You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					4283 lines
				
				130 KiB
			
		
		
			
		
	
	
					4283 lines
				
				130 KiB
			| 
											2 years ago
										 | /** | ||
|  |  * A Javascript implementation of Transport Layer Security (TLS). | ||
|  |  * | ||
|  |  * @author Dave Longley | ||
|  |  * | ||
|  |  * Copyright (c) 2009-2014 Digital Bazaar, Inc. | ||
|  |  * | ||
|  |  * The TLS Handshake Protocol involves the following steps: | ||
|  |  * | ||
|  |  * - Exchange hello messages to agree on algorithms, exchange random values, | ||
|  |  * and check for session resumption. | ||
|  |  * | ||
|  |  * - Exchange the necessary cryptographic parameters to allow the client and | ||
|  |  * server to agree on a premaster secret. | ||
|  |  * | ||
|  |  * - Exchange certificates and cryptographic information to allow the client | ||
|  |  * and server to authenticate themselves. | ||
|  |  * | ||
|  |  * - Generate a master secret from the premaster secret and exchanged random | ||
|  |  * values. | ||
|  |  * | ||
|  |  * - Provide security parameters to the record layer. | ||
|  |  * | ||
|  |  * - Allow the client and server to verify that their peer has calculated the | ||
|  |  * same security parameters and that the handshake occurred without tampering | ||
|  |  * by an attacker. | ||
|  |  * | ||
|  |  * Up to 4 different messages may be sent during a key exchange. The server | ||
|  |  * certificate, the server key exchange, the client certificate, and the | ||
|  |  * client key exchange. | ||
|  |  * | ||
|  |  * A typical handshake (from the client's perspective). | ||
|  |  * | ||
|  |  * 1. Client sends ClientHello. | ||
|  |  * 2. Client receives ServerHello. | ||
|  |  * 3. Client receives optional Certificate. | ||
|  |  * 4. Client receives optional ServerKeyExchange. | ||
|  |  * 5. Client receives ServerHelloDone. | ||
|  |  * 6. Client sends optional Certificate. | ||
|  |  * 7. Client sends ClientKeyExchange. | ||
|  |  * 8. Client sends optional CertificateVerify. | ||
|  |  * 9. Client sends ChangeCipherSpec. | ||
|  |  * 10. Client sends Finished. | ||
|  |  * 11. Client receives ChangeCipherSpec. | ||
|  |  * 12. Client receives Finished. | ||
|  |  * 13. Client sends/receives application data. | ||
|  |  * | ||
|  |  * To reuse an existing session: | ||
|  |  * | ||
|  |  * 1. Client sends ClientHello with session ID for reuse. | ||
|  |  * 2. Client receives ServerHello with same session ID if reusing. | ||
|  |  * 3. Client receives ChangeCipherSpec message if reusing. | ||
|  |  * 4. Client receives Finished. | ||
|  |  * 5. Client sends ChangeCipherSpec. | ||
|  |  * 6. Client sends Finished. | ||
|  |  * | ||
|  |  * Note: Client ignores HelloRequest if in the middle of a handshake. | ||
|  |  * | ||
|  |  * Record Layer: | ||
|  |  * | ||
|  |  * The record layer fragments information blocks into TLSPlaintext records | ||
|  |  * carrying data in chunks of 2^14 bytes or less. Client message boundaries are | ||
|  |  * not preserved in the record layer (i.e., multiple client messages of the | ||
|  |  * same ContentType MAY be coalesced into a single TLSPlaintext record, or a | ||
|  |  * single message MAY be fragmented across several records). | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   uint8 major; | ||
|  |  *   uint8 minor; | ||
|  |  * } ProtocolVersion; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ContentType type; | ||
|  |  *   ProtocolVersion version; | ||
|  |  *   uint16 length; | ||
|  |  *   opaque fragment[TLSPlaintext.length]; | ||
|  |  * } TLSPlaintext; | ||
|  |  * | ||
|  |  * type: | ||
|  |  *   The higher-level protocol used to process the enclosed fragment. | ||
|  |  * | ||
|  |  * version: | ||
|  |  *   The version of the protocol being employed. TLS Version 1.2 uses version | ||
|  |  *   {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that | ||
|  |  *   supports multiple versions of TLS may not know what version will be | ||
|  |  *   employed before it receives the ServerHello. | ||
|  |  * | ||
|  |  * length: | ||
|  |  *   The length (in bytes) of the following TLSPlaintext.fragment. The length | ||
|  |  *   MUST NOT exceed 2^14 = 16384 bytes. | ||
|  |  * | ||
|  |  * fragment: | ||
|  |  *   The application data. This data is transparent and treated as an | ||
|  |  *   independent block to be dealt with by the higher-level protocol specified | ||
|  |  *   by the type field. | ||
|  |  * | ||
|  |  * Implementations MUST NOT send zero-length fragments of Handshake, Alert, or | ||
|  |  * ChangeCipherSpec content types. Zero-length fragments of Application data | ||
|  |  * MAY be sent as they are potentially useful as a traffic analysis | ||
|  |  * countermeasure. | ||
|  |  * | ||
|  |  * Note: Data of different TLS record layer content types MAY be interleaved. | ||
|  |  * Application data is generally of lower precedence for transmission than | ||
|  |  * other content types. However, records MUST be delivered to the network in | ||
|  |  * the same order as they are protected by the record layer. Recipients MUST | ||
|  |  * receive and process interleaved application layer traffic during handshakes | ||
|  |  * subsequent to the first one on a connection. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ContentType type;       // same as TLSPlaintext.type
 | ||
|  |  *   ProtocolVersion version;// same as TLSPlaintext.version
 | ||
|  |  *   uint16 length; | ||
|  |  *   opaque fragment[TLSCompressed.length]; | ||
|  |  * } TLSCompressed; | ||
|  |  * | ||
|  |  * length: | ||
|  |  *   The length (in bytes) of the following TLSCompressed.fragment. | ||
|  |  *   The length MUST NOT exceed 2^14 + 1024. | ||
|  |  * | ||
|  |  * fragment: | ||
|  |  *   The compressed form of TLSPlaintext.fragment. | ||
|  |  * | ||
|  |  * Note: A CompressionMethod.null operation is an identity operation; no fields | ||
|  |  * are altered. In this implementation, since no compression is supported, | ||
|  |  * uncompressed records are always the same as compressed records. | ||
|  |  * | ||
|  |  * Encryption Information: | ||
|  |  * | ||
|  |  * The encryption and MAC functions translate a TLSCompressed structure into a | ||
|  |  * TLSCiphertext. The decryption functions reverse the process. The MAC of the | ||
|  |  * record also includes a sequence number so that missing, extra, or repeated | ||
|  |  * messages are detectable. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ContentType type; | ||
|  |  *   ProtocolVersion version; | ||
|  |  *   uint16 length; | ||
|  |  *   select (SecurityParameters.cipher_type) { | ||
|  |  *     case stream: GenericStreamCipher; | ||
|  |  *     case block:  GenericBlockCipher; | ||
|  |  *     case aead:   GenericAEADCipher; | ||
|  |  *   } fragment; | ||
|  |  * } TLSCiphertext; | ||
|  |  * | ||
|  |  * type: | ||
|  |  *   The type field is identical to TLSCompressed.type. | ||
|  |  * | ||
|  |  * version: | ||
|  |  *   The version field is identical to TLSCompressed.version. | ||
|  |  * | ||
|  |  * length: | ||
|  |  *   The length (in bytes) of the following TLSCiphertext.fragment. | ||
|  |  *   The length MUST NOT exceed 2^14 + 2048. | ||
|  |  * | ||
|  |  * fragment: | ||
|  |  *   The encrypted form of TLSCompressed.fragment, with the MAC. | ||
|  |  * | ||
|  |  * Note: Only CBC Block Ciphers are supported by this implementation. | ||
|  |  * | ||
|  |  * The TLSCompressed.fragment structures are converted to/from block | ||
|  |  * TLSCiphertext.fragment structures. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   opaque IV[SecurityParameters.record_iv_length]; | ||
|  |  *   block-ciphered struct { | ||
|  |  *     opaque content[TLSCompressed.length]; | ||
|  |  *     opaque MAC[SecurityParameters.mac_length]; | ||
|  |  *     uint8 padding[GenericBlockCipher.padding_length]; | ||
|  |  *     uint8 padding_length; | ||
|  |  *   }; | ||
|  |  * } GenericBlockCipher; | ||
|  |  * | ||
|  |  * The MAC is generated as described in Section 6.2.3.1. | ||
|  |  * | ||
|  |  * IV: | ||
|  |  *   The Initialization Vector (IV) SHOULD be chosen at random, and MUST be | ||
|  |  *   unpredictable. Note that in versions of TLS prior to 1.1, there was no | ||
|  |  *   IV field, and the last ciphertext block of the previous record (the "CBC | ||
|  |  *   residue") was used as the IV. This was changed to prevent the attacks | ||
|  |  *   described in [CBCATT]. For block ciphers, the IV length is of length | ||
|  |  *   SecurityParameters.record_iv_length, which is equal to the | ||
|  |  *   SecurityParameters.block_size. | ||
|  |  * | ||
|  |  * padding: | ||
|  |  *   Padding that is added to force the length of the plaintext to be an | ||
|  |  *   integral multiple of the block cipher's block length. The padding MAY be | ||
|  |  *   any length up to 255 bytes, as long as it results in the | ||
|  |  *   TLSCiphertext.length being an integral multiple of the block length. | ||
|  |  *   Lengths longer than necessary might be desirable to frustrate attacks on | ||
|  |  *   a protocol that are based on analysis of the lengths of exchanged | ||
|  |  *   messages. Each uint8 in the padding data vector MUST be filled with the | ||
|  |  *   padding length value. The receiver MUST check this padding and MUST use | ||
|  |  *   the bad_record_mac alert to indicate padding errors. | ||
|  |  * | ||
|  |  * padding_length: | ||
|  |  *   The padding length MUST be such that the total size of the | ||
|  |  *   GenericBlockCipher structure is a multiple of the cipher's block length. | ||
|  |  *   Legal values range from zero to 255, inclusive. This length specifies the | ||
|  |  *   length of the padding field exclusive of the padding_length field itself. | ||
|  |  * | ||
|  |  * The encrypted data length (TLSCiphertext.length) is one more than the sum of | ||
|  |  * SecurityParameters.block_length, TLSCompressed.length, | ||
|  |  * SecurityParameters.mac_length, and padding_length. | ||
|  |  * | ||
|  |  * Example: If the block length is 8 bytes, the content length | ||
|  |  * (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the | ||
|  |  * length before padding is 82 bytes (this does not include the IV. Thus, the | ||
|  |  * padding length modulo 8 must be equal to 6 in order to make the total length | ||
|  |  * an even multiple of 8 bytes (the block length). The padding length can be | ||
|  |  * 6, 14, 22, and so on, through 254. If the padding length were the minimum | ||
|  |  * necessary, 6, the padding would be 6 bytes, each containing the value 6. | ||
|  |  * Thus, the last 8 octets of the GenericBlockCipher before block encryption | ||
|  |  * would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC. | ||
|  |  * | ||
|  |  * Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical | ||
|  |  * that the entire plaintext of the record be known before any ciphertext is | ||
|  |  * transmitted. Otherwise, it is possible for the attacker to mount the attack | ||
|  |  * described in [CBCATT]. | ||
|  |  * | ||
|  |  * Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing | ||
|  |  * attack on CBC padding based on the time required to compute the MAC. In | ||
|  |  * order to defend against this attack, implementations MUST ensure that | ||
|  |  * record processing time is essentially the same whether or not the padding | ||
|  |  * is correct. In general, the best way to do this is to compute the MAC even | ||
|  |  * if the padding is incorrect, and only then reject the packet. For instance, | ||
|  |  * if the pad appears to be incorrect, the implementation might assume a | ||
|  |  * zero-length pad and then compute the MAC. This leaves a small timing | ||
|  |  * channel, since MAC performance depends, to some extent, on the size of the | ||
|  |  * data fragment, but it is not believed to be large enough to be exploitable, | ||
|  |  * due to the large block size of existing MACs and the small size of the | ||
|  |  * timing signal. | ||
|  |  */ | ||
|  | var forge = require('./forge'); | ||
|  | require('./asn1'); | ||
|  | require('./hmac'); | ||
|  | require('./md5'); | ||
|  | require('./pem'); | ||
|  | require('./pki'); | ||
|  | require('./random'); | ||
|  | require('./sha1'); | ||
|  | require('./util'); | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates pseudo random bytes by mixing the result of two hash functions, | ||
|  |  * MD5 and SHA-1. | ||
|  |  * | ||
|  |  * prf_TLS1(secret, label, seed) = | ||
|  |  *   P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed); | ||
|  |  * | ||
|  |  * Each P_hash function functions as follows: | ||
|  |  * | ||
|  |  * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + | ||
|  |  *                        HMAC_hash(secret, A(2) + seed) + | ||
|  |  *                        HMAC_hash(secret, A(3) + seed) + ... | ||
|  |  * A() is defined as: | ||
|  |  *   A(0) = seed | ||
|  |  *   A(i) = HMAC_hash(secret, A(i-1)) | ||
|  |  * | ||
|  |  * The '+' operator denotes concatenation. | ||
|  |  * | ||
|  |  * As many iterations A(N) as are needed are performed to generate enough | ||
|  |  * pseudo random byte output. If an iteration creates more data than is | ||
|  |  * necessary, then it is truncated. | ||
|  |  * | ||
|  |  * Therefore: | ||
|  |  * A(1) = HMAC_hash(secret, A(0)) | ||
|  |  *      = HMAC_hash(secret, seed) | ||
|  |  * A(2) = HMAC_hash(secret, A(1)) | ||
|  |  *      = HMAC_hash(secret, HMAC_hash(secret, seed)) | ||
|  |  * | ||
|  |  * Therefore: | ||
|  |  * P_hash(secret, seed) = | ||
|  |  *   HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) + | ||
|  |  *   HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) + | ||
|  |  *   ... | ||
|  |  * | ||
|  |  * Therefore: | ||
|  |  * P_hash(secret, seed) = | ||
|  |  *   HMAC_hash(secret, HMAC_hash(secret, seed) + seed) + | ||
|  |  *   HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) + | ||
|  |  *   ... | ||
|  |  * | ||
|  |  * @param secret the secret to use. | ||
|  |  * @param label the label to use. | ||
|  |  * @param seed the seed value to use. | ||
|  |  * @param length the number of bytes to generate. | ||
|  |  * | ||
|  |  * @return the pseudo random bytes in a byte buffer. | ||
|  |  */ | ||
|  | var prf_TLS1 = function(secret, label, seed, length) { | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  | 
 | ||
|  |   /* For TLS 1.0, the secret is split in half, into two secrets of equal | ||
|  |     length. If the secret has an odd length then the last byte of the first | ||
|  |     half will be the same as the first byte of the second. The length of the | ||
|  |     two secrets is half of the secret rounded up. */ | ||
|  |   var idx = (secret.length >> 1); | ||
|  |   var slen = idx + (secret.length & 1); | ||
|  |   var s1 = secret.substr(0, slen); | ||
|  |   var s2 = secret.substr(idx, slen); | ||
|  |   var ai = forge.util.createBuffer(); | ||
|  |   var hmac = forge.hmac.create(); | ||
|  |   seed = label + seed; | ||
|  | 
 | ||
|  |   // determine the number of iterations that must be performed to generate
 | ||
|  |   // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20
 | ||
|  |   var md5itr = Math.ceil(length / 16); | ||
|  |   var sha1itr = Math.ceil(length / 20); | ||
|  | 
 | ||
|  |   // do md5 iterations
 | ||
|  |   hmac.start('MD5', s1); | ||
|  |   var md5bytes = forge.util.createBuffer(); | ||
|  |   ai.putBytes(seed); | ||
|  |   for(var i = 0; i < md5itr; ++i) { | ||
|  |     // HMAC_hash(secret, A(i-1))
 | ||
|  |     hmac.start(null, null); | ||
|  |     hmac.update(ai.getBytes()); | ||
|  |     ai.putBuffer(hmac.digest()); | ||
|  | 
 | ||
|  |     // HMAC_hash(secret, A(i) + seed)
 | ||
|  |     hmac.start(null, null); | ||
|  |     hmac.update(ai.bytes() + seed); | ||
|  |     md5bytes.putBuffer(hmac.digest()); | ||
|  |   } | ||
|  | 
 | ||
|  |   // do sha1 iterations
 | ||
|  |   hmac.start('SHA1', s2); | ||
|  |   var sha1bytes = forge.util.createBuffer(); | ||
|  |   ai.clear(); | ||
|  |   ai.putBytes(seed); | ||
|  |   for(var i = 0; i < sha1itr; ++i) { | ||
|  |     // HMAC_hash(secret, A(i-1))
 | ||
|  |     hmac.start(null, null); | ||
|  |     hmac.update(ai.getBytes()); | ||
|  |     ai.putBuffer(hmac.digest()); | ||
|  | 
 | ||
|  |     // HMAC_hash(secret, A(i) + seed)
 | ||
|  |     hmac.start(null, null); | ||
|  |     hmac.update(ai.bytes() + seed); | ||
|  |     sha1bytes.putBuffer(hmac.digest()); | ||
|  |   } | ||
|  | 
 | ||
|  |   // XOR the md5 bytes with the sha1 bytes
 | ||
|  |   rval.putBytes(forge.util.xorBytes( | ||
|  |     md5bytes.getBytes(), sha1bytes.getBytes(), length)); | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2. | ||
|  |  * | ||
|  |  * @param secret the secret to use. | ||
|  |  * @param label the label to use. | ||
|  |  * @param seed the seed value to use. | ||
|  |  * @param length the number of bytes to generate. | ||
|  |  * | ||
|  |  * @return the pseudo random bytes in a byte buffer. | ||
|  |  */ | ||
|  | var prf_sha256 = function(secret, label, seed, length) { | ||
|  |    // FIXME: implement me for TLS 1.2
 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Gets a MAC for a record using the SHA-1 hash algorithm. | ||
|  |  * | ||
|  |  * @param key the mac key. | ||
|  |  * @param state the sequence number (array of two 32-bit integers). | ||
|  |  * @param record the record. | ||
|  |  * | ||
|  |  * @return the sha-1 hash (20 bytes) for the given record. | ||
|  |  */ | ||
|  | var hmac_sha1 = function(key, seqNum, record) { | ||
|  |   /* MAC is computed like so: | ||
|  |   HMAC_hash( | ||
|  |     key, seqNum + | ||
|  |       TLSCompressed.type + | ||
|  |       TLSCompressed.version + | ||
|  |       TLSCompressed.length + | ||
|  |       TLSCompressed.fragment) | ||
|  |   */ | ||
|  |   var hmac = forge.hmac.create(); | ||
|  |   hmac.start('SHA1', key); | ||
|  |   var b = forge.util.createBuffer(); | ||
|  |   b.putInt32(seqNum[0]); | ||
|  |   b.putInt32(seqNum[1]); | ||
|  |   b.putByte(record.type); | ||
|  |   b.putByte(record.version.major); | ||
|  |   b.putByte(record.version.minor); | ||
|  |   b.putInt16(record.length); | ||
|  |   b.putBytes(record.fragment.bytes()); | ||
|  |   hmac.update(b.getBytes()); | ||
|  |   return hmac.digest().getBytes(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Compresses the TLSPlaintext record into a TLSCompressed record using the | ||
|  |  * deflate algorithm. | ||
|  |  * | ||
|  |  * @param c the TLS connection. | ||
|  |  * @param record the TLSPlaintext record to compress. | ||
|  |  * @param s the ConnectionState to use. | ||
|  |  * | ||
|  |  * @return true on success, false on failure. | ||
|  |  */ | ||
|  | var deflate = function(c, record, s) { | ||
|  |   var rval = false; | ||
|  | 
 | ||
|  |   try { | ||
|  |     var bytes = c.deflate(record.fragment.getBytes()); | ||
|  |     record.fragment = forge.util.createBuffer(bytes); | ||
|  |     record.length = bytes.length; | ||
|  |     rval = true; | ||
|  |   } catch(ex) { | ||
|  |     // deflate error, fail out
 | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Decompresses the TLSCompressed record into a TLSPlaintext record using the | ||
|  |  * deflate algorithm. | ||
|  |  * | ||
|  |  * @param c the TLS connection. | ||
|  |  * @param record the TLSCompressed record to decompress. | ||
|  |  * @param s the ConnectionState to use. | ||
|  |  * | ||
|  |  * @return true on success, false on failure. | ||
|  |  */ | ||
|  | var inflate = function(c, record, s) { | ||
|  |   var rval = false; | ||
|  | 
 | ||
|  |   try { | ||
|  |     var bytes = c.inflate(record.fragment.getBytes()); | ||
|  |     record.fragment = forge.util.createBuffer(bytes); | ||
|  |     record.length = bytes.length; | ||
|  |     rval = true; | ||
|  |   } catch(ex) { | ||
|  |     // inflate error, fail out
 | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Reads a TLS variable-length vector from a byte buffer. | ||
|  |  * | ||
|  |  * Variable-length vectors are defined by specifying a subrange of legal | ||
|  |  * lengths, inclusively, using the notation <floor..ceiling>. When these are | ||
|  |  * encoded, the actual length precedes the vector's contents in the byte | ||
|  |  * stream. The length will be in the form of a number consuming as many bytes | ||
|  |  * as required to hold the vector's specified maximum (ceiling) length. A | ||
|  |  * variable-length vector with an actual length field of zero is referred to | ||
|  |  * as an empty vector. | ||
|  |  * | ||
|  |  * @param b the byte buffer. | ||
|  |  * @param lenBytes the number of bytes required to store the length. | ||
|  |  * | ||
|  |  * @return the resulting byte buffer. | ||
|  |  */ | ||
|  | var readVector = function(b, lenBytes) { | ||
|  |   var len = 0; | ||
|  |   switch(lenBytes) { | ||
|  |   case 1: | ||
|  |     len = b.getByte(); | ||
|  |     break; | ||
|  |   case 2: | ||
|  |     len = b.getInt16(); | ||
|  |     break; | ||
|  |   case 3: | ||
|  |     len = b.getInt24(); | ||
|  |     break; | ||
|  |   case 4: | ||
|  |     len = b.getInt32(); | ||
|  |     break; | ||
|  |   } | ||
|  | 
 | ||
|  |   // read vector bytes into a new buffer
 | ||
|  |   return forge.util.createBuffer(b.getBytes(len)); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Writes a TLS variable-length vector to a byte buffer. | ||
|  |  * | ||
|  |  * @param b the byte buffer. | ||
|  |  * @param lenBytes the number of bytes required to store the length. | ||
|  |  * @param v the byte buffer vector. | ||
|  |  */ | ||
|  | var writeVector = function(b, lenBytes, v) { | ||
|  |   // encode length at the start of the vector, where the number of bytes for
 | ||
|  |   // the length is the maximum number of bytes it would take to encode the
 | ||
|  |   // vector's ceiling
 | ||
|  |   b.putInt(v.length(), lenBytes << 3); | ||
|  |   b.putBuffer(v); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * The tls implementation. | ||
|  |  */ | ||
|  | var tls = {}; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and | ||
|  |  * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time | ||
|  |  * of this implementation so TLS 1.0 was implemented instead. | ||
|  |  */ | ||
|  | tls.Versions = { | ||
|  |   TLS_1_0: {major: 3, minor: 1}, | ||
|  |   TLS_1_1: {major: 3, minor: 2}, | ||
|  |   TLS_1_2: {major: 3, minor: 3} | ||
|  | }; | ||
|  | tls.SupportedVersions = [ | ||
|  |   tls.Versions.TLS_1_1, | ||
|  |   tls.Versions.TLS_1_0 | ||
|  | ]; | ||
|  | tls.Version = tls.SupportedVersions[0]; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Maximum fragment size. True maximum is 16384, but we fragment before that | ||
|  |  * to allow for unusual small increases during compression. | ||
|  |  */ | ||
|  | tls.MaxFragment = 16384 - 1024; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Whether this entity is considered the "client" or "server". | ||
|  |  * enum { server, client } ConnectionEnd; | ||
|  |  */ | ||
|  | tls.ConnectionEnd = { | ||
|  |   server: 0, | ||
|  |   client: 1 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Pseudo-random function algorithm used to generate keys from the master | ||
|  |  * secret. | ||
|  |  * enum { tls_prf_sha256 } PRFAlgorithm; | ||
|  |  */ | ||
|  | tls.PRFAlgorithm = { | ||
|  |   tls_prf_sha256: 0 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Bulk encryption algorithms. | ||
|  |  * enum { null, rc4, des3, aes } BulkCipherAlgorithm; | ||
|  |  */ | ||
|  | tls.BulkCipherAlgorithm = { | ||
|  |   none: null, | ||
|  |   rc4: 0, | ||
|  |   des3: 1, | ||
|  |   aes: 2 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Cipher types. | ||
|  |  * enum { stream, block, aead } CipherType; | ||
|  |  */ | ||
|  | tls.CipherType = { | ||
|  |   stream: 0, | ||
|  |   block: 1, | ||
|  |   aead: 2 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * MAC (Message Authentication Code) algorithms. | ||
|  |  * enum { null, hmac_md5, hmac_sha1, hmac_sha256, | ||
|  |  *   hmac_sha384, hmac_sha512} MACAlgorithm; | ||
|  |  */ | ||
|  | tls.MACAlgorithm = { | ||
|  |   none: null, | ||
|  |   hmac_md5: 0, | ||
|  |   hmac_sha1: 1, | ||
|  |   hmac_sha256: 2, | ||
|  |   hmac_sha384: 3, | ||
|  |   hmac_sha512: 4 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Compression algorithms. | ||
|  |  * enum { null(0), deflate(1), (255) } CompressionMethod; | ||
|  |  */ | ||
|  | tls.CompressionMethod = { | ||
|  |   none: 0, | ||
|  |   deflate: 1 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * TLS record content types. | ||
|  |  * enum { | ||
|  |  *   change_cipher_spec(20), alert(21), handshake(22), | ||
|  |  *   application_data(23), (255) | ||
|  |  * } ContentType; | ||
|  |  */ | ||
|  | tls.ContentType = { | ||
|  |   change_cipher_spec: 20, | ||
|  |   alert: 21, | ||
|  |   handshake: 22, | ||
|  |   application_data: 23, | ||
|  |   heartbeat: 24 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * TLS handshake types. | ||
|  |  * enum { | ||
|  |  *   hello_request(0), client_hello(1), server_hello(2), | ||
|  |  *   certificate(11), server_key_exchange (12), | ||
|  |  *   certificate_request(13), server_hello_done(14), | ||
|  |  *   certificate_verify(15), client_key_exchange(16), | ||
|  |  *   finished(20), (255) | ||
|  |  * } HandshakeType; | ||
|  |  */ | ||
|  | tls.HandshakeType = { | ||
|  |   hello_request: 0, | ||
|  |   client_hello: 1, | ||
|  |   server_hello: 2, | ||
|  |   certificate: 11, | ||
|  |   server_key_exchange: 12, | ||
|  |   certificate_request: 13, | ||
|  |   server_hello_done: 14, | ||
|  |   certificate_verify: 15, | ||
|  |   client_key_exchange: 16, | ||
|  |   finished: 20 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * TLS Alert Protocol. | ||
|  |  * | ||
|  |  * enum { warning(1), fatal(2), (255) } AlertLevel; | ||
|  |  * | ||
|  |  * enum { | ||
|  |  *   close_notify(0), | ||
|  |  *   unexpected_message(10), | ||
|  |  *   bad_record_mac(20), | ||
|  |  *   decryption_failed(21), | ||
|  |  *   record_overflow(22), | ||
|  |  *   decompression_failure(30), | ||
|  |  *   handshake_failure(40), | ||
|  |  *   bad_certificate(42), | ||
|  |  *   unsupported_certificate(43), | ||
|  |  *   certificate_revoked(44), | ||
|  |  *   certificate_expired(45), | ||
|  |  *   certificate_unknown(46), | ||
|  |  *   illegal_parameter(47), | ||
|  |  *   unknown_ca(48), | ||
|  |  *   access_denied(49), | ||
|  |  *   decode_error(50), | ||
|  |  *   decrypt_error(51), | ||
|  |  *   export_restriction(60), | ||
|  |  *   protocol_version(70), | ||
|  |  *   insufficient_security(71), | ||
|  |  *   internal_error(80), | ||
|  |  *   user_canceled(90), | ||
|  |  *   no_renegotiation(100), | ||
|  |  *   (255) | ||
|  |  * } AlertDescription; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   AlertLevel level; | ||
|  |  *   AlertDescription description; | ||
|  |  * } Alert; | ||
|  |  */ | ||
|  | tls.Alert = {}; | ||
|  | tls.Alert.Level = { | ||
|  |   warning: 1, | ||
|  |   fatal: 2 | ||
|  | }; | ||
|  | tls.Alert.Description = { | ||
|  |   close_notify: 0, | ||
|  |   unexpected_message: 10, | ||
|  |   bad_record_mac: 20, | ||
|  |   decryption_failed: 21, | ||
|  |   record_overflow: 22, | ||
|  |   decompression_failure: 30, | ||
|  |   handshake_failure: 40, | ||
|  |   bad_certificate: 42, | ||
|  |   unsupported_certificate: 43, | ||
|  |   certificate_revoked: 44, | ||
|  |   certificate_expired: 45, | ||
|  |   certificate_unknown: 46, | ||
|  |   illegal_parameter: 47, | ||
|  |   unknown_ca: 48, | ||
|  |   access_denied: 49, | ||
|  |   decode_error: 50, | ||
|  |   decrypt_error: 51, | ||
|  |   export_restriction: 60, | ||
|  |   protocol_version: 70, | ||
|  |   insufficient_security: 71, | ||
|  |   internal_error: 80, | ||
|  |   user_canceled: 90, | ||
|  |   no_renegotiation: 100 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * TLS Heartbeat Message types. | ||
|  |  * enum { | ||
|  |  *   heartbeat_request(1), | ||
|  |  *   heartbeat_response(2), | ||
|  |  *   (255) | ||
|  |  * } HeartbeatMessageType; | ||
|  |  */ | ||
|  | tls.HeartbeatMessageType = { | ||
|  |   heartbeat_request: 1, | ||
|  |   heartbeat_response: 2 | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Supported cipher suites. | ||
|  |  */ | ||
|  | tls.CipherSuites = {}; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Gets a supported cipher suite from its 2 byte ID. | ||
|  |  * | ||
|  |  * @param twoBytes two bytes in a string. | ||
|  |  * | ||
|  |  * @return the matching supported cipher suite or null. | ||
|  |  */ | ||
|  | tls.getCipherSuite = function(twoBytes) { | ||
|  |   var rval = null; | ||
|  |   for(var key in tls.CipherSuites) { | ||
|  |     var cs = tls.CipherSuites[key]; | ||
|  |     if(cs.id[0] === twoBytes.charCodeAt(0) && | ||
|  |       cs.id[1] === twoBytes.charCodeAt(1)) { | ||
|  |       rval = cs; | ||
|  |       break; | ||
|  |     } | ||
|  |   } | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when an unexpected record is encountered. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleUnexpected = function(c, record) { | ||
|  |   // if connection is client and closed, ignore unexpected messages
 | ||
|  |   var ignore = (!c.open && c.entity === tls.ConnectionEnd.client); | ||
|  |   if(!ignore) { | ||
|  |     c.error(c, { | ||
|  |       message: 'Unexpected message. Received TLS record out of order.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.unexpected_message | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a HelloRequest record. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleHelloRequest = function(c, record, length) { | ||
|  |   // ignore renegotiation requests from the server during a handshake, but
 | ||
|  |   // if handshaking, send a warning alert that renegotation is denied
 | ||
|  |   if(!c.handshaking && c.handshakes > 0) { | ||
|  |     // send alert warning
 | ||
|  |     tls.queue(c, tls.createAlert(c, { | ||
|  |        level: tls.Alert.Level.warning, | ||
|  |        description: tls.Alert.Description.no_renegotiation | ||
|  |     })); | ||
|  |     tls.flush(c); | ||
|  |   } | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Parses a hello message from a ClientHello or ServerHello record. | ||
|  |  * | ||
|  |  * @param record the record to parse. | ||
|  |  * | ||
|  |  * @return the parsed message. | ||
|  |  */ | ||
|  | tls.parseHelloMessage = function(c, record, length) { | ||
|  |   var msg = null; | ||
|  | 
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  | 
 | ||
|  |   // minimum of 38 bytes in message
 | ||
|  |   if(length < 38) { | ||
|  |     c.error(c, { | ||
|  |       message: client ? | ||
|  |         'Invalid ServerHello message. Message too short.' : | ||
|  |         'Invalid ClientHello message. Message too short.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } else { | ||
|  |     // use 'remaining' to calculate # of remaining bytes in the message
 | ||
|  |     var b = record.fragment; | ||
|  |     var remaining = b.length(); | ||
|  |     msg = { | ||
|  |       version: { | ||
|  |         major: b.getByte(), | ||
|  |         minor: b.getByte() | ||
|  |       }, | ||
|  |       random: forge.util.createBuffer(b.getBytes(32)), | ||
|  |       session_id: readVector(b, 1), | ||
|  |       extensions: [] | ||
|  |     }; | ||
|  |     if(client) { | ||
|  |       msg.cipher_suite = b.getBytes(2); | ||
|  |       msg.compression_method = b.getByte(); | ||
|  |     } else { | ||
|  |       msg.cipher_suites = readVector(b, 2); | ||
|  |       msg.compression_methods = readVector(b, 1); | ||
|  |     } | ||
|  | 
 | ||
|  |     // read extensions if there are any bytes left in the message
 | ||
|  |     remaining = length - (remaining - b.length()); | ||
|  |     if(remaining > 0) { | ||
|  |       // parse extensions
 | ||
|  |       var exts = readVector(b, 2); | ||
|  |       while(exts.length() > 0) { | ||
|  |         msg.extensions.push({ | ||
|  |           type: [exts.getByte(), exts.getByte()], | ||
|  |           data: readVector(exts, 2) | ||
|  |         }); | ||
|  |       } | ||
|  | 
 | ||
|  |       // TODO: make extension support modular
 | ||
|  |       if(!client) { | ||
|  |         for(var i = 0; i < msg.extensions.length; ++i) { | ||
|  |           var ext = msg.extensions[i]; | ||
|  | 
 | ||
|  |           // support SNI extension
 | ||
|  |           if(ext.type[0] === 0x00 && ext.type[1] === 0x00) { | ||
|  |             // get server name list
 | ||
|  |             var snl = readVector(ext.data, 2); | ||
|  |             while(snl.length() > 0) { | ||
|  |               // read server name type
 | ||
|  |               var snType = snl.getByte(); | ||
|  | 
 | ||
|  |               // only HostName type (0x00) is known, break out if
 | ||
|  |               // another type is detected
 | ||
|  |               if(snType !== 0x00) { | ||
|  |                 break; | ||
|  |               } | ||
|  | 
 | ||
|  |               // add host name to server name list
 | ||
|  |               c.session.extensions.server_name.serverNameList.push( | ||
|  |                 readVector(snl, 2).getBytes()); | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // version already set, do not allow version change
 | ||
|  |     if(c.session.version) { | ||
|  |       if(msg.version.major !== c.session.version.major || | ||
|  |         msg.version.minor !== c.session.version.minor) { | ||
|  |         return c.error(c, { | ||
|  |           message: 'TLS version change is disallowed during renegotiation.', | ||
|  |           send: true, | ||
|  |           alert: { | ||
|  |             level: tls.Alert.Level.fatal, | ||
|  |             description: tls.Alert.Description.protocol_version | ||
|  |           } | ||
|  |         }); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // get the chosen (ServerHello) cipher suite
 | ||
|  |     if(client) { | ||
|  |       // FIXME: should be checking configured acceptable cipher suites
 | ||
|  |       c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite); | ||
|  |     } else { | ||
|  |       // get a supported preferred (ClientHello) cipher suite
 | ||
|  |       // choose the first supported cipher suite
 | ||
|  |       var tmp = forge.util.createBuffer(msg.cipher_suites.bytes()); | ||
|  |       while(tmp.length() > 0) { | ||
|  |         // FIXME: should be checking configured acceptable suites
 | ||
|  |         // cipher suites take up 2 bytes
 | ||
|  |         c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2)); | ||
|  |         if(c.session.cipherSuite !== null) { | ||
|  |           break; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // cipher suite not supported
 | ||
|  |     if(c.session.cipherSuite === null) { | ||
|  |       return c.error(c, { | ||
|  |         message: 'No cipher suites in common.', | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.handshake_failure | ||
|  |         }, | ||
|  |         cipherSuite: forge.util.bytesToHex(msg.cipher_suite) | ||
|  |       }); | ||
|  |     } | ||
|  | 
 | ||
|  |     // TODO: handle compression methods
 | ||
|  |     if(client) { | ||
|  |       c.session.compressionMethod = msg.compression_method; | ||
|  |     } else { | ||
|  |       // no compression
 | ||
|  |       c.session.compressionMethod = tls.CompressionMethod.none; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return msg; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates security parameters for the given connection based on the given | ||
|  |  * hello message. | ||
|  |  * | ||
|  |  * @param c the TLS connection. | ||
|  |  * @param msg the hello message. | ||
|  |  */ | ||
|  | tls.createSecurityParameters = function(c, msg) { | ||
|  |   /* Note: security params are from TLS 1.2, some values like prf_algorithm | ||
|  |   are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is | ||
|  |   used. */ | ||
|  | 
 | ||
|  |   // TODO: handle other options from server when more supported
 | ||
|  | 
 | ||
|  |   // get client and server randoms
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   var msgRandom = msg.random.bytes(); | ||
|  |   var cRandom = client ? c.session.sp.client_random : msgRandom; | ||
|  |   var sRandom = client ? msgRandom : tls.createRandom().getBytes(); | ||
|  | 
 | ||
|  |   // create new security parameters
 | ||
|  |   c.session.sp = { | ||
|  |     entity: c.entity, | ||
|  |     prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256, | ||
|  |     bulk_cipher_algorithm: null, | ||
|  |     cipher_type: null, | ||
|  |     enc_key_length: null, | ||
|  |     block_length: null, | ||
|  |     fixed_iv_length: null, | ||
|  |     record_iv_length: null, | ||
|  |     mac_algorithm: null, | ||
|  |     mac_length: null, | ||
|  |     mac_key_length: null, | ||
|  |     compression_algorithm: c.session.compressionMethod, | ||
|  |     pre_master_secret: null, | ||
|  |     master_secret: null, | ||
|  |     client_random: cRandom, | ||
|  |     server_random: sRandom | ||
|  |   }; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a ServerHello record. | ||
|  |  * | ||
|  |  * When a ServerHello message will be sent: | ||
|  |  *   The server will send this message in response to a client hello message | ||
|  |  *   when it was able to find an acceptable set of algorithms. If it cannot | ||
|  |  *   find such a match, it will respond with a handshake failure alert. | ||
|  |  * | ||
|  |  * uint24 length; | ||
|  |  * struct { | ||
|  |  *   ProtocolVersion server_version; | ||
|  |  *   Random random; | ||
|  |  *   SessionID session_id; | ||
|  |  *   CipherSuite cipher_suite; | ||
|  |  *   CompressionMethod compression_method; | ||
|  |  *   select(extensions_present) { | ||
|  |  *     case false: | ||
|  |  *       struct {}; | ||
|  |  *     case true: | ||
|  |  *       Extension extensions<0..2^16-1>; | ||
|  |  *   }; | ||
|  |  * } ServerHello; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleServerHello = function(c, record, length) { | ||
|  |   var msg = tls.parseHelloMessage(c, record, length); | ||
|  |   if(c.fail) { | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // ensure server version is compatible
 | ||
|  |   if(msg.version.minor <= c.version.minor) { | ||
|  |     c.version.minor = msg.version.minor; | ||
|  |   } else { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Incompatible TLS version.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.protocol_version | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // indicate session version has been set
 | ||
|  |   c.session.version = c.version; | ||
|  | 
 | ||
|  |   // get the session ID from the message
 | ||
|  |   var sessionId = msg.session_id.bytes(); | ||
|  | 
 | ||
|  |   // if the session ID is not blank and matches the cached one, resume
 | ||
|  |   // the session
 | ||
|  |   if(sessionId.length > 0 && sessionId === c.session.id) { | ||
|  |     // resuming session, expect a ChangeCipherSpec next
 | ||
|  |     c.expect = SCC; | ||
|  |     c.session.resuming = true; | ||
|  | 
 | ||
|  |     // get new server random
 | ||
|  |     c.session.sp.server_random = msg.random.bytes(); | ||
|  |   } else { | ||
|  |     // not resuming, expect a server Certificate message next
 | ||
|  |     c.expect = SCE; | ||
|  |     c.session.resuming = false; | ||
|  | 
 | ||
|  |     // create new security parameters
 | ||
|  |     tls.createSecurityParameters(c, msg); | ||
|  |   } | ||
|  | 
 | ||
|  |   // set new session ID
 | ||
|  |   c.session.id = sessionId; | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a server receives a ClientHello record. | ||
|  |  * | ||
|  |  * When a ClientHello message will be sent: | ||
|  |  *   When a client first connects to a server it is required to send the | ||
|  |  *   client hello as its first message. The client can also send a client | ||
|  |  *   hello in response to a hello request or on its own initiative in order | ||
|  |  *   to renegotiate the security parameters in an existing connection. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleClientHello = function(c, record, length) { | ||
|  |   var msg = tls.parseHelloMessage(c, record, length); | ||
|  |   if(c.fail) { | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get the session ID from the message
 | ||
|  |   var sessionId = msg.session_id.bytes(); | ||
|  | 
 | ||
|  |   // see if the given session ID is in the cache
 | ||
|  |   var session = null; | ||
|  |   if(c.sessionCache) { | ||
|  |     session = c.sessionCache.getSession(sessionId); | ||
|  |     if(session === null) { | ||
|  |       // session ID not found
 | ||
|  |       sessionId = ''; | ||
|  |     } else if(session.version.major !== msg.version.major || | ||
|  |       session.version.minor > msg.version.minor) { | ||
|  |       // if session version is incompatible with client version, do not resume
 | ||
|  |       session = null; | ||
|  |       sessionId = ''; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // no session found to resume, generate a new session ID
 | ||
|  |   if(sessionId.length === 0) { | ||
|  |     sessionId = forge.random.getBytes(32); | ||
|  |   } | ||
|  | 
 | ||
|  |   // update session
 | ||
|  |   c.session.id = sessionId; | ||
|  |   c.session.clientHelloVersion = msg.version; | ||
|  |   c.session.sp = {}; | ||
|  |   if(session) { | ||
|  |     // use version and security parameters from resumed session
 | ||
|  |     c.version = c.session.version = session.version; | ||
|  |     c.session.sp = session.sp; | ||
|  |   } else { | ||
|  |     // use highest compatible minor version
 | ||
|  |     var version; | ||
|  |     for(var i = 1; i < tls.SupportedVersions.length; ++i) { | ||
|  |       version = tls.SupportedVersions[i]; | ||
|  |       if(version.minor <= msg.version.minor) { | ||
|  |         break; | ||
|  |       } | ||
|  |     } | ||
|  |     c.version = {major: version.major, minor: version.minor}; | ||
|  |     c.session.version = c.version; | ||
|  |   } | ||
|  | 
 | ||
|  |   // if a session is set, resume it
 | ||
|  |   if(session !== null) { | ||
|  |     // resuming session, expect a ChangeCipherSpec next
 | ||
|  |     c.expect = CCC; | ||
|  |     c.session.resuming = true; | ||
|  | 
 | ||
|  |     // get new client random
 | ||
|  |     c.session.sp.client_random = msg.random.bytes(); | ||
|  |   } else { | ||
|  |     // not resuming, expect a Certificate or ClientKeyExchange
 | ||
|  |     c.expect = (c.verifyClient !== false) ? CCE : CKE; | ||
|  |     c.session.resuming = false; | ||
|  | 
 | ||
|  |     // create new security parameters
 | ||
|  |     tls.createSecurityParameters(c, msg); | ||
|  |   } | ||
|  | 
 | ||
|  |   // connection now open
 | ||
|  |   c.open = true; | ||
|  | 
 | ||
|  |   // queue server hello
 | ||
|  |   tls.queue(c, tls.createRecord(c, { | ||
|  |     type: tls.ContentType.handshake, | ||
|  |     data: tls.createServerHello(c) | ||
|  |   })); | ||
|  | 
 | ||
|  |   if(c.session.resuming) { | ||
|  |     // queue change cipher spec message
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.change_cipher_spec, | ||
|  |       data: tls.createChangeCipherSpec() | ||
|  |     })); | ||
|  | 
 | ||
|  |     // create pending state
 | ||
|  |     c.state.pending = tls.createConnectionState(c); | ||
|  | 
 | ||
|  |     // change current write state to pending write state
 | ||
|  |     c.state.current.write = c.state.pending.write; | ||
|  | 
 | ||
|  |     // queue finished
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.handshake, | ||
|  |       data: tls.createFinished(c) | ||
|  |     })); | ||
|  |   } else { | ||
|  |     // queue server certificate
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.handshake, | ||
|  |       data: tls.createCertificate(c) | ||
|  |     })); | ||
|  | 
 | ||
|  |     if(!c.fail) { | ||
|  |       // queue server key exchange
 | ||
|  |       tls.queue(c, tls.createRecord(c, { | ||
|  |         type: tls.ContentType.handshake, | ||
|  |         data: tls.createServerKeyExchange(c) | ||
|  |       })); | ||
|  | 
 | ||
|  |       // request client certificate if set
 | ||
|  |       if(c.verifyClient !== false) { | ||
|  |         // queue certificate request
 | ||
|  |         tls.queue(c, tls.createRecord(c, { | ||
|  |           type: tls.ContentType.handshake, | ||
|  |           data: tls.createCertificateRequest(c) | ||
|  |         })); | ||
|  |       } | ||
|  | 
 | ||
|  |       // queue server hello done
 | ||
|  |       tls.queue(c, tls.createRecord(c, { | ||
|  |         type: tls.ContentType.handshake, | ||
|  |         data: tls.createServerHelloDone(c) | ||
|  |       })); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // send records
 | ||
|  |   tls.flush(c); | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a Certificate record. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   The server must send a certificate whenever the agreed-upon key exchange | ||
|  |  *   method is not an anonymous one. This message will always immediately | ||
|  |  *   follow the server hello message. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   The certificate type must be appropriate for the selected cipher suite's | ||
|  |  *   key exchange algorithm, and is generally an X.509v3 certificate. It must | ||
|  |  *   contain a key which matches the key exchange method, as follows. Unless | ||
|  |  *   otherwise specified, the signing algorithm for the certificate must be | ||
|  |  *   the same as the algorithm for the certificate key. Unless otherwise | ||
|  |  *   specified, the public key may be of any length. | ||
|  |  * | ||
|  |  * opaque ASN.1Cert<1..2^24-1>; | ||
|  |  * struct { | ||
|  |  *   ASN.1Cert certificate_list<1..2^24-1>; | ||
|  |  * } Certificate; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleCertificate = function(c, record, length) { | ||
|  |   // minimum of 3 bytes in message
 | ||
|  |   if(length < 3) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid Certificate message. Message too short.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   var b = record.fragment; | ||
|  |   var msg = { | ||
|  |     certificate_list: readVector(b, 3) | ||
|  |   }; | ||
|  | 
 | ||
|  |   /* The sender's certificate will be first in the list (chain), each | ||
|  |     subsequent one that follows will certify the previous one, but root | ||
|  |     certificates (self-signed) that specify the certificate authority may | ||
|  |     be omitted under the assumption that clients must already possess it. */ | ||
|  |   var cert, asn1; | ||
|  |   var certs = []; | ||
|  |   try { | ||
|  |     while(msg.certificate_list.length() > 0) { | ||
|  |       // each entry in msg.certificate_list is a vector with 3 len bytes
 | ||
|  |       cert = readVector(msg.certificate_list, 3); | ||
|  |       asn1 = forge.asn1.fromDer(cert); | ||
|  |       cert = forge.pki.certificateFromAsn1(asn1, true); | ||
|  |       certs.push(cert); | ||
|  |     } | ||
|  |   } catch(ex) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Could not parse certificate list.', | ||
|  |       cause: ex, | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.bad_certificate | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // ensure at least 1 certificate was provided if in client-mode
 | ||
|  |   // or if verifyClient was set to true to require a certificate
 | ||
|  |   // (as opposed to 'optional')
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   if((client || c.verifyClient === true) && certs.length === 0) { | ||
|  |     // error, no certificate
 | ||
|  |     c.error(c, { | ||
|  |       message: client ? | ||
|  |         'No server certificate provided.' : | ||
|  |         'No client certificate provided.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } else if(certs.length === 0) { | ||
|  |     // no certs to verify
 | ||
|  |     // expect a ServerKeyExchange or ClientKeyExchange message next
 | ||
|  |     c.expect = client ? SKE : CKE; | ||
|  |   } else { | ||
|  |     // save certificate in session
 | ||
|  |     if(client) { | ||
|  |       c.session.serverCertificate = certs[0]; | ||
|  |     } else { | ||
|  |       c.session.clientCertificate = certs[0]; | ||
|  |     } | ||
|  | 
 | ||
|  |     if(tls.verifyCertificateChain(c, certs)) { | ||
|  |       // expect a ServerKeyExchange or ClientKeyExchange message next
 | ||
|  |       c.expect = client ? SKE : CKE; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a ServerKeyExchange record. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   This message will be sent immediately after the server certificate | ||
|  |  *   message (or the server hello message, if this is an anonymous | ||
|  |  *   negotiation). | ||
|  |  * | ||
|  |  *   The server key exchange message is sent by the server only when the | ||
|  |  *   server certificate message (if sent) does not contain enough data to | ||
|  |  *   allow the client to exchange a premaster secret. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   This message conveys cryptographic information to allow the client to | ||
|  |  *   communicate the premaster secret: either an RSA public key to encrypt | ||
|  |  *   the premaster secret with, or a Diffie-Hellman public key with which the | ||
|  |  *   client can complete a key exchange (with the result being the premaster | ||
|  |  *   secret.) | ||
|  |  * | ||
|  |  * enum { | ||
|  |  *   dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa | ||
|  |  * } KeyExchangeAlgorithm; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   opaque dh_p<1..2^16-1>; | ||
|  |  *   opaque dh_g<1..2^16-1>; | ||
|  |  *   opaque dh_Ys<1..2^16-1>; | ||
|  |  * } ServerDHParams; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   select(KeyExchangeAlgorithm) { | ||
|  |  *     case dh_anon: | ||
|  |  *       ServerDHParams params; | ||
|  |  *     case dhe_dss: | ||
|  |  *     case dhe_rsa: | ||
|  |  *       ServerDHParams params; | ||
|  |  *       digitally-signed struct { | ||
|  |  *         opaque client_random[32]; | ||
|  |  *         opaque server_random[32]; | ||
|  |  *         ServerDHParams params; | ||
|  |  *       } signed_params; | ||
|  |  *     case rsa: | ||
|  |  *     case dh_dss: | ||
|  |  *     case dh_rsa: | ||
|  |  *       struct {}; | ||
|  |  *   }; | ||
|  |  * } ServerKeyExchange; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleServerKeyExchange = function(c, record, length) { | ||
|  |   // this implementation only supports RSA, no Diffie-Hellman support
 | ||
|  |   // so any length > 0 is invalid
 | ||
|  |   if(length > 0) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid key parameters. Only RSA is supported.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.unsupported_certificate | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // expect an optional CertificateRequest message next
 | ||
|  |   c.expect = SCR; | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a ClientKeyExchange record. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleClientKeyExchange = function(c, record, length) { | ||
|  |   // this implementation only supports RSA, no Diffie-Hellman support
 | ||
|  |   // so any length < 48 is invalid
 | ||
|  |   if(length < 48) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid key parameters. Only RSA is supported.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.unsupported_certificate | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   var b = record.fragment; | ||
|  |   var msg = { | ||
|  |     enc_pre_master_secret: readVector(b, 2).getBytes() | ||
|  |   }; | ||
|  | 
 | ||
|  |   // do rsa decryption
 | ||
|  |   var privateKey = null; | ||
|  |   if(c.getPrivateKey) { | ||
|  |     try { | ||
|  |       privateKey = c.getPrivateKey(c, c.session.serverCertificate); | ||
|  |       privateKey = forge.pki.privateKeyFromPem(privateKey); | ||
|  |     } catch(ex) { | ||
|  |       c.error(c, { | ||
|  |         message: 'Could not get private key.', | ||
|  |         cause: ex, | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.internal_error | ||
|  |         } | ||
|  |       }); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if(privateKey === null) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'No private key set.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.internal_error | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   try { | ||
|  |     // decrypt 48-byte pre-master secret
 | ||
|  |     var sp = c.session.sp; | ||
|  |     sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret); | ||
|  | 
 | ||
|  |     // ensure client hello version matches first 2 bytes
 | ||
|  |     var version = c.session.clientHelloVersion; | ||
|  |     if(version.major !== sp.pre_master_secret.charCodeAt(0) || | ||
|  |       version.minor !== sp.pre_master_secret.charCodeAt(1)) { | ||
|  |       // error, do not send alert (see BLEI attack below)
 | ||
|  |       throw new Error('TLS version rollback attack detected.'); | ||
|  |     } | ||
|  |   } catch(ex) { | ||
|  |     /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a | ||
|  |       TLS server which is using PKCS#1 encoded RSA, so instead of | ||
|  |       failing here, we generate 48 random bytes and use that as | ||
|  |       the pre-master secret. */ | ||
|  |     sp.pre_master_secret = forge.random.getBytes(48); | ||
|  |   } | ||
|  | 
 | ||
|  |   // expect a CertificateVerify message if a Certificate was received that
 | ||
|  |   // does not have fixed Diffie-Hellman params, otherwise expect
 | ||
|  |   // ChangeCipherSpec
 | ||
|  |   c.expect = CCC; | ||
|  |   if(c.session.clientCertificate !== null) { | ||
|  |     // only RSA support, so expect CertificateVerify
 | ||
|  |     // TODO: support Diffie-Hellman
 | ||
|  |     c.expect = CCV; | ||
|  |   } | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a CertificateRequest record. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   A non-anonymous server can optionally request a certificate from the | ||
|  |  *   client, if appropriate for the selected cipher suite. This message, if | ||
|  |  *   sent, will immediately follow the Server Key Exchange message (if it is | ||
|  |  *   sent; otherwise, the Server Certificate message). | ||
|  |  * | ||
|  |  * enum { | ||
|  |  *   rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), | ||
|  |  *   rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6), | ||
|  |  *   fortezza_dms_RESERVED(20), (255) | ||
|  |  * } ClientCertificateType; | ||
|  |  * | ||
|  |  * opaque DistinguishedName<1..2^16-1>; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ClientCertificateType certificate_types<1..2^8-1>; | ||
|  |  *   SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>; | ||
|  |  *   DistinguishedName certificate_authorities<0..2^16-1>; | ||
|  |  * } CertificateRequest; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleCertificateRequest = function(c, record, length) { | ||
|  |   // minimum of 3 bytes in message
 | ||
|  |   if(length < 3) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid CertificateRequest. Message too short.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // TODO: TLS 1.2+ has different format including
 | ||
|  |   // SignatureAndHashAlgorithm after cert types
 | ||
|  |   var b = record.fragment; | ||
|  |   var msg = { | ||
|  |     certificate_types: readVector(b, 1), | ||
|  |     certificate_authorities: readVector(b, 2) | ||
|  |   }; | ||
|  | 
 | ||
|  |   // save certificate request in session
 | ||
|  |   c.session.certificateRequest = msg; | ||
|  | 
 | ||
|  |   // expect a ServerHelloDone message next
 | ||
|  |   c.expect = SHD; | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a server receives a CertificateVerify record. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleCertificateVerify = function(c, record, length) { | ||
|  |   if(length < 2) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid CertificateVerify. Message too short.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // rewind to get full bytes for message so it can be manually
 | ||
|  |   // digested below (special case for CertificateVerify messages because
 | ||
|  |   // they must be digested *after* handling as opposed to all others)
 | ||
|  |   var b = record.fragment; | ||
|  |   b.read -= 4; | ||
|  |   var msgBytes = b.bytes(); | ||
|  |   b.read += 4; | ||
|  | 
 | ||
|  |   var msg = { | ||
|  |     signature: readVector(b, 2).getBytes() | ||
|  |   }; | ||
|  | 
 | ||
|  |   // TODO: add support for DSA
 | ||
|  | 
 | ||
|  |   // generate data to verify
 | ||
|  |   var verify = forge.util.createBuffer(); | ||
|  |   verify.putBuffer(c.session.md5.digest()); | ||
|  |   verify.putBuffer(c.session.sha1.digest()); | ||
|  |   verify = verify.getBytes(); | ||
|  | 
 | ||
|  |   try { | ||
|  |     var cert = c.session.clientCertificate; | ||
|  |     /*b = forge.pki.rsa.decrypt( | ||
|  |       msg.signature, cert.publicKey, true, verify.length); | ||
|  |     if(b !== verify) {*/ | ||
|  |     if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) { | ||
|  |       throw new Error('CertificateVerify signature does not match.'); | ||
|  |     } | ||
|  | 
 | ||
|  |     // digest message now that it has been handled
 | ||
|  |     c.session.md5.update(msgBytes); | ||
|  |     c.session.sha1.update(msgBytes); | ||
|  |   } catch(ex) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Bad signature in CertificateVerify.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.handshake_failure | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // expect ChangeCipherSpec
 | ||
|  |   c.expect = CCC; | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a client receives a ServerHelloDone record. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   The server hello done message is sent by the server to indicate the end | ||
|  |  *   of the server hello and associated messages. After sending this message | ||
|  |  *   the server will wait for a client response. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   This message means that the server is done sending messages to support | ||
|  |  *   the key exchange, and the client can proceed with its phase of the key | ||
|  |  *   exchange. | ||
|  |  * | ||
|  |  *   Upon receipt of the server hello done message the client should verify | ||
|  |  *   that the server provided a valid certificate if required and check that | ||
|  |  *   the server hello parameters are acceptable. | ||
|  |  * | ||
|  |  * struct {} ServerHelloDone; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleServerHelloDone = function(c, record, length) { | ||
|  |   // len must be 0 bytes
 | ||
|  |   if(length > 0) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid ServerHelloDone message. Invalid length.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.record_overflow | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(c.serverCertificate === null) { | ||
|  |     // no server certificate was provided
 | ||
|  |     var error = { | ||
|  |       message: 'No server certificate provided. Not enough security.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.insufficient_security | ||
|  |       } | ||
|  |     }; | ||
|  | 
 | ||
|  |     // call application callback
 | ||
|  |     var depth = 0; | ||
|  |     var ret = c.verify(c, error.alert.description, depth, []); | ||
|  |     if(ret !== true) { | ||
|  |       // check for custom alert info
 | ||
|  |       if(ret || ret === 0) { | ||
|  |         // set custom message and alert description
 | ||
|  |         if(typeof ret === 'object' && !forge.util.isArray(ret)) { | ||
|  |           if(ret.message) { | ||
|  |             error.message = ret.message; | ||
|  |           } | ||
|  |           if(ret.alert) { | ||
|  |             error.alert.description = ret.alert; | ||
|  |           } | ||
|  |         } else if(typeof ret === 'number') { | ||
|  |           // set custom alert description
 | ||
|  |           error.alert.description = ret; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // send error
 | ||
|  |       return c.error(c, error); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // create client certificate message if requested
 | ||
|  |   if(c.session.certificateRequest !== null) { | ||
|  |     record = tls.createRecord(c, { | ||
|  |       type: tls.ContentType.handshake, | ||
|  |       data: tls.createCertificate(c) | ||
|  |     }); | ||
|  |     tls.queue(c, record); | ||
|  |   } | ||
|  | 
 | ||
|  |   // create client key exchange message
 | ||
|  |   record = tls.createRecord(c, { | ||
|  |      type: tls.ContentType.handshake, | ||
|  |      data: tls.createClientKeyExchange(c) | ||
|  |   }); | ||
|  |   tls.queue(c, record); | ||
|  | 
 | ||
|  |   // expect no messages until the following callback has been called
 | ||
|  |   c.expect = SER; | ||
|  | 
 | ||
|  |   // create callback to handle client signature (for client-certs)
 | ||
|  |   var callback = function(c, signature) { | ||
|  |     if(c.session.certificateRequest !== null && | ||
|  |       c.session.clientCertificate !== null) { | ||
|  |       // create certificate verify message
 | ||
|  |       tls.queue(c, tls.createRecord(c, { | ||
|  |         type: tls.ContentType.handshake, | ||
|  |         data: tls.createCertificateVerify(c, signature) | ||
|  |       })); | ||
|  |     } | ||
|  | 
 | ||
|  |     // create change cipher spec message
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.change_cipher_spec, | ||
|  |       data: tls.createChangeCipherSpec() | ||
|  |     })); | ||
|  | 
 | ||
|  |     // create pending state
 | ||
|  |     c.state.pending = tls.createConnectionState(c); | ||
|  | 
 | ||
|  |     // change current write state to pending write state
 | ||
|  |     c.state.current.write = c.state.pending.write; | ||
|  | 
 | ||
|  |     // create finished message
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.handshake, | ||
|  |       data: tls.createFinished(c) | ||
|  |     })); | ||
|  | 
 | ||
|  |     // expect a server ChangeCipherSpec message next
 | ||
|  |     c.expect = SCC; | ||
|  | 
 | ||
|  |     // send records
 | ||
|  |     tls.flush(c); | ||
|  | 
 | ||
|  |     // continue
 | ||
|  |     c.process(); | ||
|  |   }; | ||
|  | 
 | ||
|  |   // if there is no certificate request or no client certificate, do
 | ||
|  |   // callback immediately
 | ||
|  |   if(c.session.certificateRequest === null || | ||
|  |     c.session.clientCertificate === null) { | ||
|  |     return callback(c, null); | ||
|  |   } | ||
|  | 
 | ||
|  |   // otherwise get the client signature
 | ||
|  |   tls.getClientSignature(c, callback); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a ChangeCipherSpec record is received. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleChangeCipherSpec = function(c, record) { | ||
|  |   if(record.fragment.getByte() !== 0x01) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid ChangeCipherSpec message received.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.illegal_parameter | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // create pending state if:
 | ||
|  |   // 1. Resuming session in client mode OR
 | ||
|  |   // 2. NOT resuming session in server mode
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   if((c.session.resuming && client) || (!c.session.resuming && !client)) { | ||
|  |     c.state.pending = tls.createConnectionState(c); | ||
|  |   } | ||
|  | 
 | ||
|  |   // change current read state to pending read state
 | ||
|  |   c.state.current.read = c.state.pending.read; | ||
|  | 
 | ||
|  |   // clear pending state if:
 | ||
|  |   // 1. NOT resuming session in client mode OR
 | ||
|  |   // 2. resuming a session in server mode
 | ||
|  |   if((!c.session.resuming && client) || (c.session.resuming && !client)) { | ||
|  |     c.state.pending = null; | ||
|  |   } | ||
|  | 
 | ||
|  |   // expect a Finished record next
 | ||
|  |   c.expect = client ? SFI : CFI; | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a Finished record is received. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   A finished message is always sent immediately after a change | ||
|  |  *   cipher spec message to verify that the key exchange and | ||
|  |  *   authentication processes were successful. It is essential that a | ||
|  |  *   change cipher spec message be received between the other | ||
|  |  *   handshake messages and the Finished message. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   The finished message is the first protected with the just- | ||
|  |  *   negotiated algorithms, keys, and secrets. Recipients of finished | ||
|  |  *   messages must verify that the contents are correct.  Once a side | ||
|  |  *   has sent its Finished message and received and validated the | ||
|  |  *   Finished message from its peer, it may begin to send and receive | ||
|  |  *   application data over the connection. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   opaque verify_data[verify_data_length]; | ||
|  |  * } Finished; | ||
|  |  * | ||
|  |  * verify_data | ||
|  |  *   PRF(master_secret, finished_label, Hash(handshake_messages)) | ||
|  |  *     [0..verify_data_length-1]; | ||
|  |  * | ||
|  |  * finished_label | ||
|  |  *   For Finished messages sent by the client, the string | ||
|  |  *   "client finished". For Finished messages sent by the server, the | ||
|  |  *   string "server finished". | ||
|  |  * | ||
|  |  * verify_data_length depends on the cipher suite. If it is not specified | ||
|  |  * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used | ||
|  |  * 12 bytes. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  * @param length the length of the handshake message. | ||
|  |  */ | ||
|  | tls.handleFinished = function(c, record, length) { | ||
|  |   // rewind to get full bytes for message so it can be manually
 | ||
|  |   // digested below (special case for Finished messages because they
 | ||
|  |   // must be digested *after* handling as opposed to all others)
 | ||
|  |   var b = record.fragment; | ||
|  |   b.read -= 4; | ||
|  |   var msgBytes = b.bytes(); | ||
|  |   b.read += 4; | ||
|  | 
 | ||
|  |   // message contains only verify_data
 | ||
|  |   var vd = record.fragment.getBytes(); | ||
|  | 
 | ||
|  |   // ensure verify data is correct
 | ||
|  |   b = forge.util.createBuffer(); | ||
|  |   b.putBuffer(c.session.md5.digest()); | ||
|  |   b.putBuffer(c.session.sha1.digest()); | ||
|  | 
 | ||
|  |   // set label based on entity type
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   var label = client ? 'server finished' : 'client finished'; | ||
|  | 
 | ||
|  |   // TODO: determine prf function and verify length for TLS 1.2
 | ||
|  |   var sp = c.session.sp; | ||
|  |   var vdl = 12; | ||
|  |   var prf = prf_TLS1; | ||
|  |   b = prf(sp.master_secret, label, b.getBytes(), vdl); | ||
|  |   if(b.getBytes() !== vd) { | ||
|  |     return c.error(c, { | ||
|  |       message: 'Invalid verify_data in Finished message.', | ||
|  |       send: true, | ||
|  |       alert: { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: tls.Alert.Description.decrypt_error | ||
|  |       } | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   // digest finished message now that it has been handled
 | ||
|  |   c.session.md5.update(msgBytes); | ||
|  |   c.session.sha1.update(msgBytes); | ||
|  | 
 | ||
|  |   // resuming session as client or NOT resuming session as server
 | ||
|  |   if((c.session.resuming && client) || (!c.session.resuming && !client)) { | ||
|  |     // create change cipher spec message
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.change_cipher_spec, | ||
|  |       data: tls.createChangeCipherSpec() | ||
|  |     })); | ||
|  | 
 | ||
|  |     // change current write state to pending write state, clear pending
 | ||
|  |     c.state.current.write = c.state.pending.write; | ||
|  |     c.state.pending = null; | ||
|  | 
 | ||
|  |     // create finished message
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.handshake, | ||
|  |       data: tls.createFinished(c) | ||
|  |     })); | ||
|  |   } | ||
|  | 
 | ||
|  |   // expect application data next
 | ||
|  |   c.expect = client ? SAD : CAD; | ||
|  | 
 | ||
|  |   // handshake complete
 | ||
|  |   c.handshaking = false; | ||
|  |   ++c.handshakes; | ||
|  | 
 | ||
|  |   // save access to peer certificate
 | ||
|  |   c.peerCertificate = client ? | ||
|  |     c.session.serverCertificate : c.session.clientCertificate; | ||
|  | 
 | ||
|  |   // send records
 | ||
|  |   tls.flush(c); | ||
|  | 
 | ||
|  |   // now connected
 | ||
|  |   c.isConnected = true; | ||
|  |   c.connected(c); | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when an Alert record is received. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleAlert = function(c, record) { | ||
|  |   // read alert
 | ||
|  |   var b = record.fragment; | ||
|  |   var alert = { | ||
|  |     level: b.getByte(), | ||
|  |     description: b.getByte() | ||
|  |   }; | ||
|  | 
 | ||
|  |   // TODO: consider using a table?
 | ||
|  |   // get appropriate message
 | ||
|  |   var msg; | ||
|  |   switch(alert.description) { | ||
|  |   case tls.Alert.Description.close_notify: | ||
|  |     msg = 'Connection closed.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.unexpected_message: | ||
|  |     msg = 'Unexpected message.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.bad_record_mac: | ||
|  |     msg = 'Bad record MAC.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.decryption_failed: | ||
|  |     msg = 'Decryption failed.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.record_overflow: | ||
|  |     msg = 'Record overflow.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.decompression_failure: | ||
|  |     msg = 'Decompression failed.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.handshake_failure: | ||
|  |     msg = 'Handshake failure.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.bad_certificate: | ||
|  |     msg = 'Bad certificate.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.unsupported_certificate: | ||
|  |     msg = 'Unsupported certificate.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.certificate_revoked: | ||
|  |     msg = 'Certificate revoked.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.certificate_expired: | ||
|  |     msg = 'Certificate expired.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.certificate_unknown: | ||
|  |     msg = 'Certificate unknown.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.illegal_parameter: | ||
|  |     msg = 'Illegal parameter.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.unknown_ca: | ||
|  |     msg = 'Unknown certificate authority.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.access_denied: | ||
|  |     msg = 'Access denied.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.decode_error: | ||
|  |     msg = 'Decode error.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.decrypt_error: | ||
|  |     msg = 'Decrypt error.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.export_restriction: | ||
|  |     msg = 'Export restriction.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.protocol_version: | ||
|  |     msg = 'Unsupported protocol version.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.insufficient_security: | ||
|  |     msg = 'Insufficient security.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.internal_error: | ||
|  |     msg = 'Internal error.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.user_canceled: | ||
|  |     msg = 'User canceled.'; | ||
|  |     break; | ||
|  |   case tls.Alert.Description.no_renegotiation: | ||
|  |     msg = 'Renegotiation not supported.'; | ||
|  |     break; | ||
|  |   default: | ||
|  |     msg = 'Unknown error.'; | ||
|  |     break; | ||
|  |   } | ||
|  | 
 | ||
|  |   // close connection on close_notify, not an error
 | ||
|  |   if(alert.description === tls.Alert.Description.close_notify) { | ||
|  |     return c.close(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // call error handler
 | ||
|  |   c.error(c, { | ||
|  |     message: msg, | ||
|  |     send: false, | ||
|  |     // origin is the opposite end
 | ||
|  |     origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client', | ||
|  |     alert: alert | ||
|  |   }); | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a Handshake record is received. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleHandshake = function(c, record) { | ||
|  |   // get the handshake type and message length
 | ||
|  |   var b = record.fragment; | ||
|  |   var type = b.getByte(); | ||
|  |   var length = b.getInt24(); | ||
|  | 
 | ||
|  |   // see if the record fragment doesn't yet contain the full message
 | ||
|  |   if(length > b.length()) { | ||
|  |     // cache the record, clear its fragment, and reset the buffer read
 | ||
|  |     // pointer before the type and length were read
 | ||
|  |     c.fragmented = record; | ||
|  |     record.fragment = forge.util.createBuffer(); | ||
|  |     b.read -= 4; | ||
|  | 
 | ||
|  |     // continue
 | ||
|  |     return c.process(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // full message now available, clear cache, reset read pointer to
 | ||
|  |   // before type and length
 | ||
|  |   c.fragmented = null; | ||
|  |   b.read -= 4; | ||
|  | 
 | ||
|  |   // save the handshake bytes for digestion after handler is found
 | ||
|  |   // (include type and length of handshake msg)
 | ||
|  |   var bytes = b.bytes(length + 4); | ||
|  | 
 | ||
|  |   // restore read pointer
 | ||
|  |   b.read += 4; | ||
|  | 
 | ||
|  |   // handle expected message
 | ||
|  |   if(type in hsTable[c.entity][c.expect]) { | ||
|  |     // initialize server session
 | ||
|  |     if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) { | ||
|  |       c.handshaking = true; | ||
|  |       c.session = { | ||
|  |         version: null, | ||
|  |         extensions: { | ||
|  |           server_name: { | ||
|  |             serverNameList: [] | ||
|  |           } | ||
|  |         }, | ||
|  |         cipherSuite: null, | ||
|  |         compressionMethod: null, | ||
|  |         serverCertificate: null, | ||
|  |         clientCertificate: null, | ||
|  |         md5: forge.md.md5.create(), | ||
|  |         sha1: forge.md.sha1.create() | ||
|  |       }; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update handshake messages digest. Finished and CertificateVerify | ||
|  |       messages are not digested here. They can't be digested as part of | ||
|  |       the verify_data that they contain. These messages are manually | ||
|  |       digested in their handlers. HelloRequest messages are simply never | ||
|  |       included in the handshake message digest according to spec. */ | ||
|  |     if(type !== tls.HandshakeType.hello_request && | ||
|  |       type !== tls.HandshakeType.certificate_verify && | ||
|  |       type !== tls.HandshakeType.finished) { | ||
|  |       c.session.md5.update(bytes); | ||
|  |       c.session.sha1.update(bytes); | ||
|  |     } | ||
|  | 
 | ||
|  |     // handle specific handshake type record
 | ||
|  |     hsTable[c.entity][c.expect][type](c, record, length); | ||
|  |   } else { | ||
|  |     // unexpected record
 | ||
|  |     tls.handleUnexpected(c, record); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when an ApplicationData record is received. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleApplicationData = function(c, record) { | ||
|  |   // buffer data, notify that its ready
 | ||
|  |   c.data.putBuffer(record.fragment); | ||
|  |   c.dataReady(c); | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Called when a Heartbeat record is received. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record. | ||
|  |  */ | ||
|  | tls.handleHeartbeat = function(c, record) { | ||
|  |   // get the heartbeat type and payload
 | ||
|  |   var b = record.fragment; | ||
|  |   var type = b.getByte(); | ||
|  |   var length = b.getInt16(); | ||
|  |   var payload = b.getBytes(length); | ||
|  | 
 | ||
|  |   if(type === tls.HeartbeatMessageType.heartbeat_request) { | ||
|  |     // discard request during handshake or if length is too large
 | ||
|  |     if(c.handshaking || length > payload.length) { | ||
|  |       // continue
 | ||
|  |       return c.process(); | ||
|  |     } | ||
|  |     // retransmit payload
 | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.heartbeat, | ||
|  |       data: tls.createHeartbeat( | ||
|  |         tls.HeartbeatMessageType.heartbeat_response, payload) | ||
|  |     })); | ||
|  |     tls.flush(c); | ||
|  |   } else if(type === tls.HeartbeatMessageType.heartbeat_response) { | ||
|  |     // check payload against expected payload, discard heartbeat if no match
 | ||
|  |     if(payload !== c.expectedHeartbeatPayload) { | ||
|  |       // continue
 | ||
|  |       return c.process(); | ||
|  |     } | ||
|  | 
 | ||
|  |     // notify that a valid heartbeat was received
 | ||
|  |     if(c.heartbeatReceived) { | ||
|  |       c.heartbeatReceived(c, forge.util.createBuffer(payload)); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // continue
 | ||
|  |   c.process(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * The transistional state tables for receiving TLS records. It maps the | ||
|  |  * current TLS engine state and a received record to a function to handle the | ||
|  |  * record and update the state. | ||
|  |  * | ||
|  |  * For instance, if the current state is SHE, then the TLS engine is expecting | ||
|  |  * a ServerHello record. Once a record is received, the handler function is | ||
|  |  * looked up using the state SHE and the record's content type. | ||
|  |  * | ||
|  |  * The resulting function will either be an error handler or a record handler. | ||
|  |  * The function will take whatever action is appropriate and update the state | ||
|  |  * for the next record. | ||
|  |  * | ||
|  |  * The states are all based on possible server record types. Note that the | ||
|  |  * client will never specifically expect to receive a HelloRequest or an alert | ||
|  |  * from the server so there is no state that reflects this. These messages may | ||
|  |  * occur at any time. | ||
|  |  * | ||
|  |  * There are two tables for mapping states because there is a second tier of | ||
|  |  * types for handshake messages. Once a record with a content type of handshake | ||
|  |  * is received, the handshake record handler will look up the handshake type in | ||
|  |  * the secondary map to get its appropriate handler. | ||
|  |  * | ||
|  |  * Valid message orders are as follows: | ||
|  |  * | ||
|  |  * =======================FULL HANDSHAKE====================== | ||
|  |  * Client                                               Server | ||
|  |  * | ||
|  |  * ClientHello                  --------> | ||
|  |  *                                                 ServerHello | ||
|  |  *                                                Certificate* | ||
|  |  *                                          ServerKeyExchange* | ||
|  |  *                                         CertificateRequest* | ||
|  |  *                              <--------      ServerHelloDone | ||
|  |  * Certificate* | ||
|  |  * ClientKeyExchange | ||
|  |  * CertificateVerify* | ||
|  |  * [ChangeCipherSpec] | ||
|  |  * Finished                     --------> | ||
|  |  *                                          [ChangeCipherSpec] | ||
|  |  *                              <--------             Finished | ||
|  |  * Application Data             <------->     Application Data | ||
|  |  * | ||
|  |  * =====================SESSION RESUMPTION===================== | ||
|  |  * Client                                                Server | ||
|  |  * | ||
|  |  * ClientHello                   --------> | ||
|  |  *                                                  ServerHello | ||
|  |  *                                           [ChangeCipherSpec] | ||
|  |  *                               <--------             Finished | ||
|  |  * [ChangeCipherSpec] | ||
|  |  * Finished                      --------> | ||
|  |  * Application Data              <------->     Application Data | ||
|  |  */ | ||
|  | // client expect states (indicate which records are expected to be received)
 | ||
|  | var SHE = 0; // rcv server hello
 | ||
|  | var SCE = 1; // rcv server certificate
 | ||
|  | var SKE = 2; // rcv server key exchange
 | ||
|  | var SCR = 3; // rcv certificate request
 | ||
|  | var SHD = 4; // rcv server hello done
 | ||
|  | var SCC = 5; // rcv change cipher spec
 | ||
|  | var SFI = 6; // rcv finished
 | ||
|  | var SAD = 7; // rcv application data
 | ||
|  | var SER = 8; // not expecting any messages at this point
 | ||
|  | 
 | ||
|  | // server expect states
 | ||
|  | var CHE = 0; // rcv client hello
 | ||
|  | var CCE = 1; // rcv client certificate
 | ||
|  | var CKE = 2; // rcv client key exchange
 | ||
|  | var CCV = 3; // rcv certificate verify
 | ||
|  | var CCC = 4; // rcv change cipher spec
 | ||
|  | var CFI = 5; // rcv finished
 | ||
|  | var CAD = 6; // rcv application data
 | ||
|  | var CER = 7; // not expecting any messages at this point
 | ||
|  | 
 | ||
|  | // map client current expect state and content type to function
 | ||
|  | var __ = tls.handleUnexpected; | ||
|  | var R0 = tls.handleChangeCipherSpec; | ||
|  | var R1 = tls.handleAlert; | ||
|  | var R2 = tls.handleHandshake; | ||
|  | var R3 = tls.handleApplicationData; | ||
|  | var R4 = tls.handleHeartbeat; | ||
|  | var ctTable = []; | ||
|  | ctTable[tls.ConnectionEnd.client] = [ | ||
|  | //      CC,AL,HS,AD,HB
 | ||
|  | /*SHE*/[__,R1,R2,__,R4], | ||
|  | /*SCE*/[__,R1,R2,__,R4], | ||
|  | /*SKE*/[__,R1,R2,__,R4], | ||
|  | /*SCR*/[__,R1,R2,__,R4], | ||
|  | /*SHD*/[__,R1,R2,__,R4], | ||
|  | /*SCC*/[R0,R1,__,__,R4], | ||
|  | /*SFI*/[__,R1,R2,__,R4], | ||
|  | /*SAD*/[__,R1,R2,R3,R4], | ||
|  | /*SER*/[__,R1,R2,__,R4] | ||
|  | ]; | ||
|  | 
 | ||
|  | // map server current expect state and content type to function
 | ||
|  | ctTable[tls.ConnectionEnd.server] = [ | ||
|  | //      CC,AL,HS,AD
 | ||
|  | /*CHE*/[__,R1,R2,__,R4], | ||
|  | /*CCE*/[__,R1,R2,__,R4], | ||
|  | /*CKE*/[__,R1,R2,__,R4], | ||
|  | /*CCV*/[__,R1,R2,__,R4], | ||
|  | /*CCC*/[R0,R1,__,__,R4], | ||
|  | /*CFI*/[__,R1,R2,__,R4], | ||
|  | /*CAD*/[__,R1,R2,R3,R4], | ||
|  | /*CER*/[__,R1,R2,__,R4] | ||
|  | ]; | ||
|  | 
 | ||
|  | // map client current expect state and handshake type to function
 | ||
|  | var H0 = tls.handleHelloRequest; | ||
|  | var H1 = tls.handleServerHello; | ||
|  | var H2 = tls.handleCertificate; | ||
|  | var H3 = tls.handleServerKeyExchange; | ||
|  | var H4 = tls.handleCertificateRequest; | ||
|  | var H5 = tls.handleServerHelloDone; | ||
|  | var H6 = tls.handleFinished; | ||
|  | var hsTable = []; | ||
|  | hsTable[tls.ConnectionEnd.client] = [ | ||
|  | //      HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI
 | ||
|  | /*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__], | ||
|  | /*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__], | ||
|  | /*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__], | ||
|  | /*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__], | ||
|  | /*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], | ||
|  | /*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] | ||
|  | ]; | ||
|  | 
 | ||
|  | // map server current expect state and handshake type to function
 | ||
|  | // Note: CAD[CH] does not map to FB because renegotation is prohibited
 | ||
|  | var H7 = tls.handleClientHello; | ||
|  | var H8 = tls.handleClientKeyExchange; | ||
|  | var H9 = tls.handleCertificateVerify; | ||
|  | hsTable[tls.ConnectionEnd.server] = [ | ||
|  | //      01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI
 | ||
|  | /*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__], | ||
|  | /*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__], | ||
|  | /*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__], | ||
|  | /*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], | ||
|  | /*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], | ||
|  | /*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] | ||
|  | ]; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates the master_secret and keys using the given security parameters. | ||
|  |  * | ||
|  |  * The security parameters for a TLS connection state are defined as such: | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ConnectionEnd          entity; | ||
|  |  *   PRFAlgorithm           prf_algorithm; | ||
|  |  *   BulkCipherAlgorithm    bulk_cipher_algorithm; | ||
|  |  *   CipherType             cipher_type; | ||
|  |  *   uint8                  enc_key_length; | ||
|  |  *   uint8                  block_length; | ||
|  |  *   uint8                  fixed_iv_length; | ||
|  |  *   uint8                  record_iv_length; | ||
|  |  *   MACAlgorithm           mac_algorithm; | ||
|  |  *   uint8                  mac_length; | ||
|  |  *   uint8                  mac_key_length; | ||
|  |  *   CompressionMethod      compression_algorithm; | ||
|  |  *   opaque                 master_secret[48]; | ||
|  |  *   opaque                 client_random[32]; | ||
|  |  *   opaque                 server_random[32]; | ||
|  |  * } SecurityParameters; | ||
|  |  * | ||
|  |  * Note that this definition is from TLS 1.2. In TLS 1.0 some of these | ||
|  |  * parameters are ignored because, for instance, the PRFAlgorithm is a | ||
|  |  * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0. | ||
|  |  * | ||
|  |  * The Record Protocol requires an algorithm to generate keys required by the | ||
|  |  * current connection state. | ||
|  |  * | ||
|  |  * The master secret is expanded into a sequence of secure bytes, which is then | ||
|  |  * split to a client write MAC key, a server write MAC key, a client write | ||
|  |  * encryption key, and a server write encryption key. In TLS 1.0 a client write | ||
|  |  * IV and server write IV are also generated. Each of these is generated from | ||
|  |  * the byte sequence in that order. Unused values are empty. In TLS 1.2, some | ||
|  |  * AEAD ciphers may additionally require a client write IV and a server write | ||
|  |  * IV (see Section 6.2.3.3). | ||
|  |  * | ||
|  |  * When keys, MAC keys, and IVs are generated, the master secret is used as an | ||
|  |  * entropy source. | ||
|  |  * | ||
|  |  * To generate the key material, compute: | ||
|  |  * | ||
|  |  * master_secret = PRF(pre_master_secret, "master secret", | ||
|  |  *                     ClientHello.random + ServerHello.random) | ||
|  |  * | ||
|  |  * key_block = PRF(SecurityParameters.master_secret, | ||
|  |  *                 "key expansion", | ||
|  |  *                 SecurityParameters.server_random + | ||
|  |  *                 SecurityParameters.client_random); | ||
|  |  * | ||
|  |  * until enough output has been generated. Then, the key_block is | ||
|  |  * partitioned as follows: | ||
|  |  * | ||
|  |  * client_write_MAC_key[SecurityParameters.mac_key_length] | ||
|  |  * server_write_MAC_key[SecurityParameters.mac_key_length] | ||
|  |  * client_write_key[SecurityParameters.enc_key_length] | ||
|  |  * server_write_key[SecurityParameters.enc_key_length] | ||
|  |  * client_write_IV[SecurityParameters.fixed_iv_length] | ||
|  |  * server_write_IV[SecurityParameters.fixed_iv_length] | ||
|  |  * | ||
|  |  * In TLS 1.2, the client_write_IV and server_write_IV are only generated for | ||
|  |  * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This | ||
|  |  * implementation uses TLS 1.0 so IVs are generated. | ||
|  |  * | ||
|  |  * Implementation note: The currently defined cipher suite which requires the | ||
|  |  * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32 | ||
|  |  * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also | ||
|  |  * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param sp the security parameters to use. | ||
|  |  * | ||
|  |  * @return the security keys. | ||
|  |  */ | ||
|  | tls.generateKeys = function(c, sp) { | ||
|  |   // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) &
 | ||
|  |   // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented
 | ||
|  |   // at present
 | ||
|  | 
 | ||
|  |   // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with
 | ||
|  |   // TLS 1.0 but we don't care right now because AES is better and we have
 | ||
|  |   // an implementation for it
 | ||
|  | 
 | ||
|  |   // TODO: TLS 1.2 implementation
 | ||
|  |   /* | ||
|  |   // determine the PRF
 | ||
|  |   var prf; | ||
|  |   switch(sp.prf_algorithm) { | ||
|  |   case tls.PRFAlgorithm.tls_prf_sha256: | ||
|  |     prf = prf_sha256; | ||
|  |     break; | ||
|  |   default: | ||
|  |     // should never happen
 | ||
|  |     throw new Error('Invalid PRF'); | ||
|  |   } | ||
|  |   */ | ||
|  | 
 | ||
|  |   // TLS 1.0/1.1 implementation
 | ||
|  |   var prf = prf_TLS1; | ||
|  | 
 | ||
|  |   // concatenate server and client random
 | ||
|  |   var random = sp.client_random + sp.server_random; | ||
|  | 
 | ||
|  |   // only create master secret if session is new
 | ||
|  |   if(!c.session.resuming) { | ||
|  |     // create master secret, clean up pre-master secret
 | ||
|  |     sp.master_secret = prf( | ||
|  |       sp.pre_master_secret, 'master secret', random, 48).bytes(); | ||
|  |     sp.pre_master_secret = null; | ||
|  |   } | ||
|  | 
 | ||
|  |   // generate the amount of key material needed
 | ||
|  |   random = sp.server_random + sp.client_random; | ||
|  |   var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length; | ||
|  | 
 | ||
|  |   // include IV for TLS/1.0
 | ||
|  |   var tls10 = (c.version.major === tls.Versions.TLS_1_0.major && | ||
|  |     c.version.minor === tls.Versions.TLS_1_0.minor); | ||
|  |   if(tls10) { | ||
|  |     length += 2 * sp.fixed_iv_length; | ||
|  |   } | ||
|  |   var km = prf(sp.master_secret, 'key expansion', random, length); | ||
|  | 
 | ||
|  |   // split the key material into the MAC and encryption keys
 | ||
|  |   var rval = { | ||
|  |     client_write_MAC_key: km.getBytes(sp.mac_key_length), | ||
|  |     server_write_MAC_key: km.getBytes(sp.mac_key_length), | ||
|  |     client_write_key: km.getBytes(sp.enc_key_length), | ||
|  |     server_write_key: km.getBytes(sp.enc_key_length) | ||
|  |   }; | ||
|  | 
 | ||
|  |   // include TLS 1.0 IVs
 | ||
|  |   if(tls10) { | ||
|  |     rval.client_write_IV = km.getBytes(sp.fixed_iv_length); | ||
|  |     rval.server_write_IV = km.getBytes(sp.fixed_iv_length); | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a new initialized TLS connection state. A connection state has | ||
|  |  * a read mode and a write mode. | ||
|  |  * | ||
|  |  * compression state: | ||
|  |  *   The current state of the compression algorithm. | ||
|  |  * | ||
|  |  * cipher state: | ||
|  |  *   The current state of the encryption algorithm. This will consist of the | ||
|  |  *   scheduled key for that connection. For stream ciphers, this will also | ||
|  |  *   contain whatever state information is necessary to allow the stream to | ||
|  |  *   continue to encrypt or decrypt data. | ||
|  |  * | ||
|  |  * MAC key: | ||
|  |  *   The MAC key for the connection. | ||
|  |  * | ||
|  |  * sequence number: | ||
|  |  *   Each connection state contains a sequence number, which is maintained | ||
|  |  *   separately for read and write states. The sequence number MUST be set to | ||
|  |  *   zero whenever a connection state is made the active state. Sequence | ||
|  |  *   numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do | ||
|  |  *   not wrap. If a TLS implementation would need to wrap a sequence number, | ||
|  |  *   it must renegotiate instead. A sequence number is incremented after each | ||
|  |  *   record: specifically, the first record transmitted under a particular | ||
|  |  *   connection state MUST use sequence number 0. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the new initialized TLS connection state. | ||
|  |  */ | ||
|  | tls.createConnectionState = function(c) { | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  | 
 | ||
|  |   var createMode = function() { | ||
|  |     var mode = { | ||
|  |       // two 32-bit numbers, first is most significant
 | ||
|  |       sequenceNumber: [0, 0], | ||
|  |       macKey: null, | ||
|  |       macLength: 0, | ||
|  |       macFunction: null, | ||
|  |       cipherState: null, | ||
|  |       cipherFunction: function(record) {return true;}, | ||
|  |       compressionState: null, | ||
|  |       compressFunction: function(record) {return true;}, | ||
|  |       updateSequenceNumber: function() { | ||
|  |         if(mode.sequenceNumber[1] === 0xFFFFFFFF) { | ||
|  |           mode.sequenceNumber[1] = 0; | ||
|  |           ++mode.sequenceNumber[0]; | ||
|  |         } else { | ||
|  |           ++mode.sequenceNumber[1]; | ||
|  |         } | ||
|  |       } | ||
|  |     }; | ||
|  |     return mode; | ||
|  |   }; | ||
|  |   var state = { | ||
|  |     read: createMode(), | ||
|  |     write: createMode() | ||
|  |   }; | ||
|  | 
 | ||
|  |   // update function in read mode will decrypt then decompress a record
 | ||
|  |   state.read.update = function(c, record) { | ||
|  |     if(!state.read.cipherFunction(record, state.read)) { | ||
|  |       c.error(c, { | ||
|  |         message: 'Could not decrypt record or bad MAC.', | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           // doesn't matter if decryption failed or MAC was
 | ||
|  |           // invalid, return the same error so as not to reveal
 | ||
|  |           // which one occurred
 | ||
|  |           description: tls.Alert.Description.bad_record_mac | ||
|  |         } | ||
|  |       }); | ||
|  |     } else if(!state.read.compressFunction(c, record, state.read)) { | ||
|  |       c.error(c, { | ||
|  |         message: 'Could not decompress record.', | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.decompression_failure | ||
|  |         } | ||
|  |       }); | ||
|  |     } | ||
|  |     return !c.fail; | ||
|  |   }; | ||
|  | 
 | ||
|  |   // update function in write mode will compress then encrypt a record
 | ||
|  |   state.write.update = function(c, record) { | ||
|  |     if(!state.write.compressFunction(c, record, state.write)) { | ||
|  |       // error, but do not send alert since it would require
 | ||
|  |       // compression as well
 | ||
|  |       c.error(c, { | ||
|  |         message: 'Could not compress record.', | ||
|  |         send: false, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.internal_error | ||
|  |         } | ||
|  |       }); | ||
|  |     } else if(!state.write.cipherFunction(record, state.write)) { | ||
|  |       // error, but do not send alert since it would require
 | ||
|  |       // encryption as well
 | ||
|  |       c.error(c, { | ||
|  |         message: 'Could not encrypt record.', | ||
|  |         send: false, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.internal_error | ||
|  |         } | ||
|  |       }); | ||
|  |     } | ||
|  |     return !c.fail; | ||
|  |   }; | ||
|  | 
 | ||
|  |   // handle security parameters
 | ||
|  |   if(c.session) { | ||
|  |     var sp = c.session.sp; | ||
|  |     c.session.cipherSuite.initSecurityParameters(sp); | ||
|  | 
 | ||
|  |     // generate keys
 | ||
|  |     sp.keys = tls.generateKeys(c, sp); | ||
|  |     state.read.macKey = client ? | ||
|  |       sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key; | ||
|  |     state.write.macKey = client ? | ||
|  |       sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key; | ||
|  | 
 | ||
|  |     // cipher suite setup
 | ||
|  |     c.session.cipherSuite.initConnectionState(state, c, sp); | ||
|  | 
 | ||
|  |     // compression setup
 | ||
|  |     switch(sp.compression_algorithm) { | ||
|  |     case tls.CompressionMethod.none: | ||
|  |       break; | ||
|  |     case tls.CompressionMethod.deflate: | ||
|  |       state.read.compressFunction = inflate; | ||
|  |       state.write.compressFunction = deflate; | ||
|  |       break; | ||
|  |     default: | ||
|  |       throw new Error('Unsupported compression algorithm.'); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return state; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a Random structure. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   uint32 gmt_unix_time; | ||
|  |  *   opaque random_bytes[28]; | ||
|  |  * } Random; | ||
|  |  * | ||
|  |  * gmt_unix_time: | ||
|  |  *   The current time and date in standard UNIX 32-bit format (seconds since | ||
|  |  *   the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according | ||
|  |  *   to the sender's internal clock. Clocks are not required to be set | ||
|  |  *   correctly by the basic TLS protocol; higher-level or application | ||
|  |  *   protocols may define additional requirements. Note that, for historical | ||
|  |  *   reasons, the data element is named using GMT, the predecessor of the | ||
|  |  *   current worldwide time base, UTC. | ||
|  |  * random_bytes: | ||
|  |  *   28 bytes generated by a secure random number generator. | ||
|  |  * | ||
|  |  * @return the Random structure as a byte array. | ||
|  |  */ | ||
|  | tls.createRandom = function() { | ||
|  |   // get UTC milliseconds
 | ||
|  |   var d = new Date(); | ||
|  |   var utc = +d + d.getTimezoneOffset() * 60000; | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putInt32(utc); | ||
|  |   rval.putBytes(forge.random.getBytes(28)); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a TLS record with the given type and data. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param options: | ||
|  |  *   type: the record type. | ||
|  |  *   data: the plain text data in a byte buffer. | ||
|  |  * | ||
|  |  * @return the created record. | ||
|  |  */ | ||
|  | tls.createRecord = function(c, options) { | ||
|  |   if(!options.data) { | ||
|  |     return null; | ||
|  |   } | ||
|  |   var record = { | ||
|  |     type: options.type, | ||
|  |     version: { | ||
|  |       major: c.version.major, | ||
|  |       minor: c.version.minor | ||
|  |     }, | ||
|  |     length: options.data.length(), | ||
|  |     fragment: options.data | ||
|  |   }; | ||
|  |   return record; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a TLS alert record. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param alert: | ||
|  |  *   level: the TLS alert level. | ||
|  |  *   description: the TLS alert description. | ||
|  |  * | ||
|  |  * @return the created alert record. | ||
|  |  */ | ||
|  | tls.createAlert = function(c, alert) { | ||
|  |   var b = forge.util.createBuffer(); | ||
|  |   b.putByte(alert.level); | ||
|  |   b.putByte(alert.description); | ||
|  |   return tls.createRecord(c, { | ||
|  |     type: tls.ContentType.alert, | ||
|  |     data: b | ||
|  |   }); | ||
|  | }; | ||
|  | 
 | ||
|  | /* The structure of a TLS handshake message. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *    HandshakeType msg_type;    // handshake type
 | ||
|  |  *    uint24 length;             // bytes in message
 | ||
|  |  *    select(HandshakeType) { | ||
|  |  *       case hello_request:       HelloRequest; | ||
|  |  *       case client_hello:        ClientHello; | ||
|  |  *       case server_hello:        ServerHello; | ||
|  |  *       case certificate:         Certificate; | ||
|  |  *       case server_key_exchange: ServerKeyExchange; | ||
|  |  *       case certificate_request: CertificateRequest; | ||
|  |  *       case server_hello_done:   ServerHelloDone; | ||
|  |  *       case certificate_verify:  CertificateVerify; | ||
|  |  *       case client_key_exchange: ClientKeyExchange; | ||
|  |  *       case finished:            Finished; | ||
|  |  *    } body; | ||
|  |  * } Handshake; | ||
|  |  */ | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ClientHello message. | ||
|  |  * | ||
|  |  * opaque SessionID<0..32>; | ||
|  |  * enum { null(0), deflate(1), (255) } CompressionMethod; | ||
|  |  * uint8 CipherSuite[2]; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ProtocolVersion client_version; | ||
|  |  *   Random random; | ||
|  |  *   SessionID session_id; | ||
|  |  *   CipherSuite cipher_suites<2..2^16-2>; | ||
|  |  *   CompressionMethod compression_methods<1..2^8-1>; | ||
|  |  *   select(extensions_present) { | ||
|  |  *     case false: | ||
|  |  *       struct {}; | ||
|  |  *     case true: | ||
|  |  *       Extension extensions<0..2^16-1>; | ||
|  |  *   }; | ||
|  |  * } ClientHello; | ||
|  |  * | ||
|  |  * The extension format for extended client hellos and server hellos is: | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ExtensionType extension_type; | ||
|  |  *   opaque extension_data<0..2^16-1>; | ||
|  |  * } Extension; | ||
|  |  * | ||
|  |  * Here: | ||
|  |  * | ||
|  |  * - "extension_type" identifies the particular extension type. | ||
|  |  * - "extension_data" contains information specific to the particular | ||
|  |  * extension type. | ||
|  |  * | ||
|  |  * The extension types defined in this document are: | ||
|  |  * | ||
|  |  * enum { | ||
|  |  *   server_name(0), max_fragment_length(1), | ||
|  |  *   client_certificate_url(2), trusted_ca_keys(3), | ||
|  |  *   truncated_hmac(4), status_request(5), (65535) | ||
|  |  * } ExtensionType; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the ClientHello byte buffer. | ||
|  |  */ | ||
|  | tls.createClientHello = function(c) { | ||
|  |   // save hello version
 | ||
|  |   c.session.clientHelloVersion = { | ||
|  |     major: c.version.major, | ||
|  |     minor: c.version.minor | ||
|  |   }; | ||
|  | 
 | ||
|  |   // create supported cipher suites
 | ||
|  |   var cipherSuites = forge.util.createBuffer(); | ||
|  |   for(var i = 0; i < c.cipherSuites.length; ++i) { | ||
|  |     var cs = c.cipherSuites[i]; | ||
|  |     cipherSuites.putByte(cs.id[0]); | ||
|  |     cipherSuites.putByte(cs.id[1]); | ||
|  |   } | ||
|  |   var cSuites = cipherSuites.length(); | ||
|  | 
 | ||
|  |   // create supported compression methods, null always supported, but
 | ||
|  |   // also support deflate if connection has inflate and deflate methods
 | ||
|  |   var compressionMethods = forge.util.createBuffer(); | ||
|  |   compressionMethods.putByte(tls.CompressionMethod.none); | ||
|  |   // FIXME: deflate support disabled until issues with raw deflate data
 | ||
|  |   // without zlib headers are resolved
 | ||
|  |   /* | ||
|  |   if(c.inflate !== null && c.deflate !== null) { | ||
|  |     compressionMethods.putByte(tls.CompressionMethod.deflate); | ||
|  |   } | ||
|  |   */ | ||
|  |   var cMethods = compressionMethods.length(); | ||
|  | 
 | ||
|  |   // create TLS SNI (server name indication) extension if virtual host
 | ||
|  |   // has been specified, see RFC 3546
 | ||
|  |   var extensions = forge.util.createBuffer(); | ||
|  |   if(c.virtualHost) { | ||
|  |     // create extension struct
 | ||
|  |     var ext = forge.util.createBuffer(); | ||
|  |     ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes)
 | ||
|  |     ext.putByte(0x00); | ||
|  | 
 | ||
|  |     /* In order to provide the server name, clients MAY include an | ||
|  |      * extension of type "server_name" in the (extended) client hello. | ||
|  |      * The "extension_data" field of this extension SHALL contain | ||
|  |      * "ServerNameList" where: | ||
|  |      * | ||
|  |      * struct { | ||
|  |      *   NameType name_type; | ||
|  |      *   select(name_type) { | ||
|  |      *     case host_name: HostName; | ||
|  |      *   } name; | ||
|  |      * } ServerName; | ||
|  |      * | ||
|  |      * enum { | ||
|  |      *   host_name(0), (255) | ||
|  |      * } NameType; | ||
|  |      * | ||
|  |      * opaque HostName<1..2^16-1>; | ||
|  |      * | ||
|  |      * struct { | ||
|  |      *   ServerName server_name_list<1..2^16-1> | ||
|  |      * } ServerNameList; | ||
|  |      */ | ||
|  |     var serverName = forge.util.createBuffer(); | ||
|  |     serverName.putByte(0x00); // type host_name
 | ||
|  |     writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost)); | ||
|  | 
 | ||
|  |     // ServerNameList is in extension_data
 | ||
|  |     var snList = forge.util.createBuffer(); | ||
|  |     writeVector(snList, 2, serverName); | ||
|  |     writeVector(ext, 2, snList); | ||
|  |     extensions.putBuffer(ext); | ||
|  |   } | ||
|  |   var extLength = extensions.length(); | ||
|  |   if(extLength > 0) { | ||
|  |     // add extension vector length
 | ||
|  |     extLength += 2; | ||
|  |   } | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   // cipher suites and compression methods size will need to be
 | ||
|  |   // updated if more get added to the list
 | ||
|  |   var sessionId = c.session.id; | ||
|  |   var length = | ||
|  |     sessionId.length + 1 + // session ID vector
 | ||
|  |     2 +                    // version (major + minor)
 | ||
|  |     4 + 28 +               // random time and random bytes
 | ||
|  |     2 + cSuites +          // cipher suites vector
 | ||
|  |     1 + cMethods +         // compression methods vector
 | ||
|  |     extLength;             // extensions vector
 | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.client_hello); | ||
|  |   rval.putInt24(length);                     // handshake length
 | ||
|  |   rval.putByte(c.version.major);             // major version
 | ||
|  |   rval.putByte(c.version.minor);             // minor version
 | ||
|  |   rval.putBytes(c.session.sp.client_random); // random time + bytes
 | ||
|  |   writeVector(rval, 1, forge.util.createBuffer(sessionId)); | ||
|  |   writeVector(rval, 2, cipherSuites); | ||
|  |   writeVector(rval, 1, compressionMethods); | ||
|  |   if(extLength > 0) { | ||
|  |     writeVector(rval, 2, extensions); | ||
|  |   } | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ServerHello message. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the ServerHello byte buffer. | ||
|  |  */ | ||
|  | tls.createServerHello = function(c) { | ||
|  |   // determine length of the handshake message
 | ||
|  |   var sessionId = c.session.id; | ||
|  |   var length = | ||
|  |     sessionId.length + 1 + // session ID vector
 | ||
|  |     2 +                    // version (major + minor)
 | ||
|  |     4 + 28 +               // random time and random bytes
 | ||
|  |     2 +                    // chosen cipher suite
 | ||
|  |     1;                     // chosen compression method
 | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.server_hello); | ||
|  |   rval.putInt24(length);                     // handshake length
 | ||
|  |   rval.putByte(c.version.major);             // major version
 | ||
|  |   rval.putByte(c.version.minor);             // minor version
 | ||
|  |   rval.putBytes(c.session.sp.server_random); // random time + bytes
 | ||
|  |   writeVector(rval, 1, forge.util.createBuffer(sessionId)); | ||
|  |   rval.putByte(c.session.cipherSuite.id[0]); | ||
|  |   rval.putByte(c.session.cipherSuite.id[1]); | ||
|  |   rval.putByte(c.session.compressionMethod); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a Certificate message. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   This is the first message the client can send after receiving a server | ||
|  |  *   hello done message and the first message the server can send after | ||
|  |  *   sending a ServerHello. This client message is only sent if the server | ||
|  |  *   requests a certificate. If no suitable certificate is available, the | ||
|  |  *   client should send a certificate message containing no certificates. If | ||
|  |  *   client authentication is required by the server for the handshake to | ||
|  |  *   continue, it may respond with a fatal handshake failure alert. | ||
|  |  * | ||
|  |  * opaque ASN.1Cert<1..2^24-1>; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ASN.1Cert certificate_list<0..2^24-1>; | ||
|  |  * } Certificate; | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the Certificate byte buffer. | ||
|  |  */ | ||
|  | tls.createCertificate = function(c) { | ||
|  |   // TODO: check certificate request to ensure types are supported
 | ||
|  | 
 | ||
|  |   // get a certificate (a certificate as a PEM string)
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   var cert = null; | ||
|  |   if(c.getCertificate) { | ||
|  |     var hint; | ||
|  |     if(client) { | ||
|  |       hint = c.session.certificateRequest; | ||
|  |     } else { | ||
|  |       hint = c.session.extensions.server_name.serverNameList; | ||
|  |     } | ||
|  |     cert = c.getCertificate(c, hint); | ||
|  |   } | ||
|  | 
 | ||
|  |   // buffer to hold certificate list
 | ||
|  |   var certList = forge.util.createBuffer(); | ||
|  |   if(cert !== null) { | ||
|  |     try { | ||
|  |       // normalize cert to a chain of certificates
 | ||
|  |       if(!forge.util.isArray(cert)) { | ||
|  |         cert = [cert]; | ||
|  |       } | ||
|  |       var asn1 = null; | ||
|  |       for(var i = 0; i < cert.length; ++i) { | ||
|  |         var msg = forge.pem.decode(cert[i])[0]; | ||
|  |         if(msg.type !== 'CERTIFICATE' && | ||
|  |           msg.type !== 'X509 CERTIFICATE' && | ||
|  |           msg.type !== 'TRUSTED CERTIFICATE') { | ||
|  |           var error = new Error('Could not convert certificate from PEM; PEM ' + | ||
|  |             'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' + | ||
|  |             '"TRUSTED CERTIFICATE".'); | ||
|  |           error.headerType = msg.type; | ||
|  |           throw error; | ||
|  |         } | ||
|  |         if(msg.procType && msg.procType.type === 'ENCRYPTED') { | ||
|  |           throw new Error('Could not convert certificate from PEM; PEM is encrypted.'); | ||
|  |         } | ||
|  | 
 | ||
|  |         var der = forge.util.createBuffer(msg.body); | ||
|  |         if(asn1 === null) { | ||
|  |           asn1 = forge.asn1.fromDer(der.bytes(), false); | ||
|  |         } | ||
|  | 
 | ||
|  |         // certificate entry is itself a vector with 3 length bytes
 | ||
|  |         var certBuffer = forge.util.createBuffer(); | ||
|  |         writeVector(certBuffer, 3, der); | ||
|  | 
 | ||
|  |         // add cert vector to cert list vector
 | ||
|  |         certList.putBuffer(certBuffer); | ||
|  |       } | ||
|  | 
 | ||
|  |       // save certificate
 | ||
|  |       cert = forge.pki.certificateFromAsn1(asn1); | ||
|  |       if(client) { | ||
|  |         c.session.clientCertificate = cert; | ||
|  |       } else { | ||
|  |         c.session.serverCertificate = cert; | ||
|  |       } | ||
|  |     } catch(ex) { | ||
|  |       return c.error(c, { | ||
|  |         message: 'Could not send certificate list.', | ||
|  |         cause: ex, | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.bad_certificate | ||
|  |         } | ||
|  |       }); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   var length = 3 + certList.length(); // cert list vector
 | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.certificate); | ||
|  |   rval.putInt24(length); | ||
|  |   writeVector(rval, 3, certList); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ClientKeyExchange message. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   This message is always sent by the client. It will immediately follow the | ||
|  |  *   client certificate message, if it is sent. Otherwise it will be the first | ||
|  |  *   message sent by the client after it receives the server hello done | ||
|  |  *   message. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   With this message, the premaster secret is set, either though direct | ||
|  |  *   transmission of the RSA-encrypted secret, or by the transmission of | ||
|  |  *   Diffie-Hellman parameters which will allow each side to agree upon the | ||
|  |  *   same premaster secret. When the key exchange method is DH_RSA or DH_DSS, | ||
|  |  *   client certification has been requested, and the client was able to | ||
|  |  *   respond with a certificate which contained a Diffie-Hellman public key | ||
|  |  *   whose parameters (group and generator) matched those specified by the | ||
|  |  *   server in its certificate, this message will not contain any data. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   If RSA is being used for key agreement and authentication, the client | ||
|  |  *   generates a 48-byte premaster secret, encrypts it using the public key | ||
|  |  *   from the server's certificate or the temporary RSA key provided in a | ||
|  |  *   server key exchange message, and sends the result in an encrypted | ||
|  |  *   premaster secret message. This structure is a variant of the client | ||
|  |  *   key exchange message, not a message in itself. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   select(KeyExchangeAlgorithm) { | ||
|  |  *     case rsa: EncryptedPreMasterSecret; | ||
|  |  *     case diffie_hellman: ClientDiffieHellmanPublic; | ||
|  |  *   } exchange_keys; | ||
|  |  * } ClientKeyExchange; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   ProtocolVersion client_version; | ||
|  |  *   opaque random[46]; | ||
|  |  * } PreMasterSecret; | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   public-key-encrypted PreMasterSecret pre_master_secret; | ||
|  |  * } EncryptedPreMasterSecret; | ||
|  |  * | ||
|  |  * A public-key-encrypted element is encoded as a vector <0..2^16-1>. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the ClientKeyExchange byte buffer. | ||
|  |  */ | ||
|  | tls.createClientKeyExchange = function(c) { | ||
|  |   // create buffer to encrypt
 | ||
|  |   var b = forge.util.createBuffer(); | ||
|  | 
 | ||
|  |   // add highest client-supported protocol to help server avoid version
 | ||
|  |   // rollback attacks
 | ||
|  |   b.putByte(c.session.clientHelloVersion.major); | ||
|  |   b.putByte(c.session.clientHelloVersion.minor); | ||
|  | 
 | ||
|  |   // generate and add 46 random bytes
 | ||
|  |   b.putBytes(forge.random.getBytes(46)); | ||
|  | 
 | ||
|  |   // save pre-master secret
 | ||
|  |   var sp = c.session.sp; | ||
|  |   sp.pre_master_secret = b.getBytes(); | ||
|  | 
 | ||
|  |   // RSA-encrypt the pre-master secret
 | ||
|  |   var key = c.session.serverCertificate.publicKey; | ||
|  |   b = key.encrypt(sp.pre_master_secret); | ||
|  | 
 | ||
|  |   /* Note: The encrypted pre-master secret will be stored in a | ||
|  |     public-key-encrypted opaque vector that has the length prefixed using | ||
|  |     2 bytes, so include those 2 bytes in the handshake message length. This | ||
|  |     is done as a minor optimization instead of calling writeVector(). */ | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   var length = b.length + 2; | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.client_key_exchange); | ||
|  |   rval.putInt24(length); | ||
|  |   // add vector length bytes
 | ||
|  |   rval.putInt16(b.length); | ||
|  |   rval.putBytes(b); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ServerKeyExchange message. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the ServerKeyExchange byte buffer. | ||
|  |  */ | ||
|  | tls.createServerKeyExchange = function(c) { | ||
|  |   // this implementation only supports RSA, no Diffie-Hellman support,
 | ||
|  |   // so this record is empty
 | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   var length = 0; | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   if(length > 0) { | ||
|  |     rval.putByte(tls.HandshakeType.server_key_exchange); | ||
|  |     rval.putInt24(length); | ||
|  |   } | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Gets the signed data used to verify a client-side certificate. See | ||
|  |  * tls.createCertificateVerify() for details. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param callback the callback to call once the signed data is ready. | ||
|  |  */ | ||
|  | tls.getClientSignature = function(c, callback) { | ||
|  |   // generate data to RSA encrypt
 | ||
|  |   var b = forge.util.createBuffer(); | ||
|  |   b.putBuffer(c.session.md5.digest()); | ||
|  |   b.putBuffer(c.session.sha1.digest()); | ||
|  |   b = b.getBytes(); | ||
|  | 
 | ||
|  |   // create default signing function as necessary
 | ||
|  |   c.getSignature = c.getSignature || function(c, b, callback) { | ||
|  |     // do rsa encryption, call callback
 | ||
|  |     var privateKey = null; | ||
|  |     if(c.getPrivateKey) { | ||
|  |       try { | ||
|  |         privateKey = c.getPrivateKey(c, c.session.clientCertificate); | ||
|  |         privateKey = forge.pki.privateKeyFromPem(privateKey); | ||
|  |       } catch(ex) { | ||
|  |         c.error(c, { | ||
|  |           message: 'Could not get private key.', | ||
|  |           cause: ex, | ||
|  |           send: true, | ||
|  |           alert: { | ||
|  |             level: tls.Alert.Level.fatal, | ||
|  |             description: tls.Alert.Description.internal_error | ||
|  |           } | ||
|  |         }); | ||
|  |       } | ||
|  |     } | ||
|  |     if(privateKey === null) { | ||
|  |       c.error(c, { | ||
|  |         message: 'No private key set.', | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: tls.Alert.Description.internal_error | ||
|  |         } | ||
|  |       }); | ||
|  |     } else { | ||
|  |       b = privateKey.sign(b, null); | ||
|  |     } | ||
|  |     callback(c, b); | ||
|  |   }; | ||
|  | 
 | ||
|  |   // get client signature
 | ||
|  |   c.getSignature(c, b, callback); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a CertificateVerify message. | ||
|  |  * | ||
|  |  * Meaning of this message: | ||
|  |  *   This structure conveys the client's Diffie-Hellman public value | ||
|  |  *   (Yc) if it was not already included in the client's certificate. | ||
|  |  *   The encoding used for Yc is determined by the enumerated | ||
|  |  *   PublicValueEncoding. This structure is a variant of the client | ||
|  |  *   key exchange message, not a message in itself. | ||
|  |  * | ||
|  |  * When this message will be sent: | ||
|  |  *   This message is used to provide explicit verification of a client | ||
|  |  *   certificate. This message is only sent following a client | ||
|  |  *   certificate that has signing capability (i.e. all certificates | ||
|  |  *   except those containing fixed Diffie-Hellman parameters). When | ||
|  |  *   sent, it will immediately follow the client key exchange message. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   Signature signature; | ||
|  |  * } CertificateVerify; | ||
|  |  * | ||
|  |  * CertificateVerify.signature.md5_hash | ||
|  |  *   MD5(handshake_messages); | ||
|  |  * | ||
|  |  * Certificate.signature.sha_hash | ||
|  |  *   SHA(handshake_messages); | ||
|  |  * | ||
|  |  * Here handshake_messages refers to all handshake messages sent or | ||
|  |  * received starting at client hello up to but not including this | ||
|  |  * message, including the type and length fields of the handshake | ||
|  |  * messages. | ||
|  |  * | ||
|  |  * select(SignatureAlgorithm) { | ||
|  |  *   case anonymous: struct { }; | ||
|  |  *   case rsa: | ||
|  |  *     digitally-signed struct { | ||
|  |  *       opaque md5_hash[16]; | ||
|  |  *       opaque sha_hash[20]; | ||
|  |  *     }; | ||
|  |  *   case dsa: | ||
|  |  *     digitally-signed struct { | ||
|  |  *       opaque sha_hash[20]; | ||
|  |  *     }; | ||
|  |  * } Signature; | ||
|  |  * | ||
|  |  * In digital signing, one-way hash functions are used as input for a | ||
|  |  * signing algorithm. A digitally-signed element is encoded as an opaque | ||
|  |  * vector <0..2^16-1>, where the length is specified by the signing | ||
|  |  * algorithm and key. | ||
|  |  * | ||
|  |  * In RSA signing, a 36-byte structure of two hashes (one SHA and one | ||
|  |  * MD5) is signed (encrypted with the private key). It is encoded with | ||
|  |  * PKCS #1 block type 0 or type 1 as described in [PKCS1]. | ||
|  |  * | ||
|  |  * In DSS, the 20 bytes of the SHA hash are run directly through the | ||
|  |  * Digital Signing Algorithm with no additional hashing. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param signature the signature to include in the message. | ||
|  |  * | ||
|  |  * @return the CertificateVerify byte buffer. | ||
|  |  */ | ||
|  | tls.createCertificateVerify = function(c, signature) { | ||
|  |   /* Note: The signature will be stored in a "digitally-signed" opaque | ||
|  |     vector that has the length prefixed using 2 bytes, so include those | ||
|  |     2 bytes in the handshake message length. This is done as a minor | ||
|  |     optimization instead of calling writeVector(). */ | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   var length = signature.length + 2; | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.certificate_verify); | ||
|  |   rval.putInt24(length); | ||
|  |   // add vector length bytes
 | ||
|  |   rval.putInt16(signature.length); | ||
|  |   rval.putBytes(signature); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a CertificateRequest message. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the CertificateRequest byte buffer. | ||
|  |  */ | ||
|  | tls.createCertificateRequest = function(c) { | ||
|  |   // TODO: support other certificate types
 | ||
|  |   var certTypes = forge.util.createBuffer(); | ||
|  | 
 | ||
|  |   // common RSA certificate type
 | ||
|  |   certTypes.putByte(0x01); | ||
|  | 
 | ||
|  |   // add distinguished names from CA store
 | ||
|  |   var cAs = forge.util.createBuffer(); | ||
|  |   for(var key in c.caStore.certs) { | ||
|  |     var cert = c.caStore.certs[key]; | ||
|  |     var dn = forge.pki.distinguishedNameToAsn1(cert.subject); | ||
|  |     var byteBuffer = forge.asn1.toDer(dn); | ||
|  |     cAs.putInt16(byteBuffer.length()); | ||
|  |     cAs.putBuffer(byteBuffer); | ||
|  |   } | ||
|  | 
 | ||
|  |   // TODO: TLS 1.2+ has a different format
 | ||
|  | 
 | ||
|  |   // determine length of the handshake message
 | ||
|  |   var length = | ||
|  |     1 + certTypes.length() + | ||
|  |     2 + cAs.length(); | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.certificate_request); | ||
|  |   rval.putInt24(length); | ||
|  |   writeVector(rval, 1, certTypes); | ||
|  |   writeVector(rval, 2, cAs); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ServerHelloDone message. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the ServerHelloDone byte buffer. | ||
|  |  */ | ||
|  | tls.createServerHelloDone = function(c) { | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.server_hello_done); | ||
|  |   rval.putInt24(0); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a ChangeCipherSpec message. | ||
|  |  * | ||
|  |  * The change cipher spec protocol exists to signal transitions in | ||
|  |  * ciphering strategies. The protocol consists of a single message, | ||
|  |  * which is encrypted and compressed under the current (not the pending) | ||
|  |  * connection state. The message consists of a single byte of value 1. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   enum { change_cipher_spec(1), (255) } type; | ||
|  |  * } ChangeCipherSpec; | ||
|  |  * | ||
|  |  * @return the ChangeCipherSpec byte buffer. | ||
|  |  */ | ||
|  | tls.createChangeCipherSpec = function() { | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(0x01); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a Finished message. | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   opaque verify_data[12]; | ||
|  |  * } Finished; | ||
|  |  * | ||
|  |  * verify_data | ||
|  |  *   PRF(master_secret, finished_label, MD5(handshake_messages) + | ||
|  |  *   SHA-1(handshake_messages)) [0..11]; | ||
|  |  * | ||
|  |  * finished_label | ||
|  |  *   For Finished messages sent by the client, the string "client | ||
|  |  *   finished". For Finished messages sent by the server, the | ||
|  |  *   string "server finished". | ||
|  |  * | ||
|  |  * handshake_messages | ||
|  |  *   All of the data from all handshake messages up to but not | ||
|  |  *   including this message. This is only data visible at the | ||
|  |  *   handshake layer and does not include record layer headers. | ||
|  |  *   This is the concatenation of all the Handshake structures as | ||
|  |  *   defined in 7.4 exchanged thus far. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return the Finished byte buffer. | ||
|  |  */ | ||
|  | tls.createFinished = function(c) { | ||
|  |   // generate verify_data
 | ||
|  |   var b = forge.util.createBuffer(); | ||
|  |   b.putBuffer(c.session.md5.digest()); | ||
|  |   b.putBuffer(c.session.sha1.digest()); | ||
|  | 
 | ||
|  |   // TODO: determine prf function and verify length for TLS 1.2
 | ||
|  |   var client = (c.entity === tls.ConnectionEnd.client); | ||
|  |   var sp = c.session.sp; | ||
|  |   var vdl = 12; | ||
|  |   var prf = prf_TLS1; | ||
|  |   var label = client ? 'client finished' : 'server finished'; | ||
|  |   b = prf(sp.master_secret, label, b.getBytes(), vdl); | ||
|  | 
 | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(tls.HandshakeType.finished); | ||
|  |   rval.putInt24(b.length()); | ||
|  |   rval.putBuffer(b); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a HeartbeatMessage (See RFC 6520). | ||
|  |  * | ||
|  |  * struct { | ||
|  |  *   HeartbeatMessageType type; | ||
|  |  *   uint16 payload_length; | ||
|  |  *   opaque payload[HeartbeatMessage.payload_length]; | ||
|  |  *   opaque padding[padding_length]; | ||
|  |  * } HeartbeatMessage; | ||
|  |  * | ||
|  |  * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or | ||
|  |  * max_fragment_length when negotiated as defined in [RFC6066]. | ||
|  |  * | ||
|  |  * type: The message type, either heartbeat_request or heartbeat_response. | ||
|  |  * | ||
|  |  * payload_length: The length of the payload. | ||
|  |  * | ||
|  |  * payload: The payload consists of arbitrary content. | ||
|  |  * | ||
|  |  * padding: The padding is random content that MUST be ignored by the | ||
|  |  *   receiver. The length of a HeartbeatMessage is TLSPlaintext.length | ||
|  |  *   for TLS and DTLSPlaintext.length for DTLS. Furthermore, the | ||
|  |  *   length of the type field is 1 byte, and the length of the | ||
|  |  *   payload_length is 2. Therefore, the padding_length is | ||
|  |  *   TLSPlaintext.length - payload_length - 3 for TLS and | ||
|  |  *   DTLSPlaintext.length - payload_length - 3 for DTLS. The | ||
|  |  *   padding_length MUST be at least 16. | ||
|  |  * | ||
|  |  * The sender of a HeartbeatMessage MUST use a random padding of at | ||
|  |  * least 16 bytes. The padding of a received HeartbeatMessage message | ||
|  |  * MUST be ignored. | ||
|  |  * | ||
|  |  * If the payload_length of a received HeartbeatMessage is too large, | ||
|  |  * the received HeartbeatMessage MUST be discarded silently. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param type the tls.HeartbeatMessageType. | ||
|  |  * @param payload the heartbeat data to send as the payload. | ||
|  |  * @param [payloadLength] the payload length to use, defaults to the | ||
|  |  *          actual payload length. | ||
|  |  * | ||
|  |  * @return the HeartbeatRequest byte buffer. | ||
|  |  */ | ||
|  | tls.createHeartbeat = function(type, payload, payloadLength) { | ||
|  |   if(typeof payloadLength === 'undefined') { | ||
|  |     payloadLength = payload.length; | ||
|  |   } | ||
|  |   // build record fragment
 | ||
|  |   var rval = forge.util.createBuffer(); | ||
|  |   rval.putByte(type);               // heartbeat message type
 | ||
|  |   rval.putInt16(payloadLength);     // payload length
 | ||
|  |   rval.putBytes(payload);           // payload
 | ||
|  |   // padding
 | ||
|  |   var plaintextLength = rval.length(); | ||
|  |   var paddingLength = Math.max(16, plaintextLength - payloadLength - 3); | ||
|  |   rval.putBytes(forge.random.getBytes(paddingLength)); | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Fragments, compresses, encrypts, and queues a record for delivery. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * @param record the record to queue. | ||
|  |  */ | ||
|  | tls.queue = function(c, record) { | ||
|  |   // error during record creation
 | ||
|  |   if(!record) { | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   if(record.fragment.length() === 0) { | ||
|  |     if(record.type === tls.ContentType.handshake || | ||
|  |       record.type === tls.ContentType.alert || | ||
|  |       record.type === tls.ContentType.change_cipher_spec) { | ||
|  |       // Empty handshake, alert of change cipher spec messages are not allowed per the TLS specification and should not be sent.
 | ||
|  |       return; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // if the record is a handshake record, update handshake hashes
 | ||
|  |   if(record.type === tls.ContentType.handshake) { | ||
|  |     var bytes = record.fragment.bytes(); | ||
|  |     c.session.md5.update(bytes); | ||
|  |     c.session.sha1.update(bytes); | ||
|  |     bytes = null; | ||
|  |   } | ||
|  | 
 | ||
|  |   // handle record fragmentation
 | ||
|  |   var records; | ||
|  |   if(record.fragment.length() <= tls.MaxFragment) { | ||
|  |     records = [record]; | ||
|  |   } else { | ||
|  |     // fragment data as long as it is too long
 | ||
|  |     records = []; | ||
|  |     var data = record.fragment.bytes(); | ||
|  |     while(data.length > tls.MaxFragment) { | ||
|  |       records.push(tls.createRecord(c, { | ||
|  |         type: record.type, | ||
|  |         data: forge.util.createBuffer(data.slice(0, tls.MaxFragment)) | ||
|  |       })); | ||
|  |       data = data.slice(tls.MaxFragment); | ||
|  |     } | ||
|  |     // add last record
 | ||
|  |     if(data.length > 0) { | ||
|  |       records.push(tls.createRecord(c, { | ||
|  |         type: record.type, | ||
|  |         data: forge.util.createBuffer(data) | ||
|  |       })); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // compress and encrypt all fragmented records
 | ||
|  |   for(var i = 0; i < records.length && !c.fail; ++i) { | ||
|  |     // update the record using current write state
 | ||
|  |     var rec = records[i]; | ||
|  |     var s = c.state.current.write; | ||
|  |     if(s.update(c, rec)) { | ||
|  |       // store record
 | ||
|  |       c.records.push(rec); | ||
|  |     } | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Flushes all queued records to the output buffer and calls the | ||
|  |  * tlsDataReady() handler on the given connection. | ||
|  |  * | ||
|  |  * @param c the connection. | ||
|  |  * | ||
|  |  * @return true on success, false on failure. | ||
|  |  */ | ||
|  | tls.flush = function(c) { | ||
|  |   for(var i = 0; i < c.records.length; ++i) { | ||
|  |     var record = c.records[i]; | ||
|  | 
 | ||
|  |     // add record header and fragment
 | ||
|  |     c.tlsData.putByte(record.type); | ||
|  |     c.tlsData.putByte(record.version.major); | ||
|  |     c.tlsData.putByte(record.version.minor); | ||
|  |     c.tlsData.putInt16(record.fragment.length()); | ||
|  |     c.tlsData.putBuffer(c.records[i].fragment); | ||
|  |   } | ||
|  |   c.records = []; | ||
|  |   return c.tlsDataReady(c); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Maps a pki.certificateError to a tls.Alert.Description. | ||
|  |  * | ||
|  |  * @param error the error to map. | ||
|  |  * | ||
|  |  * @return the alert description. | ||
|  |  */ | ||
|  | var _certErrorToAlertDesc = function(error) { | ||
|  |   switch(error) { | ||
|  |   case true: | ||
|  |     return true; | ||
|  |   case forge.pki.certificateError.bad_certificate: | ||
|  |     return tls.Alert.Description.bad_certificate; | ||
|  |   case forge.pki.certificateError.unsupported_certificate: | ||
|  |     return tls.Alert.Description.unsupported_certificate; | ||
|  |   case forge.pki.certificateError.certificate_revoked: | ||
|  |     return tls.Alert.Description.certificate_revoked; | ||
|  |   case forge.pki.certificateError.certificate_expired: | ||
|  |     return tls.Alert.Description.certificate_expired; | ||
|  |   case forge.pki.certificateError.certificate_unknown: | ||
|  |     return tls.Alert.Description.certificate_unknown; | ||
|  |   case forge.pki.certificateError.unknown_ca: | ||
|  |     return tls.Alert.Description.unknown_ca; | ||
|  |   default: | ||
|  |     return tls.Alert.Description.bad_certificate; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Maps a tls.Alert.Description to a pki.certificateError. | ||
|  |  * | ||
|  |  * @param desc the alert description. | ||
|  |  * | ||
|  |  * @return the certificate error. | ||
|  |  */ | ||
|  | var _alertDescToCertError = function(desc) { | ||
|  |   switch(desc) { | ||
|  |   case true: | ||
|  |     return true; | ||
|  |   case tls.Alert.Description.bad_certificate: | ||
|  |     return forge.pki.certificateError.bad_certificate; | ||
|  |   case tls.Alert.Description.unsupported_certificate: | ||
|  |     return forge.pki.certificateError.unsupported_certificate; | ||
|  |   case tls.Alert.Description.certificate_revoked: | ||
|  |     return forge.pki.certificateError.certificate_revoked; | ||
|  |   case tls.Alert.Description.certificate_expired: | ||
|  |     return forge.pki.certificateError.certificate_expired; | ||
|  |   case tls.Alert.Description.certificate_unknown: | ||
|  |     return forge.pki.certificateError.certificate_unknown; | ||
|  |   case tls.Alert.Description.unknown_ca: | ||
|  |     return forge.pki.certificateError.unknown_ca; | ||
|  |   default: | ||
|  |     return forge.pki.certificateError.bad_certificate; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Verifies a certificate chain against the given connection's | ||
|  |  * Certificate Authority store. | ||
|  |  * | ||
|  |  * @param c the TLS connection. | ||
|  |  * @param chain the certificate chain to verify, with the root or highest | ||
|  |  *          authority at the end. | ||
|  |  * | ||
|  |  * @return true if successful, false if not. | ||
|  |  */ | ||
|  | tls.verifyCertificateChain = function(c, chain) { | ||
|  |   try { | ||
|  |     // Make a copy of c.verifyOptions so that we can modify options.verify
 | ||
|  |     // without modifying c.verifyOptions.
 | ||
|  |     var options = {}; | ||
|  |     for (var key in c.verifyOptions) { | ||
|  |       options[key] = c.verifyOptions[key]; | ||
|  |     } | ||
|  | 
 | ||
|  |     options.verify = function(vfd, depth, chain) { | ||
|  |       // convert pki.certificateError to tls alert description
 | ||
|  |       var desc = _certErrorToAlertDesc(vfd); | ||
|  | 
 | ||
|  |       // call application callback
 | ||
|  |       var ret = c.verify(c, vfd, depth, chain); | ||
|  |       if(ret !== true) { | ||
|  |         if(typeof ret === 'object' && !forge.util.isArray(ret)) { | ||
|  |           // throw custom error
 | ||
|  |           var error = new Error('The application rejected the certificate.'); | ||
|  |           error.send = true; | ||
|  |           error.alert = { | ||
|  |             level: tls.Alert.Level.fatal, | ||
|  |             description: tls.Alert.Description.bad_certificate | ||
|  |           }; | ||
|  |           if(ret.message) { | ||
|  |             error.message = ret.message; | ||
|  |           } | ||
|  |           if(ret.alert) { | ||
|  |             error.alert.description = ret.alert; | ||
|  |           } | ||
|  |           throw error; | ||
|  |         } | ||
|  | 
 | ||
|  |         // convert tls alert description to pki.certificateError
 | ||
|  |         if(ret !== vfd) { | ||
|  |           ret = _alertDescToCertError(ret); | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       return ret; | ||
|  |     }; | ||
|  | 
 | ||
|  |     // verify chain
 | ||
|  |     forge.pki.verifyCertificateChain(c.caStore, chain, options); | ||
|  |   } catch(ex) { | ||
|  |     // build tls error if not already customized
 | ||
|  |     var err = ex; | ||
|  |     if(typeof err !== 'object' || forge.util.isArray(err)) { | ||
|  |       err = { | ||
|  |         send: true, | ||
|  |         alert: { | ||
|  |           level: tls.Alert.Level.fatal, | ||
|  |           description: _certErrorToAlertDesc(ex) | ||
|  |         } | ||
|  |       }; | ||
|  |     } | ||
|  |     if(!('send' in err)) { | ||
|  |       err.send = true; | ||
|  |     } | ||
|  |     if(!('alert' in err)) { | ||
|  |       err.alert = { | ||
|  |         level: tls.Alert.Level.fatal, | ||
|  |         description: _certErrorToAlertDesc(err.error) | ||
|  |       }; | ||
|  |     } | ||
|  | 
 | ||
|  |     // send error
 | ||
|  |     c.error(c, err); | ||
|  |   } | ||
|  | 
 | ||
|  |   return !c.fail; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a new TLS session cache. | ||
|  |  * | ||
|  |  * @param cache optional map of session ID to cached session. | ||
|  |  * @param capacity the maximum size for the cache (default: 100). | ||
|  |  * | ||
|  |  * @return the new TLS session cache. | ||
|  |  */ | ||
|  | tls.createSessionCache = function(cache, capacity) { | ||
|  |   var rval = null; | ||
|  | 
 | ||
|  |   // assume input is already a session cache object
 | ||
|  |   if(cache && cache.getSession && cache.setSession && cache.order) { | ||
|  |     rval = cache; | ||
|  |   } else { | ||
|  |     // create cache
 | ||
|  |     rval = {}; | ||
|  |     rval.cache = cache || {}; | ||
|  |     rval.capacity = Math.max(capacity || 100, 1); | ||
|  |     rval.order = []; | ||
|  | 
 | ||
|  |     // store order for sessions, delete session overflow
 | ||
|  |     for(var key in cache) { | ||
|  |       if(rval.order.length <= capacity) { | ||
|  |         rval.order.push(key); | ||
|  |       } else { | ||
|  |         delete cache[key]; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // get a session from a session ID (or get any session)
 | ||
|  |     rval.getSession = function(sessionId) { | ||
|  |       var session = null; | ||
|  |       var key = null; | ||
|  | 
 | ||
|  |       // if session ID provided, use it
 | ||
|  |       if(sessionId) { | ||
|  |         key = forge.util.bytesToHex(sessionId); | ||
|  |       } else if(rval.order.length > 0) { | ||
|  |         // get first session from cache
 | ||
|  |         key = rval.order[0]; | ||
|  |       } | ||
|  | 
 | ||
|  |       if(key !== null && key in rval.cache) { | ||
|  |         // get cached session and remove from cache
 | ||
|  |         session = rval.cache[key]; | ||
|  |         delete rval.cache[key]; | ||
|  |         for(var i in rval.order) { | ||
|  |           if(rval.order[i] === key) { | ||
|  |             rval.order.splice(i, 1); | ||
|  |             break; | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       return session; | ||
|  |     }; | ||
|  | 
 | ||
|  |     // set a session in the cache
 | ||
|  |     rval.setSession = function(sessionId, session) { | ||
|  |       // remove session from cache if at capacity
 | ||
|  |       if(rval.order.length === rval.capacity) { | ||
|  |         var key = rval.order.shift(); | ||
|  |         delete rval.cache[key]; | ||
|  |       } | ||
|  |       // add session to cache
 | ||
|  |       var key = forge.util.bytesToHex(sessionId); | ||
|  |       rval.order.push(key); | ||
|  |       rval.cache[key] = session; | ||
|  |     }; | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a new TLS connection. | ||
|  |  * | ||
|  |  * See public createConnection() docs for more details. | ||
|  |  * | ||
|  |  * @param options the options for this connection. | ||
|  |  * | ||
|  |  * @return the new TLS connection. | ||
|  |  */ | ||
|  | tls.createConnection = function(options) { | ||
|  |   var caStore = null; | ||
|  |   if(options.caStore) { | ||
|  |     // if CA store is an array, convert it to a CA store object
 | ||
|  |     if(forge.util.isArray(options.caStore)) { | ||
|  |       caStore = forge.pki.createCaStore(options.caStore); | ||
|  |     } else { | ||
|  |       caStore = options.caStore; | ||
|  |     } | ||
|  |   } else { | ||
|  |     // create empty CA store
 | ||
|  |     caStore = forge.pki.createCaStore(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // setup default cipher suites
 | ||
|  |   var cipherSuites = options.cipherSuites || null; | ||
|  |   if(cipherSuites === null) { | ||
|  |     cipherSuites = []; | ||
|  |     for(var key in tls.CipherSuites) { | ||
|  |       cipherSuites.push(tls.CipherSuites[key]); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // set default entity
 | ||
|  |   var entity = (options.server || false) ? | ||
|  |     tls.ConnectionEnd.server : tls.ConnectionEnd.client; | ||
|  | 
 | ||
|  |   // create session cache if requested
 | ||
|  |   var sessionCache = options.sessionCache ? | ||
|  |     tls.createSessionCache(options.sessionCache) : null; | ||
|  | 
 | ||
|  |   // create TLS connection
 | ||
|  |   var c = { | ||
|  |     version: {major: tls.Version.major, minor: tls.Version.minor}, | ||
|  |     entity: entity, | ||
|  |     sessionId: options.sessionId, | ||
|  |     caStore: caStore, | ||
|  |     sessionCache: sessionCache, | ||
|  |     cipherSuites: cipherSuites, | ||
|  |     connected: options.connected, | ||
|  |     virtualHost: options.virtualHost || null, | ||
|  |     verifyClient: options.verifyClient || false, | ||
|  |     verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;}, | ||
|  |     verifyOptions: options.verifyOptions || {}, | ||
|  |     getCertificate: options.getCertificate || null, | ||
|  |     getPrivateKey: options.getPrivateKey || null, | ||
|  |     getSignature: options.getSignature || null, | ||
|  |     input: forge.util.createBuffer(), | ||
|  |     tlsData: forge.util.createBuffer(), | ||
|  |     data: forge.util.createBuffer(), | ||
|  |     tlsDataReady: options.tlsDataReady, | ||
|  |     dataReady: options.dataReady, | ||
|  |     heartbeatReceived: options.heartbeatReceived, | ||
|  |     closed: options.closed, | ||
|  |     error: function(c, ex) { | ||
|  |       // set origin if not set
 | ||
|  |       ex.origin = ex.origin || | ||
|  |         ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server'); | ||
|  | 
 | ||
|  |       // send TLS alert
 | ||
|  |       if(ex.send) { | ||
|  |         tls.queue(c, tls.createAlert(c, ex.alert)); | ||
|  |         tls.flush(c); | ||
|  |       } | ||
|  | 
 | ||
|  |       // error is fatal by default
 | ||
|  |       var fatal = (ex.fatal !== false); | ||
|  |       if(fatal) { | ||
|  |         // set fail flag
 | ||
|  |         c.fail = true; | ||
|  |       } | ||
|  | 
 | ||
|  |       // call error handler first
 | ||
|  |       options.error(c, ex); | ||
|  | 
 | ||
|  |       if(fatal) { | ||
|  |         // fatal error, close connection, do not clear fail
 | ||
|  |         c.close(false); | ||
|  |       } | ||
|  |     }, | ||
|  |     deflate: options.deflate || null, | ||
|  |     inflate: options.inflate || null | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Resets a closed TLS connection for reuse. Called in c.close(). | ||
|  |    * | ||
|  |    * @param clearFail true to clear the fail flag (default: true). | ||
|  |    */ | ||
|  |   c.reset = function(clearFail) { | ||
|  |     c.version = {major: tls.Version.major, minor: tls.Version.minor}; | ||
|  |     c.record = null; | ||
|  |     c.session = null; | ||
|  |     c.peerCertificate = null; | ||
|  |     c.state = { | ||
|  |       pending: null, | ||
|  |       current: null | ||
|  |     }; | ||
|  |     c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE; | ||
|  |     c.fragmented = null; | ||
|  |     c.records = []; | ||
|  |     c.open = false; | ||
|  |     c.handshakes = 0; | ||
|  |     c.handshaking = false; | ||
|  |     c.isConnected = false; | ||
|  |     c.fail = !(clearFail || typeof(clearFail) === 'undefined'); | ||
|  |     c.input.clear(); | ||
|  |     c.tlsData.clear(); | ||
|  |     c.data.clear(); | ||
|  |     c.state.current = tls.createConnectionState(c); | ||
|  |   }; | ||
|  | 
 | ||
|  |   // do initial reset of connection
 | ||
|  |   c.reset(); | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Updates the current TLS engine state based on the given record. | ||
|  |    * | ||
|  |    * @param c the TLS connection. | ||
|  |    * @param record the TLS record to act on. | ||
|  |    */ | ||
|  |   var _update = function(c, record) { | ||
|  |     // get record handler (align type in table by subtracting lowest)
 | ||
|  |     var aligned = record.type - tls.ContentType.change_cipher_spec; | ||
|  |     var handlers = ctTable[c.entity][c.expect]; | ||
|  |     if(aligned in handlers) { | ||
|  |       handlers[aligned](c, record); | ||
|  |     } else { | ||
|  |       // unexpected record
 | ||
|  |       tls.handleUnexpected(c, record); | ||
|  |     } | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Reads the record header and initializes the next record on the given | ||
|  |    * connection. | ||
|  |    * | ||
|  |    * @param c the TLS connection with the next record. | ||
|  |    * | ||
|  |    * @return 0 if the input data could be processed, otherwise the | ||
|  |    *         number of bytes required for data to be processed. | ||
|  |    */ | ||
|  |   var _readRecordHeader = function(c) { | ||
|  |     var rval = 0; | ||
|  | 
 | ||
|  |     // get input buffer and its length
 | ||
|  |     var b = c.input; | ||
|  |     var len = b.length(); | ||
|  | 
 | ||
|  |     // need at least 5 bytes to initialize a record
 | ||
|  |     if(len < 5) { | ||
|  |       rval = 5 - len; | ||
|  |     } else { | ||
|  |       // enough bytes for header
 | ||
|  |       // initialize record
 | ||
|  |       c.record = { | ||
|  |         type: b.getByte(), | ||
|  |         version: { | ||
|  |           major: b.getByte(), | ||
|  |           minor: b.getByte() | ||
|  |         }, | ||
|  |         length: b.getInt16(), | ||
|  |         fragment: forge.util.createBuffer(), | ||
|  |         ready: false | ||
|  |       }; | ||
|  | 
 | ||
|  |       // check record version
 | ||
|  |       var compatibleVersion = (c.record.version.major === c.version.major); | ||
|  |       if(compatibleVersion && c.session && c.session.version) { | ||
|  |         // session version already set, require same minor version
 | ||
|  |         compatibleVersion = (c.record.version.minor === c.version.minor); | ||
|  |       } | ||
|  |       if(!compatibleVersion) { | ||
|  |         c.error(c, { | ||
|  |           message: 'Incompatible TLS version.', | ||
|  |           send: true, | ||
|  |           alert: { | ||
|  |             level: tls.Alert.Level.fatal, | ||
|  |             description: tls.Alert.Description.protocol_version | ||
|  |           } | ||
|  |         }); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return rval; | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Reads the next record's contents and appends its message to any | ||
|  |    * previously fragmented message. | ||
|  |    * | ||
|  |    * @param c the TLS connection with the next record. | ||
|  |    * | ||
|  |    * @return 0 if the input data could be processed, otherwise the | ||
|  |    *         number of bytes required for data to be processed. | ||
|  |    */ | ||
|  |   var _readRecord = function(c) { | ||
|  |     var rval = 0; | ||
|  | 
 | ||
|  |     // ensure there is enough input data to get the entire record
 | ||
|  |     var b = c.input; | ||
|  |     var len = b.length(); | ||
|  |     if(len < c.record.length) { | ||
|  |       // not enough data yet, return how much is required
 | ||
|  |       rval = c.record.length - len; | ||
|  |     } else { | ||
|  |       // there is enough data to parse the pending record
 | ||
|  |       // fill record fragment and compact input buffer
 | ||
|  |       c.record.fragment.putBytes(b.getBytes(c.record.length)); | ||
|  |       b.compact(); | ||
|  | 
 | ||
|  |       // update record using current read state
 | ||
|  |       var s = c.state.current.read; | ||
|  |       if(s.update(c, c.record)) { | ||
|  |         // see if there is a previously fragmented message that the
 | ||
|  |         // new record's message fragment should be appended to
 | ||
|  |         if(c.fragmented !== null) { | ||
|  |           // if the record type matches a previously fragmented
 | ||
|  |           // record, append the record fragment to it
 | ||
|  |           if(c.fragmented.type === c.record.type) { | ||
|  |             // concatenate record fragments
 | ||
|  |             c.fragmented.fragment.putBuffer(c.record.fragment); | ||
|  |             c.record = c.fragmented; | ||
|  |           } else { | ||
|  |             // error, invalid fragmented record
 | ||
|  |             c.error(c, { | ||
|  |               message: 'Invalid fragmented record.', | ||
|  |               send: true, | ||
|  |               alert: { | ||
|  |                 level: tls.Alert.Level.fatal, | ||
|  |                 description: | ||
|  |                   tls.Alert.Description.unexpected_message | ||
|  |               } | ||
|  |             }); | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // record is now ready
 | ||
|  |         c.record.ready = true; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return rval; | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Performs a handshake using the TLS Handshake Protocol, as a client. | ||
|  |    * | ||
|  |    * This method should only be called if the connection is in client mode. | ||
|  |    * | ||
|  |    * @param sessionId the session ID to use, null to start a new one. | ||
|  |    */ | ||
|  |   c.handshake = function(sessionId) { | ||
|  |     // error to call this in non-client mode
 | ||
|  |     if(c.entity !== tls.ConnectionEnd.client) { | ||
|  |       // not fatal error
 | ||
|  |       c.error(c, { | ||
|  |         message: 'Cannot initiate handshake as a server.', | ||
|  |         fatal: false | ||
|  |       }); | ||
|  |     } else if(c.handshaking) { | ||
|  |       // handshake is already in progress, fail but not fatal error
 | ||
|  |       c.error(c, { | ||
|  |         message: 'Handshake already in progress.', | ||
|  |         fatal: false | ||
|  |       }); | ||
|  |     } else { | ||
|  |       // clear fail flag on reuse
 | ||
|  |       if(c.fail && !c.open && c.handshakes === 0) { | ||
|  |         c.fail = false; | ||
|  |       } | ||
|  | 
 | ||
|  |       // now handshaking
 | ||
|  |       c.handshaking = true; | ||
|  | 
 | ||
|  |       // default to blank (new session)
 | ||
|  |       sessionId = sessionId || ''; | ||
|  | 
 | ||
|  |       // if a session ID was specified, try to find it in the cache
 | ||
|  |       var session = null; | ||
|  |       if(sessionId.length > 0) { | ||
|  |         if(c.sessionCache) { | ||
|  |           session = c.sessionCache.getSession(sessionId); | ||
|  |         } | ||
|  | 
 | ||
|  |         // matching session not found in cache, clear session ID
 | ||
|  |         if(session === null) { | ||
|  |           sessionId = ''; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // no session given, grab a session from the cache, if available
 | ||
|  |       if(sessionId.length === 0 && c.sessionCache) { | ||
|  |         session = c.sessionCache.getSession(); | ||
|  |         if(session !== null) { | ||
|  |           sessionId = session.id; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // set up session
 | ||
|  |       c.session = { | ||
|  |         id: sessionId, | ||
|  |         version: null, | ||
|  |         cipherSuite: null, | ||
|  |         compressionMethod: null, | ||
|  |         serverCertificate: null, | ||
|  |         certificateRequest: null, | ||
|  |         clientCertificate: null, | ||
|  |         sp: {}, | ||
|  |         md5: forge.md.md5.create(), | ||
|  |         sha1: forge.md.sha1.create() | ||
|  |       }; | ||
|  | 
 | ||
|  |       // use existing session information
 | ||
|  |       if(session) { | ||
|  |         // only update version on connection, session version not yet set
 | ||
|  |         c.version = session.version; | ||
|  |         c.session.sp = session.sp; | ||
|  |       } | ||
|  | 
 | ||
|  |       // generate new client random
 | ||
|  |       c.session.sp.client_random = tls.createRandom().getBytes(); | ||
|  | 
 | ||
|  |       // connection now open
 | ||
|  |       c.open = true; | ||
|  | 
 | ||
|  |       // send hello
 | ||
|  |       tls.queue(c, tls.createRecord(c, { | ||
|  |         type: tls.ContentType.handshake, | ||
|  |         data: tls.createClientHello(c) | ||
|  |       })); | ||
|  |       tls.flush(c); | ||
|  |     } | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Called when TLS protocol data has been received from somewhere and should | ||
|  |    * be processed by the TLS engine. | ||
|  |    * | ||
|  |    * @param data the TLS protocol data, as a string, to process. | ||
|  |    * | ||
|  |    * @return 0 if the data could be processed, otherwise the number of bytes | ||
|  |    *         required for data to be processed. | ||
|  |    */ | ||
|  |   c.process = function(data) { | ||
|  |     var rval = 0; | ||
|  | 
 | ||
|  |     // buffer input data
 | ||
|  |     if(data) { | ||
|  |       c.input.putBytes(data); | ||
|  |     } | ||
|  | 
 | ||
|  |     // process next record if no failure, process will be called after
 | ||
|  |     // each record is handled (since handling can be asynchronous)
 | ||
|  |     if(!c.fail) { | ||
|  |       // reset record if ready and now empty
 | ||
|  |       if(c.record !== null && | ||
|  |         c.record.ready && c.record.fragment.isEmpty()) { | ||
|  |         c.record = null; | ||
|  |       } | ||
|  | 
 | ||
|  |       // if there is no pending record, try to read record header
 | ||
|  |       if(c.record === null) { | ||
|  |         rval = _readRecordHeader(c); | ||
|  |       } | ||
|  | 
 | ||
|  |       // read the next record (if record not yet ready)
 | ||
|  |       if(!c.fail && c.record !== null && !c.record.ready) { | ||
|  |         rval = _readRecord(c); | ||
|  |       } | ||
|  | 
 | ||
|  |       // record ready to be handled, update engine state
 | ||
|  |       if(!c.fail && c.record !== null && c.record.ready) { | ||
|  |         _update(c, c.record); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     return rval; | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Requests that application data be packaged into a TLS record. The | ||
|  |    * tlsDataReady handler will be called when the TLS record(s) have been | ||
|  |    * prepared. | ||
|  |    * | ||
|  |    * @param data the application data, as a raw 'binary' encoded string, to | ||
|  |    *          be sent; to send utf-16/utf-8 string data, use the return value | ||
|  |    *          of util.encodeUtf8(str). | ||
|  |    * | ||
|  |    * @return true on success, false on failure. | ||
|  |    */ | ||
|  |   c.prepare = function(data) { | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.application_data, | ||
|  |       data: forge.util.createBuffer(data) | ||
|  |     })); | ||
|  |     return tls.flush(c); | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Requests that a heartbeat request be packaged into a TLS record for | ||
|  |    * transmission. The tlsDataReady handler will be called when TLS record(s) | ||
|  |    * have been prepared. | ||
|  |    * | ||
|  |    * When a heartbeat response has been received, the heartbeatReceived | ||
|  |    * handler will be called with the matching payload. This handler can | ||
|  |    * be used to clear a retransmission timer, etc. | ||
|  |    * | ||
|  |    * @param payload the heartbeat data to send as the payload in the message. | ||
|  |    * @param [payloadLength] the payload length to use, defaults to the | ||
|  |    *          actual payload length. | ||
|  |    * | ||
|  |    * @return true on success, false on failure. | ||
|  |    */ | ||
|  |   c.prepareHeartbeatRequest = function(payload, payloadLength) { | ||
|  |     if(payload instanceof forge.util.ByteBuffer) { | ||
|  |       payload = payload.bytes(); | ||
|  |     } | ||
|  |     if(typeof payloadLength === 'undefined') { | ||
|  |       payloadLength = payload.length; | ||
|  |     } | ||
|  |     c.expectedHeartbeatPayload = payload; | ||
|  |     tls.queue(c, tls.createRecord(c, { | ||
|  |       type: tls.ContentType.heartbeat, | ||
|  |       data: tls.createHeartbeat( | ||
|  |         tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength) | ||
|  |     })); | ||
|  |     return tls.flush(c); | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Closes the connection (sends a close_notify alert). | ||
|  |    * | ||
|  |    * @param clearFail true to clear the fail flag (default: true). | ||
|  |    */ | ||
|  |   c.close = function(clearFail) { | ||
|  |     // save session if connection didn't fail
 | ||
|  |     if(!c.fail && c.sessionCache && c.session) { | ||
|  |       // only need to preserve session ID, version, and security params
 | ||
|  |       var session = { | ||
|  |         id: c.session.id, | ||
|  |         version: c.session.version, | ||
|  |         sp: c.session.sp | ||
|  |       }; | ||
|  |       session.sp.keys = null; | ||
|  |       c.sessionCache.setSession(session.id, session); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(c.open) { | ||
|  |       // connection no longer open, clear input
 | ||
|  |       c.open = false; | ||
|  |       c.input.clear(); | ||
|  | 
 | ||
|  |       // if connected or handshaking, send an alert
 | ||
|  |       if(c.isConnected || c.handshaking) { | ||
|  |         c.isConnected = c.handshaking = false; | ||
|  | 
 | ||
|  |         // send close_notify alert
 | ||
|  |         tls.queue(c, tls.createAlert(c, { | ||
|  |           level: tls.Alert.Level.warning, | ||
|  |           description: tls.Alert.Description.close_notify | ||
|  |         })); | ||
|  |         tls.flush(c); | ||
|  |       } | ||
|  | 
 | ||
|  |       // call handler
 | ||
|  |       c.closed(c); | ||
|  |     } | ||
|  | 
 | ||
|  |     // reset TLS connection, do not clear fail flag
 | ||
|  |     c.reset(clearFail); | ||
|  |   }; | ||
|  | 
 | ||
|  |   return c; | ||
|  | }; | ||
|  | 
 | ||
|  | /* TLS API */ | ||
|  | module.exports = forge.tls = forge.tls || {}; | ||
|  | 
 | ||
|  | // expose non-functions
 | ||
|  | for(var key in tls) { | ||
|  |   if(typeof tls[key] !== 'function') { | ||
|  |     forge.tls[key] = tls[key]; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | // expose prf_tls1 for testing
 | ||
|  | forge.tls.prf_tls1 = prf_TLS1; | ||
|  | 
 | ||
|  | // expose sha1 hmac method
 | ||
|  | forge.tls.hmac_sha1 = hmac_sha1; | ||
|  | 
 | ||
|  | // expose session cache creation
 | ||
|  | forge.tls.createSessionCache = tls.createSessionCache; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates a new TLS connection. This does not make any assumptions about the | ||
|  |  * transport layer that TLS is working on top of, ie: it does not assume there | ||
|  |  * is a TCP/IP connection or establish one. A TLS connection is totally | ||
|  |  * abstracted away from the layer is runs on top of, it merely establishes a | ||
|  |  * secure channel between a client" and a "server". | ||
|  |  * | ||
|  |  * A TLS connection contains 4 connection states: pending read and write, and | ||
|  |  * current read and write. | ||
|  |  * | ||
|  |  * At initialization, the current read and write states will be null. Only once | ||
|  |  * the security parameters have been set and the keys have been generated can | ||
|  |  * the pending states be converted into current states. Current states will be | ||
|  |  * updated for each record processed. | ||
|  |  * | ||
|  |  * A custom certificate verify callback may be provided to check information | ||
|  |  * like the common name on the server's certificate. It will be called for | ||
|  |  * every certificate in the chain. It has the following signature: | ||
|  |  * | ||
|  |  * variable func(c, certs, index, preVerify) | ||
|  |  * Where: | ||
|  |  * c         The TLS connection | ||
|  |  * verified  Set to true if certificate was verified, otherwise the alert | ||
|  |  *           tls.Alert.Description for why the certificate failed. | ||
|  |  * depth     The current index in the chain, where 0 is the server's cert. | ||
|  |  * certs     The certificate chain, *NOTE* if the server was anonymous then | ||
|  |  *           the chain will be empty. | ||
|  |  * | ||
|  |  * The function returns true on success and on failure either the appropriate | ||
|  |  * tls.Alert.Description or an object with 'alert' set to the appropriate | ||
|  |  * tls.Alert.Description and 'message' set to a custom error message. If true | ||
|  |  * is not returned then the connection will abort using, in order of | ||
|  |  * availability, first the returned alert description, second the preVerify | ||
|  |  * alert description, and lastly the default 'bad_certificate'. | ||
|  |  * | ||
|  |  * There are three callbacks that can be used to make use of client-side | ||
|  |  * certificates where each takes the TLS connection as the first parameter: | ||
|  |  * | ||
|  |  * getCertificate(conn, hint) | ||
|  |  *   The second parameter is a hint as to which certificate should be | ||
|  |  *   returned. If the connection entity is a client, then the hint will be | ||
|  |  *   the CertificateRequest message from the server that is part of the | ||
|  |  *   TLS protocol. If the connection entity is a server, then it will be | ||
|  |  *   the servername list provided via an SNI extension the ClientHello, if | ||
|  |  *   one was provided (empty array if not). The hint can be examined to | ||
|  |  *   determine which certificate to use (advanced). Most implementations | ||
|  |  *   will just return a certificate. The return value must be a | ||
|  |  *   PEM-formatted certificate or an array of PEM-formatted certificates | ||
|  |  *   that constitute a certificate chain, with the first in the array/chain | ||
|  |  *   being the client's certificate. | ||
|  |  * getPrivateKey(conn, certificate) | ||
|  |  *   The second parameter is an forge.pki X.509 certificate object that | ||
|  |  *   is associated with the requested private key. The return value must | ||
|  |  *   be a PEM-formatted private key. | ||
|  |  * getSignature(conn, bytes, callback) | ||
|  |  *   This callback can be used instead of getPrivateKey if the private key | ||
|  |  *   is not directly accessible in javascript or should not be. For | ||
|  |  *   instance, a secure external web service could provide the signature | ||
|  |  *   in exchange for appropriate credentials. The second parameter is a | ||
|  |  *   string of bytes to be signed that are part of the TLS protocol. These | ||
|  |  *   bytes are used to verify that the private key for the previously | ||
|  |  *   provided client-side certificate is accessible to the client. The | ||
|  |  *   callback is a function that takes 2 parameters, the TLS connection | ||
|  |  *   and the RSA encrypted (signed) bytes as a string. This callback must | ||
|  |  *   be called once the signature is ready. | ||
|  |  * | ||
|  |  * @param options the options for this connection: | ||
|  |  *   server: true if the connection is server-side, false for client. | ||
|  |  *   sessionId: a session ID to reuse, null for a new connection. | ||
|  |  *   caStore: an array of certificates to trust. | ||
|  |  *   sessionCache: a session cache to use. | ||
|  |  *   cipherSuites: an optional array of cipher suites to use, | ||
|  |  *     see tls.CipherSuites. | ||
|  |  *   connected: function(conn) called when the first handshake completes. | ||
|  |  *   virtualHost: the virtual server name to use in a TLS SNI extension. | ||
|  |  *   verifyClient: true to require a client certificate in server mode, | ||
|  |  *     'optional' to request one, false not to (default: false). | ||
|  |  *   verify: a handler used to custom verify certificates in the chain. | ||
|  |  *   verifyOptions: an object with options for the certificate chain validation. | ||
|  |  *     See documentation of pki.verifyCertificateChain for possible options. | ||
|  |  *     verifyOptions.verify is ignored. If you wish to specify a verify handler | ||
|  |  *     use the verify key. | ||
|  |  *   getCertificate: an optional callback used to get a certificate or | ||
|  |  *     a chain of certificates (as an array). | ||
|  |  *   getPrivateKey: an optional callback used to get a private key. | ||
|  |  *   getSignature: an optional callback used to get a signature. | ||
|  |  *   tlsDataReady: function(conn) called when TLS protocol data has been | ||
|  |  *     prepared and is ready to be used (typically sent over a socket | ||
|  |  *     connection to its destination), read from conn.tlsData buffer. | ||
|  |  *   dataReady: function(conn) called when application data has | ||
|  |  *     been parsed from a TLS record and should be consumed by the | ||
|  |  *     application, read from conn.data buffer. | ||
|  |  *   closed: function(conn) called when the connection has been closed. | ||
|  |  *   error: function(conn, error) called when there was an error. | ||
|  |  *   deflate: function(inBytes) if provided, will deflate TLS records using | ||
|  |  *     the deflate algorithm if the server supports it. | ||
|  |  *   inflate: function(inBytes) if provided, will inflate TLS records using | ||
|  |  *     the deflate algorithm if the server supports it. | ||
|  |  * | ||
|  |  * @return the new TLS connection. | ||
|  |  */ | ||
|  | forge.tls.createConnection = tls.createConnection; |