||
|  | 
 | ||
|  |     // am1: use a single mult and divide to get the high bits,
 | ||
|  |     // max digit bits should be 26 because
 | ||
|  |     // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
 | ||
|  |     function am1(i,x,w,j,c,n) { | ||
|  |       while(--n >= 0) { | ||
|  |         var v = x*this[i++]+w[j]+c; | ||
|  |         c = Math.floor(v/0x4000000); | ||
|  |         w[j++] = v&0x3ffffff; | ||
|  |       } | ||
|  |       return c; | ||
|  |     } | ||
|  |     // am2 avoids a big mult-and-extract completely.
 | ||
|  |     // Max digit bits should be <= 30 because we do bitwise ops
 | ||
|  |     // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
 | ||
|  |     function am2(i,x,w,j,c,n) { | ||
|  |       var xl = x&0x7fff, xh = x>>15; | ||
|  |       while(--n >= 0) { | ||
|  |         var l = this[i]&0x7fff; | ||
|  |         var h = this[i++]>>15; | ||
|  |         var m = xh*l+h*xl; | ||
|  |         l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); | ||
|  |         c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | ||
|  |         w[j++] = l&0x3fffffff; | ||
|  |       } | ||
|  |       return c; | ||
|  |     } | ||
|  |     // Alternately, set max digit bits to 28 since some
 | ||
|  |     // browsers slow down when dealing with 32-bit numbers.
 | ||
|  |     function am3(i,x,w,j,c,n) { | ||
|  |       var xl = x&0x3fff, xh = x>>14; | ||
|  |       while(--n >= 0) { | ||
|  |         var l = this[i]&0x3fff; | ||
|  |         var h = this[i++]>>14; | ||
|  |         var m = xh*l+h*xl; | ||
|  |         l = xl*l+((m&0x3fff)<<14)+w[j]+c; | ||
|  |         c = (l>>28)+(m>>14)+xh*h; | ||
|  |         w[j++] = l&0xfffffff; | ||
|  |       } | ||
|  |       return c; | ||
|  |     } | ||
|  |     var inBrowser = typeof navigator !== "undefined"; | ||
|  |     if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) { | ||
|  |       BigInteger.prototype.am = am2; | ||
|  |       dbits = 30; | ||
|  |     } | ||
|  |     else if(inBrowser && j_lm && (navigator.appName != "Netscape")) { | ||
|  |       BigInteger.prototype.am = am1; | ||
|  |       dbits = 26; | ||
|  |     } | ||
|  |     else { // Mozilla/Netscape seems to prefer am3
 | ||
|  |       BigInteger.prototype.am = am3; | ||
|  |       dbits = 28; | ||
|  |     } | ||
|  | 
 | ||
|  |     BigInteger.prototype.DB = dbits; | ||
|  |     BigInteger.prototype.DM = ((1<<dbits)-1); | ||
|  |     BigInteger.prototype.DV = (1<<dbits); | ||
|  | 
 | ||
|  |     var BI_FP = 52; | ||
|  |     BigInteger.prototype.FV = Math.pow(2,BI_FP); | ||
|  |     BigInteger.prototype.F1 = BI_FP-dbits; | ||
|  |     BigInteger.prototype.F2 = 2*dbits-BI_FP; | ||
|  | 
 | ||
|  |     // Digit conversions
 | ||
|  |     var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | ||
|  |     var BI_RC = new Array(); | ||
|  |     var rr,vv; | ||
|  |     rr = "0".charCodeAt(0); | ||
|  |     for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | ||
|  |     rr = "a".charCodeAt(0); | ||
|  |     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | ||
|  |     rr = "A".charCodeAt(0); | ||
|  |     for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | ||
|  | 
 | ||
|  |     function int2char(n) { return BI_RM.charAt(n); } | ||
|  |     function intAt(s,i) { | ||
|  |       var c = BI_RC[s.charCodeAt(i)]; | ||
|  |       return (c==null)?-1:c; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) copy this to r
 | ||
|  |     function bnpCopyTo(r) { | ||
|  |       for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; | ||
|  |       r.t = this.t; | ||
|  |       r.s = this.s; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) set from integer value x, -DV <= x < DV
 | ||
|  |     function bnpFromInt(x) { | ||
|  |       this.t = 1; | ||
|  |       this.s = (x<0)?-1:0; | ||
|  |       if(x > 0) this[0] = x; | ||
|  |       else if(x < -1) this[0] = x+this.DV; | ||
|  |       else this.t = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     // return bigint initialized to value
 | ||
|  |     function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | ||
|  | 
 | ||
|  |     // (protected) set from string and radix
 | ||
|  |     function bnpFromString(s,b) { | ||
|  |       var k; | ||
|  |       if(b == 16) k = 4; | ||
|  |       else if(b == 8) k = 3; | ||
|  |       else if(b == 256) k = 8; // byte array
 | ||
|  |       else if(b == 2) k = 1; | ||
|  |       else if(b == 32) k = 5; | ||
|  |       else if(b == 4) k = 2; | ||
|  |       else { this.fromRadix(s,b); return; } | ||
|  |       this.t = 0; | ||
|  |       this.s = 0; | ||
|  |       var i = s.length, mi = false, sh = 0; | ||
|  |       while(--i >= 0) { | ||
|  |         var x = (k==8)?s[i]&0xff:intAt(s,i); | ||
|  |         if(x < 0) { | ||
|  |           if(s.charAt(i) == "-") mi = true; | ||
|  |           continue; | ||
|  |         } | ||
|  |         mi = false; | ||
|  |         if(sh == 0) | ||
|  |           this[this.t++] = x; | ||
|  |         else if(sh+k > this.DB) { | ||
|  |           this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; | ||
|  |           this[this.t++] = (x>>(this.DB-sh)); | ||
|  |         } | ||
|  |         else | ||
|  |           this[this.t-1] |= x<<sh; | ||
|  |         sh += k; | ||
|  |         if(sh >= this.DB) sh -= this.DB; | ||
|  |       } | ||
|  |       if(k == 8 && (s[0]&0x80) != 0) { | ||
|  |         this.s = -1; | ||
|  |         if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; | ||
|  |       } | ||
|  |       this.clamp(); | ||
|  |       if(mi) BigInteger.ZERO.subTo(this,this); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) clamp off excess high words
 | ||
|  |     function bnpClamp() { | ||
|  |       var c = this.s&this.DM; | ||
|  |       while(this.t > 0 && this[this.t-1] == c) --this.t; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) return string representation in given radix
 | ||
|  |     function bnToString(b) { | ||
|  |       if(this.s < 0) return "-"+this.negate().toString(b); | ||
|  |       var k; | ||
|  |       if(b == 16) k = 4; | ||
|  |       else if(b == 8) k = 3; | ||
|  |       else if(b == 2) k = 1; | ||
|  |       else if(b == 32) k = 5; | ||
|  |       else if(b == 4) k = 2; | ||
|  |       else return this.toRadix(b); | ||
|  |       var km = (1<<k)-1, d, m = false, r = "", i = this.t; | ||
|  |       var p = this.DB-(i*this.DB)%k; | ||
|  |       if(i-- > 0) { | ||
|  |         if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } | ||
|  |         while(i >= 0) { | ||
|  |           if(p < k) { | ||
|  |             d = (this[i]&((1<<p)-1))<<(k-p); | ||
|  |             d |= this[--i]>>(p+=this.DB-k); | ||
|  |           } | ||
|  |           else { | ||
|  |             d = (this[i]>>(p-=k))&km; | ||
|  |             if(p <= 0) { p += this.DB; --i; } | ||
|  |           } | ||
|  |           if(d > 0) m = true; | ||
|  |           if(m) r += int2char(d); | ||
|  |         } | ||
|  |       } | ||
|  |       return m?r:"0"; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) -this
 | ||
|  |     function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | ||
|  | 
 | ||
|  |     // (public) |this|
 | ||
|  |     function bnAbs() { return (this.s<0)?this.negate():this; } | ||
|  | 
 | ||
|  |     // (public) return + if this > a, - if this < a, 0 if equal
 | ||
|  |     function bnCompareTo(a) { | ||
|  |       var r = this.s-a.s; | ||
|  |       if(r != 0) return r; | ||
|  |       var i = this.t; | ||
|  |       r = i-a.t; | ||
|  |       if(r != 0) return (this.s<0)?-r:r; | ||
|  |       while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; | ||
|  |       return 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     // returns bit length of the integer x
 | ||
|  |     function nbits(x) { | ||
|  |       var r = 1, t; | ||
|  |       if((t=x>>>16) != 0) { x = t; r += 16; } | ||
|  |       if((t=x>>8) != 0) { x = t; r += 8; } | ||
|  |       if((t=x>>4) != 0) { x = t; r += 4; } | ||
|  |       if((t=x>>2) != 0) { x = t; r += 2; } | ||
|  |       if((t=x>>1) != 0) { x = t; r += 1; } | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) return the number of bits in "this"
 | ||
|  |     function bnBitLength() { | ||
|  |       if(this.t <= 0) return 0; | ||
|  |       return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this << n*DB
 | ||
|  |     function bnpDLShiftTo(n,r) { | ||
|  |       var i; | ||
|  |       for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; | ||
|  |       for(i = n-1; i >= 0; --i) r[i] = 0; | ||
|  |       r.t = this.t+n; | ||
|  |       r.s = this.s; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this >> n*DB
 | ||
|  |     function bnpDRShiftTo(n,r) { | ||
|  |       for(var i = n; i < this.t; ++i) r[i-n] = this[i]; | ||
|  |       r.t = Math.max(this.t-n,0); | ||
|  |       r.s = this.s; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this << n
 | ||
|  |     function bnpLShiftTo(n,r) { | ||
|  |       var bs = n%this.DB; | ||
|  |       var cbs = this.DB-bs; | ||
|  |       var bm = (1<<cbs)-1; | ||
|  |       var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; | ||
|  |       for(i = this.t-1; i >= 0; --i) { | ||
|  |         r[i+ds+1] = (this[i]>>cbs)|c; | ||
|  |         c = (this[i]&bm)<<bs; | ||
|  |       } | ||
|  |       for(i = ds-1; i >= 0; --i) r[i] = 0; | ||
|  |       r[ds] = c; | ||
|  |       r.t = this.t+ds+1; | ||
|  |       r.s = this.s; | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this >> n
 | ||
|  |     function bnpRShiftTo(n,r) { | ||
|  |       r.s = this.s; | ||
|  |       var ds = Math.floor(n/this.DB); | ||
|  |       if(ds >= this.t) { r.t = 0; return; } | ||
|  |       var bs = n%this.DB; | ||
|  |       var cbs = this.DB-bs; | ||
|  |       var bm = (1<<bs)-1; | ||
|  |       r[0] = this[ds]>>bs; | ||
|  |       for(var i = ds+1; i < this.t; ++i) { | ||
|  |         r[i-ds-1] |= (this[i]&bm)<<cbs; | ||
|  |         r[i-ds] = this[i]>>bs; | ||
|  |       } | ||
|  |       if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; | ||
|  |       r.t = this.t-ds; | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this - a
 | ||
|  |     function bnpSubTo(a,r) { | ||
|  |       var i = 0, c = 0, m = Math.min(a.t,this.t); | ||
|  |       while(i < m) { | ||
|  |         c += this[i]-a[i]; | ||
|  |         r[i++] = c&this.DM; | ||
|  |         c >>= this.DB; | ||
|  |       } | ||
|  |       if(a.t < this.t) { | ||
|  |         c -= a.s; | ||
|  |         while(i < this.t) { | ||
|  |           c += this[i]; | ||
|  |           r[i++] = c&this.DM; | ||
|  |           c >>= this.DB; | ||
|  |         } | ||
|  |         c += this.s; | ||
|  |       } | ||
|  |       else { | ||
|  |         c += this.s; | ||
|  |         while(i < a.t) { | ||
|  |           c -= a[i]; | ||
|  |           r[i++] = c&this.DM; | ||
|  |           c >>= this.DB; | ||
|  |         } | ||
|  |         c -= a.s; | ||
|  |       } | ||
|  |       r.s = (c<0)?-1:0; | ||
|  |       if(c < -1) r[i++] = this.DV+c; | ||
|  |       else if(c > 0) r[i++] = c; | ||
|  |       r.t = i; | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this * a, r != this,a (HAC 14.12)
 | ||
|  |     // "this" should be the larger one if appropriate.
 | ||
|  |     function bnpMultiplyTo(a,r) { | ||
|  |       var x = this.abs(), y = a.abs(); | ||
|  |       var i = x.t; | ||
|  |       r.t = i+y.t; | ||
|  |       while(--i >= 0) r[i] = 0; | ||
|  |       for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); | ||
|  |       r.s = 0; | ||
|  |       r.clamp(); | ||
|  |       if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = this^2, r != this (HAC 14.16)
 | ||
|  |     function bnpSquareTo(r) { | ||
|  |       var x = this.abs(); | ||
|  |       var i = r.t = 2*x.t; | ||
|  |       while(--i >= 0) r[i] = 0; | ||
|  |       for(i = 0; i < x.t-1; ++i) { | ||
|  |         var c = x.am(i,x[i],r,2*i,0,1); | ||
|  |         if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { | ||
|  |           r[i+x.t] -= x.DV; | ||
|  |           r[i+x.t+1] = 1; | ||
|  |         } | ||
|  |       } | ||
|  |       if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); | ||
|  |       r.s = 0; | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
 | ||
|  |     // r != q, this != m.  q or r may be null.
 | ||
|  |     function bnpDivRemTo(m,q,r) { | ||
|  |       var pm = m.abs(); | ||
|  |       if(pm.t <= 0) return; | ||
|  |       var pt = this.abs(); | ||
|  |       if(pt.t < pm.t) { | ||
|  |         if(q != null) q.fromInt(0); | ||
|  |         if(r != null) this.copyTo(r); | ||
|  |         return; | ||
|  |       } | ||
|  |       if(r == null) r = nbi(); | ||
|  |       var y = nbi(), ts = this.s, ms = m.s; | ||
|  |       var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus
 | ||
|  |       if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } | ||
|  |       else { pm.copyTo(y); pt.copyTo(r); } | ||
|  |       var ys = y.t; | ||
|  |       var y0 = y[ys-1]; | ||
|  |       if(y0 == 0) return; | ||
|  |       var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); | ||
|  |       var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; | ||
|  |       var i = r.t, j = i-ys, t = (q==null)?nbi():q; | ||
|  |       y.dlShiftTo(j,t); | ||
|  |       if(r.compareTo(t) >= 0) { | ||
|  |         r[r.t++] = 1; | ||
|  |         r.subTo(t,r); | ||
|  |       } | ||
|  |       BigInteger.ONE.dlShiftTo(ys,t); | ||
|  |       t.subTo(y,y);  // "negative" y so we can replace sub with am later
 | ||
|  |       while(y.t < ys) y[y.t++] = 0; | ||
|  |       while(--j >= 0) { | ||
|  |         // Estimate quotient digit
 | ||
|  |         var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); | ||
|  |         if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out
 | ||
|  |           y.dlShiftTo(j,t); | ||
|  |           r.subTo(t,r); | ||
|  |           while(r[i] < --qd) r.subTo(t,r); | ||
|  |         } | ||
|  |       } | ||
|  |       if(q != null) { | ||
|  |         r.drShiftTo(ys,q); | ||
|  |         if(ts != ms) BigInteger.ZERO.subTo(q,q); | ||
|  |       } | ||
|  |       r.t = ys; | ||
|  |       r.clamp(); | ||
|  |       if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
 | ||
|  |       if(ts < 0) BigInteger.ZERO.subTo(r,r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this mod a
 | ||
|  |     function bnMod(a) { | ||
|  |       var r = nbi(); | ||
|  |       this.abs().divRemTo(a,null,r); | ||
|  |       if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Modular reduction using "classic" algorithm
 | ||
|  |     function Classic(m) { this.m = m; } | ||
|  |     function cConvert(x) { | ||
|  |       if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | ||
|  |       else return x; | ||
|  |     } | ||
|  |     function cRevert(x) { return x; } | ||
|  |     function cReduce(x) { x.divRemTo(this.m,null,x); } | ||
|  |     function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | ||
|  |     function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | ||
|  | 
 | ||
|  |     Classic.prototype.convert = cConvert; | ||
|  |     Classic.prototype.revert = cRevert; | ||
|  |     Classic.prototype.reduce = cReduce; | ||
|  |     Classic.prototype.mulTo = cMulTo; | ||
|  |     Classic.prototype.sqrTo = cSqrTo; | ||
|  | 
 | ||
|  |     // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
 | ||
|  |     // justification:
 | ||
|  |     //         xy == 1 (mod m)
 | ||
|  |     //         xy =  1+km
 | ||
|  |     //   xy(2-xy) = (1+km)(1-km)
 | ||
|  |     // x[y(2-xy)] = 1-k^2m^2
 | ||
|  |     // x[y(2-xy)] == 1 (mod m^2)
 | ||
|  |     // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
 | ||
|  |     // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
 | ||
|  |     // JS multiply "overflows" differently from C/C++, so care is needed here.
 | ||
|  |     function bnpInvDigit() { | ||
|  |       if(this.t < 1) return 0; | ||
|  |       var x = this[0]; | ||
|  |       if((x&1) == 0) return 0; | ||
|  |       var y = x&3;       // y == 1/x mod 2^2
 | ||
|  |       y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
 | ||
|  |       y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8
 | ||
|  |       y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
 | ||
|  |       // last step - calculate inverse mod DV directly;
 | ||
|  |       // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
 | ||
|  |       y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits
 | ||
|  |       // we really want the negative inverse, and -DV < y < DV
 | ||
|  |       return (y>0)?this.DV-y:-y; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Montgomery reduction
 | ||
|  |     function Montgomery(m) { | ||
|  |       this.m = m; | ||
|  |       this.mp = m.invDigit(); | ||
|  |       this.mpl = this.mp&0x7fff; | ||
|  |       this.mph = this.mp>>15; | ||
|  |       this.um = (1<<(m.DB-15))-1; | ||
|  |       this.mt2 = 2*m.t; | ||
|  |     } | ||
|  | 
 | ||
|  |     // xR mod m
 | ||
|  |     function montConvert(x) { | ||
|  |       var r = nbi(); | ||
|  |       x.abs().dlShiftTo(this.m.t,r); | ||
|  |       r.divRemTo(this.m,null,r); | ||
|  |       if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // x/R mod m
 | ||
|  |     function montRevert(x) { | ||
|  |       var r = nbi(); | ||
|  |       x.copyTo(r); | ||
|  |       this.reduce(r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // x = x/R mod m (HAC 14.32)
 | ||
|  |     function montReduce(x) { | ||
|  |       while(x.t <= this.mt2) // pad x so am has enough room later
 | ||
|  |         x[x.t++] = 0; | ||
|  |       for(var i = 0; i < this.m.t; ++i) { | ||
|  |         // faster way of calculating u0 = x[i]*mp mod DV
 | ||
|  |         var j = x[i]&0x7fff; | ||
|  |         var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; | ||
|  |         // use am to combine the multiply-shift-add into one call
 | ||
|  |         j = i+this.m.t; | ||
|  |         x[j] += this.m.am(0,u0,x,i,0,this.m.t); | ||
|  |         // propagate carry
 | ||
|  |         while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } | ||
|  |       } | ||
|  |       x.clamp(); | ||
|  |       x.drShiftTo(this.m.t,x); | ||
|  |       if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | ||
|  |     } | ||
|  | 
 | ||
|  |     // r = "x^2/R mod m"; x != r
 | ||
|  |     function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | ||
|  | 
 | ||
|  |     // r = "xy/R mod m"; x,y != r
 | ||
|  |     function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | ||
|  | 
 | ||
|  |     Montgomery.prototype.convert = montConvert; | ||
|  |     Montgomery.prototype.revert = montRevert; | ||
|  |     Montgomery.prototype.reduce = montReduce; | ||
|  |     Montgomery.prototype.mulTo = montMulTo; | ||
|  |     Montgomery.prototype.sqrTo = montSqrTo; | ||
|  | 
 | ||
|  |     // (protected) true iff this is even
 | ||
|  |     function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } | ||
|  | 
 | ||
|  |     // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
 | ||
|  |     function bnpExp(e,z) { | ||
|  |       if(e > 0xffffffff || e < 1) return BigInteger.ONE; | ||
|  |       var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | ||
|  |       g.copyTo(r); | ||
|  |       while(--i >= 0) { | ||
|  |         z.sqrTo(r,r2); | ||
|  |         if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | ||
|  |         else { var t = r; r = r2; r2 = t; } | ||
|  |       } | ||
|  |       return z.revert(r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this^e % m, 0 <= e < 2^32
 | ||
|  |     function bnModPowInt(e,m) { | ||
|  |       var z; | ||
|  |       if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | ||
|  |       return this.exp(e,z); | ||
|  |     } | ||
|  | 
 | ||
|  |     // protected
 | ||
|  |     BigInteger.prototype.copyTo = bnpCopyTo; | ||
|  |     BigInteger.prototype.fromInt = bnpFromInt; | ||
|  |     BigInteger.prototype.fromString = bnpFromString; | ||
|  |     BigInteger.prototype.clamp = bnpClamp; | ||
|  |     BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | ||
|  |     BigInteger.prototype.drShiftTo = bnpDRShiftTo; | ||
|  |     BigInteger.prototype.lShiftTo = bnpLShiftTo; | ||
|  |     BigInteger.prototype.rShiftTo = bnpRShiftTo; | ||
|  |     BigInteger.prototype.subTo = bnpSubTo; | ||
|  |     BigInteger.prototype.multiplyTo = bnpMultiplyTo; | ||
|  |     BigInteger.prototype.squareTo = bnpSquareTo; | ||
|  |     BigInteger.prototype.divRemTo = bnpDivRemTo; | ||
|  |     BigInteger.prototype.invDigit = bnpInvDigit; | ||
|  |     BigInteger.prototype.isEven = bnpIsEven; | ||
|  |     BigInteger.prototype.exp = bnpExp; | ||
|  | 
 | ||
|  |     // public
 | ||
|  |     BigInteger.prototype.toString = bnToString; | ||
|  |     BigInteger.prototype.negate = bnNegate; | ||
|  |     BigInteger.prototype.abs = bnAbs; | ||
|  |     BigInteger.prototype.compareTo = bnCompareTo; | ||
|  |     BigInteger.prototype.bitLength = bnBitLength; | ||
|  |     BigInteger.prototype.mod = bnMod; | ||
|  |     BigInteger.prototype.modPowInt = bnModPowInt; | ||
|  | 
 | ||
|  |     // "constants"
 | ||
|  |     BigInteger.ZERO = nbv(0); | ||
|  |     BigInteger.ONE = nbv(1); | ||
|  | 
 | ||
|  |     // Copyright (c) 2005-2009  Tom Wu
 | ||
|  |     // All Rights Reserved.
 | ||
|  |     // See "LICENSE" for details.
 | ||
|  | 
 | ||
|  |     // Extended JavaScript BN functions, required for RSA private ops.
 | ||
|  | 
 | ||
|  |     // Version 1.1: new BigInteger("0", 10) returns "proper" zero
 | ||
|  |     // Version 1.2: square() API, isProbablePrime fix
 | ||
|  | 
 | ||
|  |     // (public)
 | ||
|  |     function bnClone() { var r = nbi(); this.copyTo(r); return r; } | ||
|  | 
 | ||
|  |     // (public) return value as integer
 | ||
|  |     function bnIntValue() { | ||
|  |       if(this.s < 0) { | ||
|  |         if(this.t == 1) return this[0]-this.DV; | ||
|  |         else if(this.t == 0) return -1; | ||
|  |       } | ||
|  |       else if(this.t == 1) return this[0]; | ||
|  |       else if(this.t == 0) return 0; | ||
|  |       // assumes 16 < DB < 32
 | ||
|  |       return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) return value as byte
 | ||
|  |     function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } | ||
|  | 
 | ||
|  |     // (public) return value as short (assumes DB>=16)
 | ||
|  |     function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } | ||
|  | 
 | ||
|  |     // (protected) return x s.t. r^x < DV
 | ||
|  |     function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } | ||
|  | 
 | ||
|  |     // (public) 0 if this == 0, 1 if this > 0
 | ||
|  |     function bnSigNum() { | ||
|  |       if(this.s < 0) return -1; | ||
|  |       else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; | ||
|  |       else return 1; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) convert to radix string
 | ||
|  |     function bnpToRadix(b) { | ||
|  |       if(b == null) b = 10; | ||
|  |       if(this.signum() == 0 || b < 2 || b > 36) return "0"; | ||
|  |       var cs = this.chunkSize(b); | ||
|  |       var a = Math.pow(b,cs); | ||
|  |       var d = nbv(a), y = nbi(), z = nbi(), r = ""; | ||
|  |       this.divRemTo(d,y,z); | ||
|  |       while(y.signum() > 0) { | ||
|  |         r = (a+z.intValue()).toString(b).substr(1) + r; | ||
|  |         y.divRemTo(d,y,z); | ||
|  |       } | ||
|  |       return z.intValue().toString(b) + r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) convert from radix string
 | ||
|  |     function bnpFromRadix(s,b) { | ||
|  |       this.fromInt(0); | ||
|  |       if(b == null) b = 10; | ||
|  |       var cs = this.chunkSize(b); | ||
|  |       var d = Math.pow(b,cs), mi = false, j = 0, w = 0; | ||
|  |       for(var i = 0; i < s.length; ++i) { | ||
|  |         var x = intAt(s,i); | ||
|  |         if(x < 0) { | ||
|  |           if(s.charAt(i) == "-" && this.signum() == 0) mi = true; | ||
|  |           continue; | ||
|  |         } | ||
|  |         w = b*w+x; | ||
|  |         if(++j >= cs) { | ||
|  |           this.dMultiply(d); | ||
|  |           this.dAddOffset(w,0); | ||
|  |           j = 0; | ||
|  |           w = 0; | ||
|  |         } | ||
|  |       } | ||
|  |       if(j > 0) { | ||
|  |         this.dMultiply(Math.pow(b,j)); | ||
|  |         this.dAddOffset(w,0); | ||
|  |       } | ||
|  |       if(mi) BigInteger.ZERO.subTo(this,this); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) alternate constructor
 | ||
|  |     function bnpFromNumber(a,b,c) { | ||
|  |       if("number" == typeof b) { | ||
|  |         // new BigInteger(int,int,RNG)
 | ||
|  |         if(a < 2) this.fromInt(1); | ||
|  |         else { | ||
|  |           this.fromNumber(a,c); | ||
|  |           if(!this.testBit(a-1))	// force MSB set
 | ||
|  |             this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); | ||
|  |           if(this.isEven()) this.dAddOffset(1,0); // force odd
 | ||
|  |           while(!this.isProbablePrime(b)) { | ||
|  |             this.dAddOffset(2,0); | ||
|  |             if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  |       else { | ||
|  |         // new BigInteger(int,RNG)
 | ||
|  |         var x = new Array(), t = a&7; | ||
|  |         x.length = (a>>3)+1; | ||
|  |         b.nextBytes(x); | ||
|  |         if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; | ||
|  |         this.fromString(x,256); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) convert to bigendian byte array
 | ||
|  |     function bnToByteArray() { | ||
|  |       var i = this.t, r = new Array(); | ||
|  |       r[0] = this.s; | ||
|  |       var p = this.DB-(i*this.DB)%8, d, k = 0; | ||
|  |       if(i-- > 0) { | ||
|  |         if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) | ||
|  |           r[k++] = d|(this.s<<(this.DB-p)); | ||
|  |         while(i >= 0) { | ||
|  |           if(p < 8) { | ||
|  |             d = (this[i]&((1<<p)-1))<<(8-p); | ||
|  |             d |= this[--i]>>(p+=this.DB-8); | ||
|  |           } | ||
|  |           else { | ||
|  |             d = (this[i]>>(p-=8))&0xff; | ||
|  |             if(p <= 0) { p += this.DB; --i; } | ||
|  |           } | ||
|  |           if((d&0x80) != 0) d |= -256; | ||
|  |           if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; | ||
|  |           if(k > 0 || d != this.s) r[k++] = d; | ||
|  |         } | ||
|  |       } | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     function bnEquals(a) { return(this.compareTo(a)==0); } | ||
|  |     function bnMin(a) { return(this.compareTo(a)<0)?this:a; } | ||
|  |     function bnMax(a) { return(this.compareTo(a)>0)?this:a; } | ||
|  | 
 | ||
|  |     // (protected) r = this op a (bitwise)
 | ||
|  |     function bnpBitwiseTo(a,op,r) { | ||
|  |       var i, f, m = Math.min(a.t,this.t); | ||
|  |       for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); | ||
|  |       if(a.t < this.t) { | ||
|  |         f = a.s&this.DM; | ||
|  |         for(i = m; i < this.t; ++i) r[i] = op(this[i],f); | ||
|  |         r.t = this.t; | ||
|  |       } | ||
|  |       else { | ||
|  |         f = this.s&this.DM; | ||
|  |         for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); | ||
|  |         r.t = a.t; | ||
|  |       } | ||
|  |       r.s = op(this.s,a.s); | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this & a
 | ||
|  |     function op_and(x,y) { return x&y; } | ||
|  |     function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this | a
 | ||
|  |     function op_or(x,y) { return x|y; } | ||
|  |     function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this ^ a
 | ||
|  |     function op_xor(x,y) { return x^y; } | ||
|  |     function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this & ~a
 | ||
|  |     function op_andnot(x,y) { return x&~y; } | ||
|  |     function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } | ||
|  | 
 | ||
|  |     // (public) ~this
 | ||
|  |     function bnNot() { | ||
|  |       var r = nbi(); | ||
|  |       for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; | ||
|  |       r.t = this.t; | ||
|  |       r.s = ~this.s; | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this << n
 | ||
|  |     function bnShiftLeft(n) { | ||
|  |       var r = nbi(); | ||
|  |       if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this >> n
 | ||
|  |     function bnShiftRight(n) { | ||
|  |       var r = nbi(); | ||
|  |       if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // return index of lowest 1-bit in x, x < 2^31
 | ||
|  |     function lbit(x) { | ||
|  |       if(x == 0) return -1; | ||
|  |       var r = 0; | ||
|  |       if((x&0xffff) == 0) { x >>= 16; r += 16; } | ||
|  |       if((x&0xff) == 0) { x >>= 8; r += 8; } | ||
|  |       if((x&0xf) == 0) { x >>= 4; r += 4; } | ||
|  |       if((x&3) == 0) { x >>= 2; r += 2; } | ||
|  |       if((x&1) == 0) ++r; | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) returns index of lowest 1-bit (or -1 if none)
 | ||
|  |     function bnGetLowestSetBit() { | ||
|  |       for(var i = 0; i < this.t; ++i) | ||
|  |         if(this[i] != 0) return i*this.DB+lbit(this[i]); | ||
|  |       if(this.s < 0) return this.t*this.DB; | ||
|  |       return -1; | ||
|  |     } | ||
|  | 
 | ||
|  |     // return number of 1 bits in x
 | ||
|  |     function cbit(x) { | ||
|  |       var r = 0; | ||
|  |       while(x != 0) { x &= x-1; ++r; } | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) return number of set bits
 | ||
|  |     function bnBitCount() { | ||
|  |       var r = 0, x = this.s&this.DM; | ||
|  |       for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) true iff nth bit is set
 | ||
|  |     function bnTestBit(n) { | ||
|  |       var j = Math.floor(n/this.DB); | ||
|  |       if(j >= this.t) return(this.s!=0); | ||
|  |       return((this[j]&(1<<(n%this.DB)))!=0); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) this op (1<<n)
 | ||
|  |     function bnpChangeBit(n,op) { | ||
|  |       var r = BigInteger.ONE.shiftLeft(n); | ||
|  |       this.bitwiseTo(r,op,r); | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this | (1<<n)
 | ||
|  |     function bnSetBit(n) { return this.changeBit(n,op_or); } | ||
|  | 
 | ||
|  |     // (public) this & ~(1<<n)
 | ||
|  |     function bnClearBit(n) { return this.changeBit(n,op_andnot); } | ||
|  | 
 | ||
|  |     // (public) this ^ (1<<n)
 | ||
|  |     function bnFlipBit(n) { return this.changeBit(n,op_xor); } | ||
|  | 
 | ||
|  |     // (protected) r = this + a
 | ||
|  |     function bnpAddTo(a,r) { | ||
|  |       var i = 0, c = 0, m = Math.min(a.t,this.t); | ||
|  |       while(i < m) { | ||
|  |         c += this[i]+a[i]; | ||
|  |         r[i++] = c&this.DM; | ||
|  |         c >>= this.DB; | ||
|  |       } | ||
|  |       if(a.t < this.t) { | ||
|  |         c += a.s; | ||
|  |         while(i < this.t) { | ||
|  |           c += this[i]; | ||
|  |           r[i++] = c&this.DM; | ||
|  |           c >>= this.DB; | ||
|  |         } | ||
|  |         c += this.s; | ||
|  |       } | ||
|  |       else { | ||
|  |         c += this.s; | ||
|  |         while(i < a.t) { | ||
|  |           c += a[i]; | ||
|  |           r[i++] = c&this.DM; | ||
|  |           c >>= this.DB; | ||
|  |         } | ||
|  |         c += a.s; | ||
|  |       } | ||
|  |       r.s = (c<0)?-1:0; | ||
|  |       if(c > 0) r[i++] = c; | ||
|  |       else if(c < -1) r[i++] = this.DV+c; | ||
|  |       r.t = i; | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) this + a
 | ||
|  |     function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this - a
 | ||
|  |     function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this * a
 | ||
|  |     function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } | ||
|  | 
 | ||
|  |     // (public) this^2
 | ||
|  |     function bnSquare() { var r = nbi(); this.squareTo(r); return r; } | ||
|  | 
 | ||
|  |     // (public) this / a
 | ||
|  |     function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } | ||
|  | 
 | ||
|  |     // (public) this % a
 | ||
|  |     function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } | ||
|  | 
 | ||
|  |     // (public) [this/a,this%a]
 | ||
|  |     function bnDivideAndRemainder(a) { | ||
|  |       var q = nbi(), r = nbi(); | ||
|  |       this.divRemTo(a,q,r); | ||
|  |       return new Array(q,r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) this *= n, this >= 0, 1 < n < DV
 | ||
|  |     function bnpDMultiply(n) { | ||
|  |       this[this.t] = this.am(0,n-1,this,0,0,this.t); | ||
|  |       ++this.t; | ||
|  |       this.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) this += n << w words, this >= 0
 | ||
|  |     function bnpDAddOffset(n,w) { | ||
|  |       if(n == 0) return; | ||
|  |       while(this.t <= w) this[this.t++] = 0; | ||
|  |       this[w] += n; | ||
|  |       while(this[w] >= this.DV) { | ||
|  |         this[w] -= this.DV; | ||
|  |         if(++w >= this.t) this[this.t++] = 0; | ||
|  |         ++this[w]; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // A "null" reducer
 | ||
|  |     function NullExp() {} | ||
|  |     function nNop(x) { return x; } | ||
|  |     function nMulTo(x,y,r) { x.multiplyTo(y,r); } | ||
|  |     function nSqrTo(x,r) { x.squareTo(r); } | ||
|  | 
 | ||
|  |     NullExp.prototype.convert = nNop; | ||
|  |     NullExp.prototype.revert = nNop; | ||
|  |     NullExp.prototype.mulTo = nMulTo; | ||
|  |     NullExp.prototype.sqrTo = nSqrTo; | ||
|  | 
 | ||
|  |     // (public) this^e
 | ||
|  |     function bnPow(e) { return this.exp(e,new NullExp()); } | ||
|  | 
 | ||
|  |     // (protected) r = lower n words of "this * a", a.t <= n
 | ||
|  |     // "this" should be the larger one if appropriate.
 | ||
|  |     function bnpMultiplyLowerTo(a,n,r) { | ||
|  |       var i = Math.min(this.t+a.t,n); | ||
|  |       r.s = 0; // assumes a,this >= 0
 | ||
|  |       r.t = i; | ||
|  |       while(i > 0) r[--i] = 0; | ||
|  |       var j; | ||
|  |       for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); | ||
|  |       for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); | ||
|  |       r.clamp(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) r = "this * a" without lower n words, n > 0
 | ||
|  |     // "this" should be the larger one if appropriate.
 | ||
|  |     function bnpMultiplyUpperTo(a,n,r) { | ||
|  |       --n; | ||
|  |       var i = r.t = this.t+a.t-n; | ||
|  |       r.s = 0; // assumes a,this >= 0
 | ||
|  |       while(--i >= 0) r[i] = 0; | ||
|  |       for(i = Math.max(n-this.t,0); i < a.t; ++i) | ||
|  |         r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); | ||
|  |       r.clamp(); | ||
|  |       r.drShiftTo(1,r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Barrett modular reduction
 | ||
|  |     function Barrett(m) { | ||
|  |       // setup Barrett
 | ||
|  |       this.r2 = nbi(); | ||
|  |       this.q3 = nbi(); | ||
|  |       BigInteger.ONE.dlShiftTo(2*m.t,this.r2); | ||
|  |       this.mu = this.r2.divide(m); | ||
|  |       this.m = m; | ||
|  |     } | ||
|  | 
 | ||
|  |     function barrettConvert(x) { | ||
|  |       if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); | ||
|  |       else if(x.compareTo(this.m) < 0) return x; | ||
|  |       else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } | ||
|  |     } | ||
|  | 
 | ||
|  |     function barrettRevert(x) { return x; } | ||
|  | 
 | ||
|  |     // x = x mod m (HAC 14.42)
 | ||
|  |     function barrettReduce(x) { | ||
|  |       x.drShiftTo(this.m.t-1,this.r2); | ||
|  |       if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } | ||
|  |       this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); | ||
|  |       this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); | ||
|  |       while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); | ||
|  |       x.subTo(this.r2,x); | ||
|  |       while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | ||
|  |     } | ||
|  | 
 | ||
|  |     // r = x^2 mod m; x != r
 | ||
|  |     function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | ||
|  | 
 | ||
|  |     // r = x*y mod m; x,y != r
 | ||
|  |     function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | ||
|  | 
 | ||
|  |     Barrett.prototype.convert = barrettConvert; | ||
|  |     Barrett.prototype.revert = barrettRevert; | ||
|  |     Barrett.prototype.reduce = barrettReduce; | ||
|  |     Barrett.prototype.mulTo = barrettMulTo; | ||
|  |     Barrett.prototype.sqrTo = barrettSqrTo; | ||
|  | 
 | ||
|  |     // (public) this^e % m (HAC 14.85)
 | ||
|  |     function bnModPow(e,m) { | ||
|  |       var i = e.bitLength(), k, r = nbv(1), z; | ||
|  |       if(i <= 0) return r; | ||
|  |       else if(i < 18) k = 1; | ||
|  |       else if(i < 48) k = 3; | ||
|  |       else if(i < 144) k = 4; | ||
|  |       else if(i < 768) k = 5; | ||
|  |       else k = 6; | ||
|  |       if(i < 8) | ||
|  |         z = new Classic(m); | ||
|  |       else if(m.isEven()) | ||
|  |         z = new Barrett(m); | ||
|  |       else | ||
|  |         z = new Montgomery(m); | ||
|  | 
 | ||
|  |       // precomputation
 | ||
|  |       var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; | ||
|  |       g[1] = z.convert(this); | ||
|  |       if(k > 1) { | ||
|  |         var g2 = nbi(); | ||
|  |         z.sqrTo(g[1],g2); | ||
|  |         while(n <= km) { | ||
|  |           g[n] = nbi(); | ||
|  |           z.mulTo(g2,g[n-2],g[n]); | ||
|  |           n += 2; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       var j = e.t-1, w, is1 = true, r2 = nbi(), t; | ||
|  |       i = nbits(e[j])-1; | ||
|  |       while(j >= 0) { | ||
|  |         if(i >= k1) w = (e[j]>>(i-k1))&km; | ||
|  |         else { | ||
|  |           w = (e[j]&((1<<(i+1))-1))<<(k1-i); | ||
|  |           if(j > 0) w |= e[j-1]>>(this.DB+i-k1); | ||
|  |         } | ||
|  | 
 | ||
|  |         n = k; | ||
|  |         while((w&1) == 0) { w >>= 1; --n; } | ||
|  |         if((i -= n) < 0) { i += this.DB; --j; } | ||
|  |         if(is1) {	// ret == 1, don't bother squaring or multiplying it
 | ||
|  |           g[w].copyTo(r); | ||
|  |           is1 = false; | ||
|  |         } | ||
|  |         else { | ||
|  |           while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } | ||
|  |           if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } | ||
|  |           z.mulTo(r2,g[w],r); | ||
|  |         } | ||
|  | 
 | ||
|  |         while(j >= 0 && (e[j]&(1<<i)) == 0) { | ||
|  |           z.sqrTo(r,r2); t = r; r = r2; r2 = t; | ||
|  |           if(--i < 0) { i = this.DB-1; --j; } | ||
|  |         } | ||
|  |       } | ||
|  |       return z.revert(r); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) gcd(this,a) (HAC 14.54)
 | ||
|  |     function bnGCD(a) { | ||
|  |       var x = (this.s<0)?this.negate():this.clone(); | ||
|  |       var y = (a.s<0)?a.negate():a.clone(); | ||
|  |       if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } | ||
|  |       var i = x.getLowestSetBit(), g = y.getLowestSetBit(); | ||
|  |       if(g < 0) return x; | ||
|  |       if(i < g) g = i; | ||
|  |       if(g > 0) { | ||
|  |         x.rShiftTo(g,x); | ||
|  |         y.rShiftTo(g,y); | ||
|  |       } | ||
|  |       while(x.signum() > 0) { | ||
|  |         if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); | ||
|  |         if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); | ||
|  |         if(x.compareTo(y) >= 0) { | ||
|  |           x.subTo(y,x); | ||
|  |           x.rShiftTo(1,x); | ||
|  |         } | ||
|  |         else { | ||
|  |           y.subTo(x,y); | ||
|  |           y.rShiftTo(1,y); | ||
|  |         } | ||
|  |       } | ||
|  |       if(g > 0) y.lShiftTo(g,y); | ||
|  |       return y; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) this % n, n < 2^26
 | ||
|  |     function bnpModInt(n) { | ||
|  |       if(n <= 0) return 0; | ||
|  |       var d = this.DV%n, r = (this.s<0)?n-1:0; | ||
|  |       if(this.t > 0) | ||
|  |         if(d == 0) r = this[0]%n; | ||
|  |         else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; | ||
|  |       return r; | ||
|  |     } | ||
|  | 
 | ||
|  |     // (public) 1/this % m (HAC 14.61)
 | ||
|  |     function bnModInverse(m) { | ||
|  |       var ac = m.isEven(); | ||
|  |       if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; | ||
|  |       var u = m.clone(), v = this.clone(); | ||
|  |       var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); | ||
|  |       while(u.signum() != 0) { | ||
|  |         while(u.isEven()) { | ||
|  |           u.rShiftTo(1,u); | ||
|  |           if(ac) { | ||
|  |             if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } | ||
|  |             a.rShiftTo(1,a); | ||
|  |           } | ||
|  |           else if(!b.isEven()) b.subTo(m,b); | ||
|  |           b.rShiftTo(1,b); | ||
|  |         } | ||
|  |         while(v.isEven()) { | ||
|  |           v.rShiftTo(1,v); | ||
|  |           if(ac) { | ||
|  |             if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } | ||
|  |             c.rShiftTo(1,c); | ||
|  |           } | ||
|  |           else if(!d.isEven()) d.subTo(m,d); | ||
|  |           d.rShiftTo(1,d); | ||
|  |         } | ||
|  |         if(u.compareTo(v) >= 0) { | ||
|  |           u.subTo(v,u); | ||
|  |           if(ac) a.subTo(c,a); | ||
|  |           b.subTo(d,b); | ||
|  |         } | ||
|  |         else { | ||
|  |           v.subTo(u,v); | ||
|  |           if(ac) c.subTo(a,c); | ||
|  |           d.subTo(b,d); | ||
|  |         } | ||
|  |       } | ||
|  |       if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; | ||
|  |       if(d.compareTo(m) >= 0) return d.subtract(m); | ||
|  |       if(d.signum() < 0) d.addTo(m,d); else return d; | ||
|  |       if(d.signum() < 0) return d.add(m); else return d; | ||
|  |     } | ||
|  | 
 | ||
|  |     var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; | ||
|  |     var lplim = (1<<26)/lowprimes[lowprimes.length-1]; | ||
|  | 
 | ||
|  |     // (public) test primality with certainty >= 1-.5^t
 | ||
|  |     function bnIsProbablePrime(t) { | ||
|  |       var i, x = this.abs(); | ||
|  |       if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { | ||
|  |         for(i = 0; i < lowprimes.length; ++i) | ||
|  |           if(x[0] == lowprimes[i]) return true; | ||
|  |         return false; | ||
|  |       } | ||
|  |       if(x.isEven()) return false; | ||
|  |       i = 1; | ||
|  |       while(i < lowprimes.length) { | ||
|  |         var m = lowprimes[i], j = i+1; | ||
|  |         while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; | ||
|  |         m = x.modInt(m); | ||
|  |         while(i < j) if(m%lowprimes[i++] == 0) return false; | ||
|  |       } | ||
|  |       return x.millerRabin(t); | ||
|  |     } | ||
|  | 
 | ||
|  |     // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
 | ||
|  |     function bnpMillerRabin(t) { | ||
|  |       var n1 = this.subtract(BigInteger.ONE); | ||
|  |       var k = n1.getLowestSetBit(); | ||
|  |       if(k <= 0) return false; | ||
|  |       var r = n1.shiftRight(k); | ||
|  |       t = (t+1)>>1; | ||
|  |       if(t > lowprimes.length) t = lowprimes.length; | ||
|  |       var a = nbi(); | ||
|  |       for(var i = 0; i < t; ++i) { | ||
|  |         //Pick bases at random, instead of starting at 2
 | ||
|  |         a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]); | ||
|  |         var y = a.modPow(r,this); | ||
|  |         if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { | ||
|  |           var j = 1; | ||
|  |           while(j++ < k && y.compareTo(n1) != 0) { | ||
|  |             y = y.modPowInt(2,this); | ||
|  |             if(y.compareTo(BigInteger.ONE) == 0) return false; | ||
|  |           } | ||
|  |           if(y.compareTo(n1) != 0) return false; | ||
|  |         } | ||
|  |       } | ||
|  |       return true; | ||
|  |     } | ||
|  | 
 | ||
|  |     // protected
 | ||
|  |     BigInteger.prototype.chunkSize = bnpChunkSize; | ||
|  |     BigInteger.prototype.toRadix = bnpToRadix; | ||
|  |     BigInteger.prototype.fromRadix = bnpFromRadix; | ||
|  |     BigInteger.prototype.fromNumber = bnpFromNumber; | ||
|  |     BigInteger.prototype.bitwiseTo = bnpBitwiseTo; | ||
|  |     BigInteger.prototype.changeBit = bnpChangeBit; | ||
|  |     BigInteger.prototype.addTo = bnpAddTo; | ||
|  |     BigInteger.prototype.dMultiply = bnpDMultiply; | ||
|  |     BigInteger.prototype.dAddOffset = bnpDAddOffset; | ||
|  |     BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; | ||
|  |     BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; | ||
|  |     BigInteger.prototype.modInt = bnpModInt; | ||
|  |     BigInteger.prototype.millerRabin = bnpMillerRabin; | ||
|  | 
 | ||
|  |     // public
 | ||
|  |     BigInteger.prototype.clone = bnClone; | ||
|  |     BigInteger.prototype.intValue = bnIntValue; | ||
|  |     BigInteger.prototype.byteValue = bnByteValue; | ||
|  |     BigInteger.prototype.shortValue = bnShortValue; | ||
|  |     BigInteger.prototype.signum = bnSigNum; | ||
|  |     BigInteger.prototype.toByteArray = bnToByteArray; | ||
|  |     BigInteger.prototype.equals = bnEquals; | ||
|  |     BigInteger.prototype.min = bnMin; | ||
|  |     BigInteger.prototype.max = bnMax; | ||
|  |     BigInteger.prototype.and = bnAnd; | ||
|  |     BigInteger.prototype.or = bnOr; | ||
|  |     BigInteger.prototype.xor = bnXor; | ||
|  |     BigInteger.prototype.andNot = bnAndNot; | ||
|  |     BigInteger.prototype.not = bnNot; | ||
|  |     BigInteger.prototype.shiftLeft = bnShiftLeft; | ||
|  |     BigInteger.prototype.shiftRight = bnShiftRight; | ||
|  |     BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; | ||
|  |     BigInteger.prototype.bitCount = bnBitCount; | ||
|  |     BigInteger.prototype.testBit = bnTestBit; | ||
|  |     BigInteger.prototype.setBit = bnSetBit; | ||
|  |     BigInteger.prototype.clearBit = bnClearBit; | ||
|  |     BigInteger.prototype.flipBit = bnFlipBit; | ||
|  |     BigInteger.prototype.add = bnAdd; | ||
|  |     BigInteger.prototype.subtract = bnSubtract; | ||
|  |     BigInteger.prototype.multiply = bnMultiply; | ||
|  |     BigInteger.prototype.divide = bnDivide; | ||
|  |     BigInteger.prototype.remainder = bnRemainder; | ||
|  |     BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; | ||
|  |     BigInteger.prototype.modPow = bnModPow; | ||
|  |     BigInteger.prototype.modInverse = bnModInverse; | ||
|  |     BigInteger.prototype.pow = bnPow; | ||
|  |     BigInteger.prototype.gcd = bnGCD; | ||
|  |     BigInteger.prototype.isProbablePrime = bnIsProbablePrime; | ||
|  | 
 | ||
|  |     // JSBN-specific extension
 | ||
|  |     BigInteger.prototype.square = bnSquare; | ||
|  | 
 | ||
|  |     // Expose the Barrett function
 | ||
|  |     BigInteger.prototype.Barrett = Barrett | ||
|  | 
 | ||
|  |     // BigInteger interfaces not implemented in jsbn:
 | ||
|  | 
 | ||
|  |     // BigInteger(int signum, byte[] magnitude)
 | ||
|  |     // double doubleValue()
 | ||
|  |     // float floatValue()
 | ||
|  |     // int hashCode()
 | ||
|  |     // long longValue()
 | ||
|  |     // static BigInteger valueOf(long val)
 | ||
|  | 
 | ||
|  | 	// Random number generator - requires a PRNG backend, e.g. prng4.js
 | ||
|  | 
 | ||
|  | 	// For best results, put code like
 | ||
|  | 	// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
 | ||
|  | 	// in your main HTML document.
 | ||
|  | 
 | ||
|  | 	var rng_state; | ||
|  | 	var rng_pool; | ||
|  | 	var rng_pptr; | ||
|  | 
 | ||
|  | 	// Mix in a 32-bit integer into the pool
 | ||
|  | 	function rng_seed_int(x) { | ||
|  | 	  rng_pool[rng_pptr++] ^= x & 255; | ||
|  | 	  rng_pool[rng_pptr++] ^= (x >> 8) & 255; | ||
|  | 	  rng_pool[rng_pptr++] ^= (x >> 16) & 255; | ||
|  | 	  rng_pool[rng_pptr++] ^= (x >> 24) & 255; | ||
|  | 	  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Mix in the current time (w/milliseconds) into the pool
 | ||
|  | 	function rng_seed_time() { | ||
|  | 	  rng_seed_int(new Date().getTime()); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Initialize the pool with junk if needed.
 | ||
|  | 	if(rng_pool == null) { | ||
|  | 	  rng_pool = new Array(); | ||
|  | 	  rng_pptr = 0; | ||
|  | 	  var t; | ||
|  | 	  if(typeof window !== "undefined" && window.crypto) { | ||
|  | 		if (window.crypto.getRandomValues) { | ||
|  | 		  // Use webcrypto if available
 | ||
|  | 		  var ua = new Uint8Array(32); | ||
|  | 		  window.crypto.getRandomValues(ua); | ||
|  | 		  for(t = 0; t < 32; ++t) | ||
|  | 			rng_pool[rng_pptr++] = ua[t]; | ||
|  | 		} | ||
|  | 		else if(navigator.appName == "Netscape" && navigator.appVersion < "5") { | ||
|  | 		  // Extract entropy (256 bits) from NS4 RNG if available
 | ||
|  | 		  var z = window.crypto.random(32); | ||
|  | 		  for(t = 0; t < z.length; ++t) | ||
|  | 			rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; | ||
|  | 		} | ||
|  | 	  } | ||
|  | 	  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
 | ||
|  | 		t = Math.floor(65536 * Math.random()); | ||
|  | 		rng_pool[rng_pptr++] = t >>> 8; | ||
|  | 		rng_pool[rng_pptr++] = t & 255; | ||
|  | 	  } | ||
|  | 	  rng_pptr = 0; | ||
|  | 	  rng_seed_time(); | ||
|  | 	  //rng_seed_int(window.screenX);
 | ||
|  | 	  //rng_seed_int(window.screenY);
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	function rng_get_byte() { | ||
|  | 	  if(rng_state == null) { | ||
|  | 		rng_seed_time(); | ||
|  | 		rng_state = prng_newstate(); | ||
|  | 		rng_state.init(rng_pool); | ||
|  | 		for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) | ||
|  | 		  rng_pool[rng_pptr] = 0; | ||
|  | 		rng_pptr = 0; | ||
|  | 		//rng_pool = null;
 | ||
|  | 	  } | ||
|  | 	  // TODO: allow reseeding after first request
 | ||
|  | 	  return rng_state.next(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	function rng_get_bytes(ba) { | ||
|  | 	  var i; | ||
|  | 	  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	function SecureRandom() {} | ||
|  | 
 | ||
|  | 	SecureRandom.prototype.nextBytes = rng_get_bytes; | ||
|  | 
 | ||
|  | 	// prng4.js - uses Arcfour as a PRNG
 | ||
|  | 
 | ||
|  | 	function Arcfour() { | ||
|  | 	  this.i = 0; | ||
|  | 	  this.j = 0; | ||
|  | 	  this.S = new Array(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Initialize arcfour context from key, an array of ints, each from [0..255]
 | ||
|  | 	function ARC4init(key) { | ||
|  | 	  var i, j, t; | ||
|  | 	  for(i = 0; i < 256; ++i) | ||
|  | 		this.S[i] = i; | ||
|  | 	  j = 0; | ||
|  | 	  for(i = 0; i < 256; ++i) { | ||
|  | 		j = (j + this.S[i] + key[i % key.length]) & 255; | ||
|  | 		t = this.S[i]; | ||
|  | 		this.S[i] = this.S[j]; | ||
|  | 		this.S[j] = t; | ||
|  | 	  } | ||
|  | 	  this.i = 0; | ||
|  | 	  this.j = 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	function ARC4next() { | ||
|  | 	  var t; | ||
|  | 	  this.i = (this.i + 1) & 255; | ||
|  | 	  this.j = (this.j + this.S[this.i]) & 255; | ||
|  | 	  t = this.S[this.i]; | ||
|  | 	  this.S[this.i] = this.S[this.j]; | ||
|  | 	  this.S[this.j] = t; | ||
|  | 	  return this.S[(t + this.S[this.i]) & 255]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Arcfour.prototype.init = ARC4init; | ||
|  | 	Arcfour.prototype.next = ARC4next; | ||
|  | 
 | ||
|  | 	// Plug in your RNG constructor here
 | ||
|  | 	function prng_newstate() { | ||
|  | 	  return new Arcfour(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Pool size must be a multiple of 4 and greater than 32.
 | ||
|  | 	// An array of bytes the size of the pool will be passed to init()
 | ||
|  | 	var rng_psize = 256; | ||
|  | 
 | ||
|  |   BigInteger.SecureRandom = SecureRandom; | ||
|  |   BigInteger.BigInteger = BigInteger; | ||
|  |   if (typeof exports !== 'undefined') { | ||
|  |     exports = module.exports = BigInteger; | ||
|  |   } else { | ||
|  |     this.BigInteger = BigInteger; | ||
|  |     this.SecureRandom = SecureRandom; | ||
|  |   } | ||
|  | 
 | ||
|  | }).call(this); |