You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					1950 lines
				
				59 KiB
			
		
		
			
		
	
	
					1950 lines
				
				59 KiB
			| 
											2 years ago
										 | /** | ||
|  |  * Javascript implementation of basic RSA algorithms. | ||
|  |  * | ||
|  |  * @author Dave Longley | ||
|  |  * | ||
|  |  * Copyright (c) 2010-2014 Digital Bazaar, Inc. | ||
|  |  * | ||
|  |  * The only algorithm currently supported for PKI is RSA. | ||
|  |  * | ||
|  |  * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo | ||
|  |  * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier | ||
|  |  * and a subjectPublicKey of type bit string. | ||
|  |  * | ||
|  |  * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters | ||
|  |  * for the algorithm, if any. In the case of RSA, there aren't any. | ||
|  |  * | ||
|  |  * SubjectPublicKeyInfo ::= SEQUENCE { | ||
|  |  *   algorithm AlgorithmIdentifier, | ||
|  |  *   subjectPublicKey BIT STRING | ||
|  |  * } | ||
|  |  * | ||
|  |  * AlgorithmIdentifer ::= SEQUENCE { | ||
|  |  *   algorithm OBJECT IDENTIFIER, | ||
|  |  *   parameters ANY DEFINED BY algorithm OPTIONAL | ||
|  |  * } | ||
|  |  * | ||
|  |  * For an RSA public key, the subjectPublicKey is: | ||
|  |  * | ||
|  |  * RSAPublicKey ::= SEQUENCE { | ||
|  |  *   modulus            INTEGER,    -- n | ||
|  |  *   publicExponent     INTEGER     -- e | ||
|  |  * } | ||
|  |  * | ||
|  |  * PrivateKeyInfo ::= SEQUENCE { | ||
|  |  *   version                   Version, | ||
|  |  *   privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier, | ||
|  |  *   privateKey                PrivateKey, | ||
|  |  *   attributes           [0]  IMPLICIT Attributes OPTIONAL | ||
|  |  * } | ||
|  |  * | ||
|  |  * Version ::= INTEGER | ||
|  |  * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier | ||
|  |  * PrivateKey ::= OCTET STRING | ||
|  |  * Attributes ::= SET OF Attribute | ||
|  |  * | ||
|  |  * An RSA private key as the following structure: | ||
|  |  * | ||
|  |  * RSAPrivateKey ::= SEQUENCE { | ||
|  |  *   version Version, | ||
|  |  *   modulus INTEGER, -- n | ||
|  |  *   publicExponent INTEGER, -- e | ||
|  |  *   privateExponent INTEGER, -- d | ||
|  |  *   prime1 INTEGER, -- p | ||
|  |  *   prime2 INTEGER, -- q | ||
|  |  *   exponent1 INTEGER, -- d mod (p-1) | ||
|  |  *   exponent2 INTEGER, -- d mod (q-1) | ||
|  |  *   coefficient INTEGER -- (inverse of q) mod p | ||
|  |  * } | ||
|  |  * | ||
|  |  * Version ::= INTEGER | ||
|  |  * | ||
|  |  * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1 | ||
|  |  */ | ||
|  | var forge = require('./forge'); | ||
|  | require('./asn1'); | ||
|  | require('./jsbn'); | ||
|  | require('./oids'); | ||
|  | require('./pkcs1'); | ||
|  | require('./prime'); | ||
|  | require('./random'); | ||
|  | require('./util'); | ||
|  | 
 | ||
|  | if(typeof BigInteger === 'undefined') { | ||
|  |   var BigInteger = forge.jsbn.BigInteger; | ||
|  | } | ||
|  | 
 | ||
|  | var _crypto = forge.util.isNodejs ? require('crypto') : null; | ||
|  | 
 | ||
|  | // shortcut for asn.1 API
 | ||
|  | var asn1 = forge.asn1; | ||
|  | 
 | ||
|  | // shortcut for util API
 | ||
|  | var util = forge.util; | ||
|  | 
 | ||
|  | /* | ||
|  |  * RSA encryption and decryption, see RFC 2313. | ||
|  |  */ | ||
|  | forge.pki = forge.pki || {}; | ||
|  | module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {}; | ||
|  | var pki = forge.pki; | ||
|  | 
 | ||
|  | // for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
 | ||
|  | var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; | ||
|  | 
 | ||
|  | // validator for a PrivateKeyInfo structure
 | ||
|  | var privateKeyValidator = { | ||
|  |   // PrivateKeyInfo
 | ||
|  |   name: 'PrivateKeyInfo', | ||
|  |   tagClass: asn1.Class.UNIVERSAL, | ||
|  |   type: asn1.Type.SEQUENCE, | ||
|  |   constructed: true, | ||
|  |   value: [{ | ||
|  |     // Version (INTEGER)
 | ||
|  |     name: 'PrivateKeyInfo.version', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyVersion' | ||
|  |   }, { | ||
|  |     // privateKeyAlgorithm
 | ||
|  |     name: 'PrivateKeyInfo.privateKeyAlgorithm', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.SEQUENCE, | ||
|  |     constructed: true, | ||
|  |     value: [{ | ||
|  |       name: 'AlgorithmIdentifier.algorithm', | ||
|  |       tagClass: asn1.Class.UNIVERSAL, | ||
|  |       type: asn1.Type.OID, | ||
|  |       constructed: false, | ||
|  |       capture: 'privateKeyOid' | ||
|  |     }] | ||
|  |   }, { | ||
|  |     // PrivateKey
 | ||
|  |     name: 'PrivateKeyInfo', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.OCTETSTRING, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKey' | ||
|  |   }] | ||
|  | }; | ||
|  | 
 | ||
|  | // validator for an RSA private key
 | ||
|  | var rsaPrivateKeyValidator = { | ||
|  |   // RSAPrivateKey
 | ||
|  |   name: 'RSAPrivateKey', | ||
|  |   tagClass: asn1.Class.UNIVERSAL, | ||
|  |   type: asn1.Type.SEQUENCE, | ||
|  |   constructed: true, | ||
|  |   value: [{ | ||
|  |     // Version (INTEGER)
 | ||
|  |     name: 'RSAPrivateKey.version', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyVersion' | ||
|  |   }, { | ||
|  |     // modulus (n)
 | ||
|  |     name: 'RSAPrivateKey.modulus', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyModulus' | ||
|  |   }, { | ||
|  |     // publicExponent (e)
 | ||
|  |     name: 'RSAPrivateKey.publicExponent', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyPublicExponent' | ||
|  |   }, { | ||
|  |     // privateExponent (d)
 | ||
|  |     name: 'RSAPrivateKey.privateExponent', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyPrivateExponent' | ||
|  |   }, { | ||
|  |     // prime1 (p)
 | ||
|  |     name: 'RSAPrivateKey.prime1', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyPrime1' | ||
|  |   }, { | ||
|  |     // prime2 (q)
 | ||
|  |     name: 'RSAPrivateKey.prime2', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyPrime2' | ||
|  |   }, { | ||
|  |     // exponent1 (d mod (p-1))
 | ||
|  |     name: 'RSAPrivateKey.exponent1', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyExponent1' | ||
|  |   }, { | ||
|  |     // exponent2 (d mod (q-1))
 | ||
|  |     name: 'RSAPrivateKey.exponent2', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyExponent2' | ||
|  |   }, { | ||
|  |     // coefficient ((inverse of q) mod p)
 | ||
|  |     name: 'RSAPrivateKey.coefficient', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'privateKeyCoefficient' | ||
|  |   }] | ||
|  | }; | ||
|  | 
 | ||
|  | // validator for an RSA public key
 | ||
|  | var rsaPublicKeyValidator = { | ||
|  |   // RSAPublicKey
 | ||
|  |   name: 'RSAPublicKey', | ||
|  |   tagClass: asn1.Class.UNIVERSAL, | ||
|  |   type: asn1.Type.SEQUENCE, | ||
|  |   constructed: true, | ||
|  |   value: [{ | ||
|  |     // modulus (n)
 | ||
|  |     name: 'RSAPublicKey.modulus', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'publicKeyModulus' | ||
|  |   }, { | ||
|  |     // publicExponent (e)
 | ||
|  |     name: 'RSAPublicKey.exponent', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.INTEGER, | ||
|  |     constructed: false, | ||
|  |     capture: 'publicKeyExponent' | ||
|  |   }] | ||
|  | }; | ||
|  | 
 | ||
|  | // validator for an SubjectPublicKeyInfo structure
 | ||
|  | // Note: Currently only works with an RSA public key
 | ||
|  | var publicKeyValidator = forge.pki.rsa.publicKeyValidator = { | ||
|  |   name: 'SubjectPublicKeyInfo', | ||
|  |   tagClass: asn1.Class.UNIVERSAL, | ||
|  |   type: asn1.Type.SEQUENCE, | ||
|  |   constructed: true, | ||
|  |   captureAsn1: 'subjectPublicKeyInfo', | ||
|  |   value: [{ | ||
|  |     name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.SEQUENCE, | ||
|  |     constructed: true, | ||
|  |     value: [{ | ||
|  |       name: 'AlgorithmIdentifier.algorithm', | ||
|  |       tagClass: asn1.Class.UNIVERSAL, | ||
|  |       type: asn1.Type.OID, | ||
|  |       constructed: false, | ||
|  |       capture: 'publicKeyOid' | ||
|  |     }] | ||
|  |   }, { | ||
|  |     // subjectPublicKey
 | ||
|  |     name: 'SubjectPublicKeyInfo.subjectPublicKey', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.BITSTRING, | ||
|  |     constructed: false, | ||
|  |     value: [{ | ||
|  |       // RSAPublicKey
 | ||
|  |       name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', | ||
|  |       tagClass: asn1.Class.UNIVERSAL, | ||
|  |       type: asn1.Type.SEQUENCE, | ||
|  |       constructed: true, | ||
|  |       optional: true, | ||
|  |       captureAsn1: 'rsaPublicKey' | ||
|  |     }] | ||
|  |   }] | ||
|  | }; | ||
|  | 
 | ||
|  | // validator for a DigestInfo structure
 | ||
|  | var digestInfoValidator = { | ||
|  |   name: 'DigestInfo', | ||
|  |   tagClass: asn1.Class.UNIVERSAL, | ||
|  |   type: asn1.Type.SEQUENCE, | ||
|  |   constructed: true, | ||
|  |   value: [{ | ||
|  |     name: 'DigestInfo.DigestAlgorithm', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.SEQUENCE, | ||
|  |     constructed: true, | ||
|  |     value: [{ | ||
|  |       name: 'DigestInfo.DigestAlgorithm.algorithmIdentifier', | ||
|  |       tagClass: asn1.Class.UNIVERSAL, | ||
|  |       type: asn1.Type.OID, | ||
|  |       constructed: false, | ||
|  |       capture: 'algorithmIdentifier' | ||
|  |     }, { | ||
|  |       // NULL paramters
 | ||
|  |       name: 'DigestInfo.DigestAlgorithm.parameters', | ||
|  |       tagClass: asn1.Class.UNIVERSAL, | ||
|  |       type: asn1.Type.NULL, | ||
|  |       // captured only to check existence for md2 and md5
 | ||
|  |       capture: 'parameters', | ||
|  |       optional: true, | ||
|  |       constructed: false | ||
|  |     }] | ||
|  |   }, { | ||
|  |     // digest
 | ||
|  |     name: 'DigestInfo.digest', | ||
|  |     tagClass: asn1.Class.UNIVERSAL, | ||
|  |     type: asn1.Type.OCTETSTRING, | ||
|  |     constructed: false, | ||
|  |     capture: 'digest' | ||
|  |   }] | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Wrap digest in DigestInfo object. | ||
|  |  * | ||
|  |  * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447. | ||
|  |  * | ||
|  |  * DigestInfo ::= SEQUENCE { | ||
|  |  *   digestAlgorithm DigestAlgorithmIdentifier, | ||
|  |  *   digest Digest | ||
|  |  * } | ||
|  |  * | ||
|  |  * DigestAlgorithmIdentifier ::= AlgorithmIdentifier | ||
|  |  * Digest ::= OCTET STRING | ||
|  |  * | ||
|  |  * @param md the message digest object with the hash to sign. | ||
|  |  * | ||
|  |  * @return the encoded message (ready for RSA encrytion) | ||
|  |  */ | ||
|  | var emsaPkcs1v15encode = function(md) { | ||
|  |   // get the oid for the algorithm
 | ||
|  |   var oid; | ||
|  |   if(md.algorithm in pki.oids) { | ||
|  |     oid = pki.oids[md.algorithm]; | ||
|  |   } else { | ||
|  |     var error = new Error('Unknown message digest algorithm.'); | ||
|  |     error.algorithm = md.algorithm; | ||
|  |     throw error; | ||
|  |   } | ||
|  |   var oidBytes = asn1.oidToDer(oid).getBytes(); | ||
|  | 
 | ||
|  |   // create the digest info
 | ||
|  |   var digestInfo = asn1.create( | ||
|  |     asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); | ||
|  |   var digestAlgorithm = asn1.create( | ||
|  |     asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); | ||
|  |   digestAlgorithm.value.push(asn1.create( | ||
|  |     asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes)); | ||
|  |   digestAlgorithm.value.push(asn1.create( | ||
|  |     asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')); | ||
|  |   var digest = asn1.create( | ||
|  |     asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, | ||
|  |     false, md.digest().getBytes()); | ||
|  |   digestInfo.value.push(digestAlgorithm); | ||
|  |   digestInfo.value.push(digest); | ||
|  | 
 | ||
|  |   // encode digest info
 | ||
|  |   return asn1.toDer(digestInfo).getBytes(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Performs x^c mod n (RSA encryption or decryption operation). | ||
|  |  * | ||
|  |  * @param x the number to raise and mod. | ||
|  |  * @param key the key to use. | ||
|  |  * @param pub true if the key is public, false if private. | ||
|  |  * | ||
|  |  * @return the result of x^c mod n. | ||
|  |  */ | ||
|  | var _modPow = function(x, key, pub) { | ||
|  |   if(pub) { | ||
|  |     return x.modPow(key.e, key.n); | ||
|  |   } | ||
|  | 
 | ||
|  |   if(!key.p || !key.q) { | ||
|  |     // allow calculation without CRT params (slow)
 | ||
|  |     return x.modPow(key.d, key.n); | ||
|  |   } | ||
|  | 
 | ||
|  |   // pre-compute dP, dQ, and qInv if necessary
 | ||
|  |   if(!key.dP) { | ||
|  |     key.dP = key.d.mod(key.p.subtract(BigInteger.ONE)); | ||
|  |   } | ||
|  |   if(!key.dQ) { | ||
|  |     key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE)); | ||
|  |   } | ||
|  |   if(!key.qInv) { | ||
|  |     key.qInv = key.q.modInverse(key.p); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* Chinese remainder theorem (CRT) states: | ||
|  | 
 | ||
|  |     Suppose n1, n2, ..., nk are positive integers which are pairwise | ||
|  |     coprime (n1 and n2 have no common factors other than 1). For any | ||
|  |     integers x1, x2, ..., xk there exists an integer x solving the | ||
|  |     system of simultaneous congruences (where ~= means modularly | ||
|  |     congruent so a ~= b mod n means a mod n = b mod n): | ||
|  | 
 | ||
|  |     x ~= x1 mod n1 | ||
|  |     x ~= x2 mod n2 | ||
|  |     ... | ||
|  |     x ~= xk mod nk | ||
|  | 
 | ||
|  |     This system of congruences has a single simultaneous solution x | ||
|  |     between 0 and n - 1. Furthermore, each xk solution and x itself | ||
|  |     is congruent modulo the product n = n1*n2*...*nk. | ||
|  |     So x1 mod n = x2 mod n = xk mod n = x mod n. | ||
|  | 
 | ||
|  |     The single simultaneous solution x can be solved with the following | ||
|  |     equation: | ||
|  | 
 | ||
|  |     x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni. | ||
|  | 
 | ||
|  |     Where x is less than n, xi = x mod ni. | ||
|  | 
 | ||
|  |     For RSA we are only concerned with k = 2. The modulus n = pq, where | ||
|  |     p and q are coprime. The RSA decryption algorithm is: | ||
|  | 
 | ||
|  |     y = x^d mod n | ||
|  | 
 | ||
|  |     Given the above: | ||
|  | 
 | ||
|  |     x1 = x^d mod p | ||
|  |     r1 = n/p = q | ||
|  |     s1 = q^-1 mod p | ||
|  |     x2 = x^d mod q | ||
|  |     r2 = n/q = p | ||
|  |     s2 = p^-1 mod q | ||
|  | 
 | ||
|  |     So y = (x1r1s1 + x2r2s2) mod n | ||
|  |          = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n | ||
|  | 
 | ||
|  |     According to Fermat's Little Theorem, if the modulus P is prime, | ||
|  |     for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P. | ||
|  |     Since A is not divisible by P it follows that if: | ||
|  |     N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore: | ||
|  | 
 | ||
|  |     A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort | ||
|  |     to calculate). In order to calculate x^d mod p more quickly the | ||
|  |     exponent d mod (p - 1) is stored in the RSA private key (the same | ||
|  |     is done for x^d mod q). These values are referred to as dP and dQ | ||
|  |     respectively. Therefore we now have: | ||
|  | 
 | ||
|  |     y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n | ||
|  | 
 | ||
|  |     Since we'll be reducing x^dP by modulo p (same for q) we can also | ||
|  |     reduce x by p (and q respectively) before hand. Therefore, let | ||
|  | 
 | ||
|  |     xp = ((x mod p)^dP mod p), and | ||
|  |     xq = ((x mod q)^dQ mod q), yielding: | ||
|  | 
 | ||
|  |     y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n | ||
|  | 
 | ||
|  |     This can be further reduced to a simple algorithm that only | ||
|  |     requires 1 inverse (the q inverse is used) to be used and stored. | ||
|  |     The algorithm is called Garner's algorithm. If qInv is the | ||
|  |     inverse of q, we simply calculate: | ||
|  | 
 | ||
|  |     y = (qInv*(xp - xq) mod p) * q + xq | ||
|  | 
 | ||
|  |     However, there are two further complications. First, we need to | ||
|  |     ensure that xp > xq to prevent signed BigIntegers from being used | ||
|  |     so we add p until this is true (since we will be mod'ing with | ||
|  |     p anyway). Then, there is a known timing attack on algorithms | ||
|  |     using the CRT. To mitigate this risk, "cryptographic blinding" | ||
|  |     should be used. This requires simply generating a random number r | ||
|  |     between 0 and n-1 and its inverse and multiplying x by r^e before | ||
|  |     calculating y and then multiplying y by r^-1 afterwards. Note that | ||
|  |     r must be coprime with n (gcd(r, n) === 1) in order to have an | ||
|  |     inverse. | ||
|  |   */ | ||
|  | 
 | ||
|  |   // cryptographic blinding
 | ||
|  |   var r; | ||
|  |   do { | ||
|  |     r = new BigInteger( | ||
|  |       forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)), | ||
|  |       16); | ||
|  |   } while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE)); | ||
|  |   x = x.multiply(r.modPow(key.e, key.n)).mod(key.n); | ||
|  | 
 | ||
|  |   // calculate xp and xq
 | ||
|  |   var xp = x.mod(key.p).modPow(key.dP, key.p); | ||
|  |   var xq = x.mod(key.q).modPow(key.dQ, key.q); | ||
|  | 
 | ||
|  |   // xp must be larger than xq to avoid signed bit usage
 | ||
|  |   while(xp.compareTo(xq) < 0) { | ||
|  |     xp = xp.add(key.p); | ||
|  |   } | ||
|  | 
 | ||
|  |   // do last step
 | ||
|  |   var y = xp.subtract(xq) | ||
|  |     .multiply(key.qInv).mod(key.p) | ||
|  |     .multiply(key.q).add(xq); | ||
|  | 
 | ||
|  |   // remove effect of random for cryptographic blinding
 | ||
|  |   y = y.multiply(r.modInverse(key.n)).mod(key.n); | ||
|  | 
 | ||
|  |   return y; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or | ||
|  |  * 'encrypt' on a public key object instead. | ||
|  |  * | ||
|  |  * Performs RSA encryption. | ||
|  |  * | ||
|  |  * The parameter bt controls whether to put padding bytes before the | ||
|  |  * message passed in. Set bt to either true or false to disable padding | ||
|  |  * completely (in order to handle e.g. EMSA-PSS encoding seperately before), | ||
|  |  * signaling whether the encryption operation is a public key operation | ||
|  |  * (i.e. encrypting data) or not, i.e. private key operation (data signing). | ||
|  |  * | ||
|  |  * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01 | ||
|  |  * (for signing) or 0x02 (for encryption). The key operation mode (private | ||
|  |  * or public) is derived from this flag in that case). | ||
|  |  * | ||
|  |  * @param m the message to encrypt as a byte string. | ||
|  |  * @param key the RSA key to use. | ||
|  |  * @param bt for PKCS#1 v1.5 padding, the block type to use | ||
|  |  *   (0x01 for private key, 0x02 for public), | ||
|  |  *   to disable padding: true = public key, false = private key. | ||
|  |  * | ||
|  |  * @return the encrypted bytes as a string. | ||
|  |  */ | ||
|  | pki.rsa.encrypt = function(m, key, bt) { | ||
|  |   var pub = bt; | ||
|  |   var eb; | ||
|  | 
 | ||
|  |   // get the length of the modulus in bytes
 | ||
|  |   var k = Math.ceil(key.n.bitLength() / 8); | ||
|  | 
 | ||
|  |   if(bt !== false && bt !== true) { | ||
|  |     // legacy, default to PKCS#1 v1.5 padding
 | ||
|  |     pub = (bt === 0x02); | ||
|  |     eb = _encodePkcs1_v1_5(m, key, bt); | ||
|  |   } else { | ||
|  |     eb = forge.util.createBuffer(); | ||
|  |     eb.putBytes(m); | ||
|  |   } | ||
|  | 
 | ||
|  |   // load encryption block as big integer 'x'
 | ||
|  |   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | ||
|  |   var x = new BigInteger(eb.toHex(), 16); | ||
|  | 
 | ||
|  |   // do RSA encryption
 | ||
|  |   var y = _modPow(x, key, pub); | ||
|  | 
 | ||
|  |   // convert y into the encrypted data byte string, if y is shorter in
 | ||
|  |   // bytes than k, then prepend zero bytes to fill up ed
 | ||
|  |   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | ||
|  |   var yhex = y.toString(16); | ||
|  |   var ed = forge.util.createBuffer(); | ||
|  |   var zeros = k - Math.ceil(yhex.length / 2); | ||
|  |   while(zeros > 0) { | ||
|  |     ed.putByte(0x00); | ||
|  |     --zeros; | ||
|  |   } | ||
|  |   ed.putBytes(forge.util.hexToBytes(yhex)); | ||
|  |   return ed.getBytes(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or | ||
|  |  * 'verify' on a public key object instead. | ||
|  |  * | ||
|  |  * Performs RSA decryption. | ||
|  |  * | ||
|  |  * The parameter ml controls whether to apply PKCS#1 v1.5 padding | ||
|  |  * or not.  Set ml = false to disable padding removal completely | ||
|  |  * (in order to handle e.g. EMSA-PSS later on) and simply pass back | ||
|  |  * the RSA encryption block. | ||
|  |  * | ||
|  |  * @param ed the encrypted data to decrypt in as a byte string. | ||
|  |  * @param key the RSA key to use. | ||
|  |  * @param pub true for a public key operation, false for private. | ||
|  |  * @param ml the message length, if known, false to disable padding. | ||
|  |  * | ||
|  |  * @return the decrypted message as a byte string. | ||
|  |  */ | ||
|  | pki.rsa.decrypt = function(ed, key, pub, ml) { | ||
|  |   // get the length of the modulus in bytes
 | ||
|  |   var k = Math.ceil(key.n.bitLength() / 8); | ||
|  | 
 | ||
|  |   // error if the length of the encrypted data ED is not k
 | ||
|  |   if(ed.length !== k) { | ||
|  |     var error = new Error('Encrypted message length is invalid.'); | ||
|  |     error.length = ed.length; | ||
|  |     error.expected = k; | ||
|  |     throw error; | ||
|  |   } | ||
|  | 
 | ||
|  |   // convert encrypted data into a big integer
 | ||
|  |   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | ||
|  |   var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16); | ||
|  | 
 | ||
|  |   // y must be less than the modulus or it wasn't the result of
 | ||
|  |   // a previous mod operation (encryption) using that modulus
 | ||
|  |   if(y.compareTo(key.n) >= 0) { | ||
|  |     throw new Error('Encrypted message is invalid.'); | ||
|  |   } | ||
|  | 
 | ||
|  |   // do RSA decryption
 | ||
|  |   var x = _modPow(y, key, pub); | ||
|  | 
 | ||
|  |   // create the encryption block, if x is shorter in bytes than k, then
 | ||
|  |   // prepend zero bytes to fill up eb
 | ||
|  |   // FIXME: hex conversion inefficient, get BigInteger w/byte strings
 | ||
|  |   var xhex = x.toString(16); | ||
|  |   var eb = forge.util.createBuffer(); | ||
|  |   var zeros = k - Math.ceil(xhex.length / 2); | ||
|  |   while(zeros > 0) { | ||
|  |     eb.putByte(0x00); | ||
|  |     --zeros; | ||
|  |   } | ||
|  |   eb.putBytes(forge.util.hexToBytes(xhex)); | ||
|  | 
 | ||
|  |   if(ml !== false) { | ||
|  |     // legacy, default to PKCS#1 v1.5 padding
 | ||
|  |     return _decodePkcs1_v1_5(eb.getBytes(), key, pub); | ||
|  |   } | ||
|  | 
 | ||
|  |   // return message
 | ||
|  |   return eb.getBytes(); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Creates an RSA key-pair generation state object. It is used to allow | ||
|  |  * key-generation to be performed in steps. It also allows for a UI to | ||
|  |  * display progress updates. | ||
|  |  * | ||
|  |  * @param bits the size for the private key in bits, defaults to 2048. | ||
|  |  * @param e the public exponent to use, defaults to 65537 (0x10001). | ||
|  |  * @param [options] the options to use. | ||
|  |  *          prng a custom crypto-secure pseudo-random number generator to use, | ||
|  |  *            that must define "getBytesSync". | ||
|  |  *          algorithm the algorithm to use (default: 'PRIMEINC'). | ||
|  |  * | ||
|  |  * @return the state object to use to generate the key-pair. | ||
|  |  */ | ||
|  | pki.rsa.createKeyPairGenerationState = function(bits, e, options) { | ||
|  |   // TODO: migrate step-based prime generation code to forge.prime
 | ||
|  | 
 | ||
|  |   // set default bits
 | ||
|  |   if(typeof(bits) === 'string') { | ||
|  |     bits = parseInt(bits, 10); | ||
|  |   } | ||
|  |   bits = bits || 2048; | ||
|  | 
 | ||
|  |   // create prng with api that matches BigInteger secure random
 | ||
|  |   options = options || {}; | ||
|  |   var prng = options.prng || forge.random; | ||
|  |   var rng = { | ||
|  |     // x is an array to fill with bytes
 | ||
|  |     nextBytes: function(x) { | ||
|  |       var b = prng.getBytesSync(x.length); | ||
|  |       for(var i = 0; i < x.length; ++i) { | ||
|  |         x[i] = b.charCodeAt(i); | ||
|  |       } | ||
|  |     } | ||
|  |   }; | ||
|  | 
 | ||
|  |   var algorithm = options.algorithm || 'PRIMEINC'; | ||
|  | 
 | ||
|  |   // create PRIMEINC algorithm state
 | ||
|  |   var rval; | ||
|  |   if(algorithm === 'PRIMEINC') { | ||
|  |     rval = { | ||
|  |       algorithm: algorithm, | ||
|  |       state: 0, | ||
|  |       bits: bits, | ||
|  |       rng: rng, | ||
|  |       eInt: e || 65537, | ||
|  |       e: new BigInteger(null), | ||
|  |       p: null, | ||
|  |       q: null, | ||
|  |       qBits: bits >> 1, | ||
|  |       pBits: bits - (bits >> 1), | ||
|  |       pqState: 0, | ||
|  |       num: null, | ||
|  |       keys: null | ||
|  |     }; | ||
|  |     rval.e.fromInt(rval.eInt); | ||
|  |   } else { | ||
|  |     throw new Error('Invalid key generation algorithm: ' + algorithm); | ||
|  |   } | ||
|  | 
 | ||
|  |   return rval; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Attempts to runs the key-generation algorithm for at most n seconds | ||
|  |  * (approximately) using the given state. When key-generation has completed, | ||
|  |  * the keys will be stored in state.keys. | ||
|  |  * | ||
|  |  * To use this function to update a UI while generating a key or to prevent | ||
|  |  * causing browser lockups/warnings, set "n" to a value other than 0. A | ||
|  |  * simple pattern for generating a key and showing a progress indicator is: | ||
|  |  * | ||
|  |  * var state = pki.rsa.createKeyPairGenerationState(2048); | ||
|  |  * var step = function() { | ||
|  |  *   // step key-generation, run algorithm for 100 ms, repeat
 | ||
|  |  *   if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) { | ||
|  |  *     setTimeout(step, 1); | ||
|  |  *   } else { | ||
|  |  *     // key-generation complete
 | ||
|  |  *     // TODO: turn off progress indicator here
 | ||
|  |  *     // TODO: use the generated key-pair in "state.keys"
 | ||
|  |  *   } | ||
|  |  * }; | ||
|  |  * // TODO: turn on progress indicator here
 | ||
|  |  * setTimeout(step, 0); | ||
|  |  * | ||
|  |  * @param state the state to use. | ||
|  |  * @param n the maximum number of milliseconds to run the algorithm for, 0 | ||
|  |  *          to run the algorithm to completion. | ||
|  |  * | ||
|  |  * @return true if the key-generation completed, false if not. | ||
|  |  */ | ||
|  | pki.rsa.stepKeyPairGenerationState = function(state, n) { | ||
|  |   // set default algorithm if not set
 | ||
|  |   if(!('algorithm' in state)) { | ||
|  |     state.algorithm = 'PRIMEINC'; | ||
|  |   } | ||
|  | 
 | ||
|  |   // TODO: migrate step-based prime generation code to forge.prime
 | ||
|  |   // TODO: abstract as PRIMEINC algorithm
 | ||
|  | 
 | ||
|  |   // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
 | ||
|  |   // with some minor optimizations and designed to run in steps
 | ||
|  | 
 | ||
|  |   // local state vars
 | ||
|  |   var THIRTY = new BigInteger(null); | ||
|  |   THIRTY.fromInt(30); | ||
|  |   var deltaIdx = 0; | ||
|  |   var op_or = function(x, y) {return x | y;}; | ||
|  | 
 | ||
|  |   // keep stepping until time limit is reached or done
 | ||
|  |   var t1 = +new Date(); | ||
|  |   var t2; | ||
|  |   var total = 0; | ||
|  |   while(state.keys === null && (n <= 0 || total < n)) { | ||
|  |     // generate p or q
 | ||
|  |     if(state.state === 0) { | ||
|  |       /* Note: All primes are of the form: | ||
|  | 
 | ||
|  |         30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i | ||
|  | 
 | ||
|  |         When we generate a random number, we always align it at 30k + 1. Each | ||
|  |         time the number is determined not to be prime we add to get to the | ||
|  |         next 'i', eg: if the number was at 30k + 1 we add 6. */ | ||
|  |       var bits = (state.p === null) ? state.pBits : state.qBits; | ||
|  |       var bits1 = bits - 1; | ||
|  | 
 | ||
|  |       // get a random number
 | ||
|  |       if(state.pqState === 0) { | ||
|  |         state.num = new BigInteger(bits, state.rng); | ||
|  |         // force MSB set
 | ||
|  |         if(!state.num.testBit(bits1)) { | ||
|  |           state.num.bitwiseTo( | ||
|  |             BigInteger.ONE.shiftLeft(bits1), op_or, state.num); | ||
|  |         } | ||
|  |         // align number on 30k+1 boundary
 | ||
|  |         state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0); | ||
|  |         deltaIdx = 0; | ||
|  | 
 | ||
|  |         ++state.pqState; | ||
|  |       } else if(state.pqState === 1) { | ||
|  |         // try to make the number a prime
 | ||
|  |         if(state.num.bitLength() > bits) { | ||
|  |           // overflow, try again
 | ||
|  |           state.pqState = 0; | ||
|  |           // do primality test
 | ||
|  |         } else if(state.num.isProbablePrime( | ||
|  |           _getMillerRabinTests(state.num.bitLength()))) { | ||
|  |           ++state.pqState; | ||
|  |         } else { | ||
|  |           // get next potential prime
 | ||
|  |           state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); | ||
|  |         } | ||
|  |       } else if(state.pqState === 2) { | ||
|  |         // ensure number is coprime with e
 | ||
|  |         state.pqState = | ||
|  |           (state.num.subtract(BigInteger.ONE).gcd(state.e) | ||
|  |             .compareTo(BigInteger.ONE) === 0) ? 3 : 0; | ||
|  |       } else if(state.pqState === 3) { | ||
|  |         // store p or q
 | ||
|  |         state.pqState = 0; | ||
|  |         if(state.p === null) { | ||
|  |           state.p = state.num; | ||
|  |         } else { | ||
|  |           state.q = state.num; | ||
|  |         } | ||
|  | 
 | ||
|  |         // advance state if both p and q are ready
 | ||
|  |         if(state.p !== null && state.q !== null) { | ||
|  |           ++state.state; | ||
|  |         } | ||
|  |         state.num = null; | ||
|  |       } | ||
|  |     } else if(state.state === 1) { | ||
|  |       // ensure p is larger than q (swap them if not)
 | ||
|  |       if(state.p.compareTo(state.q) < 0) { | ||
|  |         state.num = state.p; | ||
|  |         state.p = state.q; | ||
|  |         state.q = state.num; | ||
|  |       } | ||
|  |       ++state.state; | ||
|  |     } else if(state.state === 2) { | ||
|  |       // compute phi: (p - 1)(q - 1) (Euler's totient function)
 | ||
|  |       state.p1 = state.p.subtract(BigInteger.ONE); | ||
|  |       state.q1 = state.q.subtract(BigInteger.ONE); | ||
|  |       state.phi = state.p1.multiply(state.q1); | ||
|  |       ++state.state; | ||
|  |     } else if(state.state === 3) { | ||
|  |       // ensure e and phi are coprime
 | ||
|  |       if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) { | ||
|  |         // phi and e are coprime, advance
 | ||
|  |         ++state.state; | ||
|  |       } else { | ||
|  |         // phi and e aren't coprime, so generate a new p and q
 | ||
|  |         state.p = null; | ||
|  |         state.q = null; | ||
|  |         state.state = 0; | ||
|  |       } | ||
|  |     } else if(state.state === 4) { | ||
|  |       // create n, ensure n is has the right number of bits
 | ||
|  |       state.n = state.p.multiply(state.q); | ||
|  | 
 | ||
|  |       // ensure n is right number of bits
 | ||
|  |       if(state.n.bitLength() === state.bits) { | ||
|  |         // success, advance
 | ||
|  |         ++state.state; | ||
|  |       } else { | ||
|  |         // failed, get new q
 | ||
|  |         state.q = null; | ||
|  |         state.state = 0; | ||
|  |       } | ||
|  |     } else if(state.state === 5) { | ||
|  |       // set keys
 | ||
|  |       var d = state.e.modInverse(state.phi); | ||
|  |       state.keys = { | ||
|  |         privateKey: pki.rsa.setPrivateKey( | ||
|  |           state.n, state.e, d, state.p, state.q, | ||
|  |           d.mod(state.p1), d.mod(state.q1), | ||
|  |           state.q.modInverse(state.p)), | ||
|  |         publicKey: pki.rsa.setPublicKey(state.n, state.e) | ||
|  |       }; | ||
|  |     } | ||
|  | 
 | ||
|  |     // update timing
 | ||
|  |     t2 = +new Date(); | ||
|  |     total += t2 - t1; | ||
|  |     t1 = t2; | ||
|  |   } | ||
|  | 
 | ||
|  |   return state.keys !== null; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Generates an RSA public-private key pair in a single call. | ||
|  |  * | ||
|  |  * To generate a key-pair in steps (to allow for progress updates and to | ||
|  |  * prevent blocking or warnings in slow browsers) then use the key-pair | ||
|  |  * generation state functions. | ||
|  |  * | ||
|  |  * To generate a key-pair asynchronously (either through web-workers, if | ||
|  |  * available, or by breaking up the work on the main thread), pass a | ||
|  |  * callback function. | ||
|  |  * | ||
|  |  * @param [bits] the size for the private key in bits, defaults to 2048. | ||
|  |  * @param [e] the public exponent to use, defaults to 65537. | ||
|  |  * @param [options] options for key-pair generation, if given then 'bits' | ||
|  |  *            and 'e' must *not* be given: | ||
|  |  *          bits the size for the private key in bits, (default: 2048). | ||
|  |  *          e the public exponent to use, (default: 65537 (0x10001)). | ||
|  |  *          workerScript the worker script URL. | ||
|  |  *          workers the number of web workers (if supported) to use, | ||
|  |  *            (default: 2). | ||
|  |  *          workLoad the size of the work load, ie: number of possible prime | ||
|  |  *            numbers for each web worker to check per work assignment, | ||
|  |  *            (default: 100). | ||
|  |  *          prng a custom crypto-secure pseudo-random number generator to use, | ||
|  |  *            that must define "getBytesSync". Disables use of native APIs. | ||
|  |  *          algorithm the algorithm to use (default: 'PRIMEINC'). | ||
|  |  * @param [callback(err, keypair)] called once the operation completes. | ||
|  |  * | ||
|  |  * @return an object with privateKey and publicKey properties. | ||
|  |  */ | ||
|  | pki.rsa.generateKeyPair = function(bits, e, options, callback) { | ||
|  |   // (bits), (options), (callback)
 | ||
|  |   if(arguments.length === 1) { | ||
|  |     if(typeof bits === 'object') { | ||
|  |       options = bits; | ||
|  |       bits = undefined; | ||
|  |     } else if(typeof bits === 'function') { | ||
|  |       callback = bits; | ||
|  |       bits = undefined; | ||
|  |     } | ||
|  |   } else if(arguments.length === 2) { | ||
|  |     // (bits, e), (bits, options), (bits, callback), (options, callback)
 | ||
|  |     if(typeof bits === 'number') { | ||
|  |       if(typeof e === 'function') { | ||
|  |         callback = e; | ||
|  |         e = undefined; | ||
|  |       } else if(typeof e !== 'number') { | ||
|  |         options = e; | ||
|  |         e = undefined; | ||
|  |       } | ||
|  |     } else { | ||
|  |       options = bits; | ||
|  |       callback = e; | ||
|  |       bits = undefined; | ||
|  |       e = undefined; | ||
|  |     } | ||
|  |   } else if(arguments.length === 3) { | ||
|  |     // (bits, e, options), (bits, e, callback), (bits, options, callback)
 | ||
|  |     if(typeof e === 'number') { | ||
|  |       if(typeof options === 'function') { | ||
|  |         callback = options; | ||
|  |         options = undefined; | ||
|  |       } | ||
|  |     } else { | ||
|  |       callback = options; | ||
|  |       options = e; | ||
|  |       e = undefined; | ||
|  |     } | ||
|  |   } | ||
|  |   options = options || {}; | ||
|  |   if(bits === undefined) { | ||
|  |     bits = options.bits || 2048; | ||
|  |   } | ||
|  |   if(e === undefined) { | ||
|  |     e = options.e || 0x10001; | ||
|  |   } | ||
|  | 
 | ||
|  |   // use native code if permitted, available, and parameters are acceptable
 | ||
|  |   if(!forge.options.usePureJavaScript && !options.prng && | ||
|  |     bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) { | ||
|  |     if(callback) { | ||
|  |       // try native async
 | ||
|  |       if(_detectNodeCrypto('generateKeyPair')) { | ||
|  |         return _crypto.generateKeyPair('rsa', { | ||
|  |           modulusLength: bits, | ||
|  |           publicExponent: e, | ||
|  |           publicKeyEncoding: { | ||
|  |             type: 'spki', | ||
|  |             format: 'pem' | ||
|  |           }, | ||
|  |           privateKeyEncoding: { | ||
|  |             type: 'pkcs8', | ||
|  |             format: 'pem' | ||
|  |           } | ||
|  |         }, function(err, pub, priv) { | ||
|  |           if(err) { | ||
|  |             return callback(err); | ||
|  |           } | ||
|  |           callback(null, { | ||
|  |             privateKey: pki.privateKeyFromPem(priv), | ||
|  |             publicKey: pki.publicKeyFromPem(pub) | ||
|  |           }); | ||
|  |         }); | ||
|  |       } | ||
|  |       if(_detectSubtleCrypto('generateKey') && | ||
|  |         _detectSubtleCrypto('exportKey')) { | ||
|  |         // use standard native generateKey
 | ||
|  |         return util.globalScope.crypto.subtle.generateKey({ | ||
|  |           name: 'RSASSA-PKCS1-v1_5', | ||
|  |           modulusLength: bits, | ||
|  |           publicExponent: _intToUint8Array(e), | ||
|  |           hash: {name: 'SHA-256'} | ||
|  |         }, true /* key can be exported*/, ['sign', 'verify']) | ||
|  |         .then(function(pair) { | ||
|  |           return util.globalScope.crypto.subtle.exportKey( | ||
|  |             'pkcs8', pair.privateKey); | ||
|  |         // avoiding catch(function(err) {...}) to support IE <= 8
 | ||
|  |         }).then(undefined, function(err) { | ||
|  |           callback(err); | ||
|  |         }).then(function(pkcs8) { | ||
|  |           if(pkcs8) { | ||
|  |             var privateKey = pki.privateKeyFromAsn1( | ||
|  |               asn1.fromDer(forge.util.createBuffer(pkcs8))); | ||
|  |             callback(null, { | ||
|  |               privateKey: privateKey, | ||
|  |               publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) | ||
|  |             }); | ||
|  |           } | ||
|  |         }); | ||
|  |       } | ||
|  |       if(_detectSubtleMsCrypto('generateKey') && | ||
|  |         _detectSubtleMsCrypto('exportKey')) { | ||
|  |         var genOp = util.globalScope.msCrypto.subtle.generateKey({ | ||
|  |           name: 'RSASSA-PKCS1-v1_5', | ||
|  |           modulusLength: bits, | ||
|  |           publicExponent: _intToUint8Array(e), | ||
|  |           hash: {name: 'SHA-256'} | ||
|  |         }, true /* key can be exported*/, ['sign', 'verify']); | ||
|  |         genOp.oncomplete = function(e) { | ||
|  |           var pair = e.target.result; | ||
|  |           var exportOp = util.globalScope.msCrypto.subtle.exportKey( | ||
|  |             'pkcs8', pair.privateKey); | ||
|  |           exportOp.oncomplete = function(e) { | ||
|  |             var pkcs8 = e.target.result; | ||
|  |             var privateKey = pki.privateKeyFromAsn1( | ||
|  |               asn1.fromDer(forge.util.createBuffer(pkcs8))); | ||
|  |             callback(null, { | ||
|  |               privateKey: privateKey, | ||
|  |               publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) | ||
|  |             }); | ||
|  |           }; | ||
|  |           exportOp.onerror = function(err) { | ||
|  |             callback(err); | ||
|  |           }; | ||
|  |         }; | ||
|  |         genOp.onerror = function(err) { | ||
|  |           callback(err); | ||
|  |         }; | ||
|  |         return; | ||
|  |       } | ||
|  |     } else { | ||
|  |       // try native sync
 | ||
|  |       if(_detectNodeCrypto('generateKeyPairSync')) { | ||
|  |         var keypair = _crypto.generateKeyPairSync('rsa', { | ||
|  |           modulusLength: bits, | ||
|  |           publicExponent: e, | ||
|  |           publicKeyEncoding: { | ||
|  |             type: 'spki', | ||
|  |             format: 'pem' | ||
|  |           }, | ||
|  |           privateKeyEncoding: { | ||
|  |             type: 'pkcs8', | ||
|  |             format: 'pem' | ||
|  |           } | ||
|  |         }); | ||
|  |         return { | ||
|  |           privateKey: pki.privateKeyFromPem(keypair.privateKey), | ||
|  |           publicKey: pki.publicKeyFromPem(keypair.publicKey) | ||
|  |         }; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // use JavaScript implementation
 | ||
|  |   var state = pki.rsa.createKeyPairGenerationState(bits, e, options); | ||
|  |   if(!callback) { | ||
|  |     pki.rsa.stepKeyPairGenerationState(state, 0); | ||
|  |     return state.keys; | ||
|  |   } | ||
|  |   _generateKeyPair(state, options, callback); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Sets an RSA public key from BigIntegers modulus and exponent. | ||
|  |  * | ||
|  |  * @param n the modulus. | ||
|  |  * @param e the exponent. | ||
|  |  * | ||
|  |  * @return the public key. | ||
|  |  */ | ||
|  | pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) { | ||
|  |   var key = { | ||
|  |     n: n, | ||
|  |     e: e | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Encrypts the given data with this public key. Newer applications | ||
|  |    * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for | ||
|  |    * legacy applications. | ||
|  |    * | ||
|  |    * @param data the byte string to encrypt. | ||
|  |    * @param scheme the encryption scheme to use: | ||
|  |    *          'RSAES-PKCS1-V1_5' (default), | ||
|  |    *          'RSA-OAEP', | ||
|  |    *          'RAW', 'NONE', or null to perform raw RSA encryption, | ||
|  |    *          an object with an 'encode' property set to a function | ||
|  |    *          with the signature 'function(data, key)' that returns | ||
|  |    *          a binary-encoded string representing the encoded data. | ||
|  |    * @param schemeOptions any scheme-specific options. | ||
|  |    * | ||
|  |    * @return the encrypted byte string. | ||
|  |    */ | ||
|  |   key.encrypt = function(data, scheme, schemeOptions) { | ||
|  |     if(typeof scheme === 'string') { | ||
|  |       scheme = scheme.toUpperCase(); | ||
|  |     } else if(scheme === undefined) { | ||
|  |       scheme = 'RSAES-PKCS1-V1_5'; | ||
|  |     } | ||
|  | 
 | ||
|  |     if(scheme === 'RSAES-PKCS1-V1_5') { | ||
|  |       scheme = { | ||
|  |         encode: function(m, key, pub) { | ||
|  |           return _encodePkcs1_v1_5(m, key, 0x02).getBytes(); | ||
|  |         } | ||
|  |       }; | ||
|  |     } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { | ||
|  |       scheme = { | ||
|  |         encode: function(m, key) { | ||
|  |           return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions); | ||
|  |         } | ||
|  |       }; | ||
|  |     } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { | ||
|  |       scheme = {encode: function(e) {return e;}}; | ||
|  |     } else if(typeof scheme === 'string') { | ||
|  |       throw new Error('Unsupported encryption scheme: "' + scheme + '".'); | ||
|  |     } | ||
|  | 
 | ||
|  |     // do scheme-based encoding then rsa encryption
 | ||
|  |     var e = scheme.encode(data, key, true); | ||
|  |     return pki.rsa.encrypt(e, key, true); | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Verifies the given signature against the given digest. | ||
|  |    * | ||
|  |    * PKCS#1 supports multiple (currently two) signature schemes: | ||
|  |    * RSASSA-PKCS1-V1_5 and RSASSA-PSS. | ||
|  |    * | ||
|  |    * By default this implementation uses the "old scheme", i.e. | ||
|  |    * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the | ||
|  |    * signature is an OCTET STRING that holds a DigestInfo. | ||
|  |    * | ||
|  |    * DigestInfo ::= SEQUENCE { | ||
|  |    *   digestAlgorithm DigestAlgorithmIdentifier, | ||
|  |    *   digest Digest | ||
|  |    * } | ||
|  |    * DigestAlgorithmIdentifier ::= AlgorithmIdentifier | ||
|  |    * Digest ::= OCTET STRING | ||
|  |    * | ||
|  |    * To perform PSS signature verification, provide an instance | ||
|  |    * of Forge PSS object as the scheme parameter. | ||
|  |    * | ||
|  |    * @param digest the message digest hash to compare against the signature, | ||
|  |    *          as a binary-encoded string. | ||
|  |    * @param signature the signature to verify, as a binary-encoded string. | ||
|  |    * @param scheme signature verification scheme to use: | ||
|  |    *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, | ||
|  |    *          a Forge PSS object for RSASSA-PSS, | ||
|  |    *          'NONE' or null for none, DigestInfo will not be expected, but | ||
|  |    *            PKCS#1 v1.5 padding will still be used. | ||
|  |    * @param options optional verify options | ||
|  |    *          _parseAllDigestBytes testing flag to control parsing of all | ||
|  |    *            digest bytes. Unsupported and not for general usage. | ||
|  |    *            (default: true) | ||
|  |    * | ||
|  |    * @return true if the signature was verified, false if not. | ||
|  |    */ | ||
|  |   key.verify = function(digest, signature, scheme, options) { | ||
|  |     if(typeof scheme === 'string') { | ||
|  |       scheme = scheme.toUpperCase(); | ||
|  |     } else if(scheme === undefined) { | ||
|  |       scheme = 'RSASSA-PKCS1-V1_5'; | ||
|  |     } | ||
|  |     if(options === undefined) { | ||
|  |       options = { | ||
|  |         _parseAllDigestBytes: true | ||
|  |       }; | ||
|  |     } | ||
|  |     if(!('_parseAllDigestBytes' in options)) { | ||
|  |       options._parseAllDigestBytes = true; | ||
|  |     } | ||
|  | 
 | ||
|  |     if(scheme === 'RSASSA-PKCS1-V1_5') { | ||
|  |       scheme = { | ||
|  |         verify: function(digest, d) { | ||
|  |           // remove padding
 | ||
|  |           d = _decodePkcs1_v1_5(d, key, true); | ||
|  |           // d is ASN.1 BER-encoded DigestInfo
 | ||
|  |           var obj = asn1.fromDer(d, { | ||
|  |             parseAllBytes: options._parseAllDigestBytes | ||
|  |           }); | ||
|  | 
 | ||
|  |           // validate DigestInfo
 | ||
|  |           var capture = {}; | ||
|  |           var errors = []; | ||
|  |           if(!asn1.validate(obj, digestInfoValidator, capture, errors)) { | ||
|  |             var error = new Error( | ||
|  |               'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' + | ||
|  |               'DigestInfo value.'); | ||
|  |             error.errors = errors; | ||
|  |             throw error; | ||
|  |           } | ||
|  |           // check hash algorithm identifier
 | ||
|  |           // see PKCS1-v1-5DigestAlgorithms in RFC 8017
 | ||
|  |           // FIXME: add support to vaidator for strict value choices
 | ||
|  |           var oid = asn1.derToOid(capture.algorithmIdentifier); | ||
|  |           if(!(oid === forge.oids.md2 || | ||
|  |             oid === forge.oids.md5 || | ||
|  |             oid === forge.oids.sha1 || | ||
|  |             oid === forge.oids.sha224 || | ||
|  |             oid === forge.oids.sha256 || | ||
|  |             oid === forge.oids.sha384 || | ||
|  |             oid === forge.oids.sha512 || | ||
|  |             oid === forge.oids['sha512-224'] || | ||
|  |             oid === forge.oids['sha512-256'])) { | ||
|  |             var error = new Error( | ||
|  |               'Unknown RSASSA-PKCS1-v1_5 DigestAlgorithm identifier.'); | ||
|  |             error.oid = oid; | ||
|  |             throw error; | ||
|  |           } | ||
|  | 
 | ||
|  |           // special check for md2 and md5 that NULL parameters exist
 | ||
|  |           if(oid === forge.oids.md2 || oid === forge.oids.md5) { | ||
|  |             if(!('parameters' in capture)) { | ||
|  |               throw new Error( | ||
|  |                 'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' + | ||
|  |                 'DigestInfo value. ' + | ||
|  |                 'Missing algorithm identifer NULL parameters.'); | ||
|  |             } | ||
|  |           } | ||
|  | 
 | ||
|  |           // compare the given digest to the decrypted one
 | ||
|  |           return digest === capture.digest; | ||
|  |         } | ||
|  |       }; | ||
|  |     } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { | ||
|  |       scheme = { | ||
|  |         verify: function(digest, d) { | ||
|  |           // remove padding
 | ||
|  |           d = _decodePkcs1_v1_5(d, key, true); | ||
|  |           return digest === d; | ||
|  |         } | ||
|  |       }; | ||
|  |     } | ||
|  | 
 | ||
|  |     // do rsa decryption w/o any decoding, then verify -- which does decoding
 | ||
|  |     var d = pki.rsa.decrypt(signature, key, true, false); | ||
|  |     return scheme.verify(digest, d, key.n.bitLength()); | ||
|  |   }; | ||
|  | 
 | ||
|  |   return key; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Sets an RSA private key from BigIntegers modulus, exponent, primes, | ||
|  |  * prime exponents, and modular multiplicative inverse. | ||
|  |  * | ||
|  |  * @param n the modulus. | ||
|  |  * @param e the public exponent. | ||
|  |  * @param d the private exponent ((inverse of e) mod n). | ||
|  |  * @param p the first prime. | ||
|  |  * @param q the second prime. | ||
|  |  * @param dP exponent1 (d mod (p-1)). | ||
|  |  * @param dQ exponent2 (d mod (q-1)). | ||
|  |  * @param qInv ((inverse of q) mod p) | ||
|  |  * | ||
|  |  * @return the private key. | ||
|  |  */ | ||
|  | pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function( | ||
|  |   n, e, d, p, q, dP, dQ, qInv) { | ||
|  |   var key = { | ||
|  |     n: n, | ||
|  |     e: e, | ||
|  |     d: d, | ||
|  |     p: p, | ||
|  |     q: q, | ||
|  |     dP: dP, | ||
|  |     dQ: dQ, | ||
|  |     qInv: qInv | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Decrypts the given data with this private key. The decryption scheme | ||
|  |    * must match the one used to encrypt the data. | ||
|  |    * | ||
|  |    * @param data the byte string to decrypt. | ||
|  |    * @param scheme the decryption scheme to use: | ||
|  |    *          'RSAES-PKCS1-V1_5' (default), | ||
|  |    *          'RSA-OAEP', | ||
|  |    *          'RAW', 'NONE', or null to perform raw RSA decryption. | ||
|  |    * @param schemeOptions any scheme-specific options. | ||
|  |    * | ||
|  |    * @return the decrypted byte string. | ||
|  |    */ | ||
|  |   key.decrypt = function(data, scheme, schemeOptions) { | ||
|  |     if(typeof scheme === 'string') { | ||
|  |       scheme = scheme.toUpperCase(); | ||
|  |     } else if(scheme === undefined) { | ||
|  |       scheme = 'RSAES-PKCS1-V1_5'; | ||
|  |     } | ||
|  | 
 | ||
|  |     // do rsa decryption w/o any decoding
 | ||
|  |     var d = pki.rsa.decrypt(data, key, false, false); | ||
|  | 
 | ||
|  |     if(scheme === 'RSAES-PKCS1-V1_5') { | ||
|  |       scheme = {decode: _decodePkcs1_v1_5}; | ||
|  |     } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { | ||
|  |       scheme = { | ||
|  |         decode: function(d, key) { | ||
|  |           return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions); | ||
|  |         } | ||
|  |       }; | ||
|  |     } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { | ||
|  |       scheme = {decode: function(d) {return d;}}; | ||
|  |     } else { | ||
|  |       throw new Error('Unsupported encryption scheme: "' + scheme + '".'); | ||
|  |     } | ||
|  | 
 | ||
|  |     // decode according to scheme
 | ||
|  |     return scheme.decode(d, key, false); | ||
|  |   }; | ||
|  | 
 | ||
|  |   /** | ||
|  |    * Signs the given digest, producing a signature. | ||
|  |    * | ||
|  |    * PKCS#1 supports multiple (currently two) signature schemes: | ||
|  |    * RSASSA-PKCS1-V1_5 and RSASSA-PSS. | ||
|  |    * | ||
|  |    * By default this implementation uses the "old scheme", i.e. | ||
|  |    * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide | ||
|  |    * an instance of Forge PSS object as the scheme parameter. | ||
|  |    * | ||
|  |    * @param md the message digest object with the hash to sign. | ||
|  |    * @param scheme the signature scheme to use: | ||
|  |    *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, | ||
|  |    *          a Forge PSS object for RSASSA-PSS, | ||
|  |    *          'NONE' or null for none, DigestInfo will not be used but | ||
|  |    *            PKCS#1 v1.5 padding will still be used. | ||
|  |    * | ||
|  |    * @return the signature as a byte string. | ||
|  |    */ | ||
|  |   key.sign = function(md, scheme) { | ||
|  |     /* Note: The internal implementation of RSA operations is being | ||
|  |       transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy | ||
|  |       code like the use of an encoding block identifier 'bt' will eventually | ||
|  |       be removed. */ | ||
|  | 
 | ||
|  |     // private key operation
 | ||
|  |     var bt = false; | ||
|  | 
 | ||
|  |     if(typeof scheme === 'string') { | ||
|  |       scheme = scheme.toUpperCase(); | ||
|  |     } | ||
|  | 
 | ||
|  |     if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') { | ||
|  |       scheme = {encode: emsaPkcs1v15encode}; | ||
|  |       bt = 0x01; | ||
|  |     } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { | ||
|  |       scheme = {encode: function() {return md;}}; | ||
|  |       bt = 0x01; | ||
|  |     } | ||
|  | 
 | ||
|  |     // encode and then encrypt
 | ||
|  |     var d = scheme.encode(md, key.n.bitLength()); | ||
|  |     return pki.rsa.encrypt(d, key, bt); | ||
|  |   }; | ||
|  | 
 | ||
|  |   return key; | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object. | ||
|  |  * | ||
|  |  * @param rsaKey the ASN.1 RSAPrivateKey. | ||
|  |  * | ||
|  |  * @return the ASN.1 PrivateKeyInfo. | ||
|  |  */ | ||
|  | pki.wrapRsaPrivateKey = function(rsaKey) { | ||
|  |   // PrivateKeyInfo
 | ||
|  |   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |     // version (0)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       asn1.integerToDer(0).getBytes()), | ||
|  |     // privateKeyAlgorithm
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |       asn1.create( | ||
|  |         asn1.Class.UNIVERSAL, asn1.Type.OID, false, | ||
|  |         asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), | ||
|  |       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') | ||
|  |     ]), | ||
|  |     // PrivateKey
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, | ||
|  |       asn1.toDer(rsaKey).getBytes()) | ||
|  |   ]); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a private key from an ASN.1 object. | ||
|  |  * | ||
|  |  * @param obj the ASN.1 representation of a PrivateKeyInfo containing an | ||
|  |  *          RSAPrivateKey or an RSAPrivateKey. | ||
|  |  * | ||
|  |  * @return the private key. | ||
|  |  */ | ||
|  | pki.privateKeyFromAsn1 = function(obj) { | ||
|  |   // get PrivateKeyInfo
 | ||
|  |   var capture = {}; | ||
|  |   var errors = []; | ||
|  |   if(asn1.validate(obj, privateKeyValidator, capture, errors)) { | ||
|  |     obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey)); | ||
|  |   } | ||
|  | 
 | ||
|  |   // get RSAPrivateKey
 | ||
|  |   capture = {}; | ||
|  |   errors = []; | ||
|  |   if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) { | ||
|  |     var error = new Error('Cannot read private key. ' + | ||
|  |       'ASN.1 object does not contain an RSAPrivateKey.'); | ||
|  |     error.errors = errors; | ||
|  |     throw error; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Note: Version is currently ignored.
 | ||
|  |   // capture.privateKeyVersion
 | ||
|  |   // FIXME: inefficient, get a BigInteger that uses byte strings
 | ||
|  |   var n, e, d, p, q, dP, dQ, qInv; | ||
|  |   n = forge.util.createBuffer(capture.privateKeyModulus).toHex(); | ||
|  |   e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex(); | ||
|  |   d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex(); | ||
|  |   p = forge.util.createBuffer(capture.privateKeyPrime1).toHex(); | ||
|  |   q = forge.util.createBuffer(capture.privateKeyPrime2).toHex(); | ||
|  |   dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex(); | ||
|  |   dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex(); | ||
|  |   qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex(); | ||
|  | 
 | ||
|  |   // set private key
 | ||
|  |   return pki.setRsaPrivateKey( | ||
|  |     new BigInteger(n, 16), | ||
|  |     new BigInteger(e, 16), | ||
|  |     new BigInteger(d, 16), | ||
|  |     new BigInteger(p, 16), | ||
|  |     new BigInteger(q, 16), | ||
|  |     new BigInteger(dP, 16), | ||
|  |     new BigInteger(dQ, 16), | ||
|  |     new BigInteger(qInv, 16)); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a private key to an ASN.1 RSAPrivateKey. | ||
|  |  * | ||
|  |  * @param key the private key. | ||
|  |  * | ||
|  |  * @return the ASN.1 representation of an RSAPrivateKey. | ||
|  |  */ | ||
|  | pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) { | ||
|  |   // RSAPrivateKey
 | ||
|  |   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |     // version (0 = only 2 primes, 1 multiple primes)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       asn1.integerToDer(0).getBytes()), | ||
|  |     // modulus (n)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.n)), | ||
|  |     // publicExponent (e)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.e)), | ||
|  |     // privateExponent (d)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.d)), | ||
|  |     // privateKeyPrime1 (p)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.p)), | ||
|  |     // privateKeyPrime2 (q)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.q)), | ||
|  |     // privateKeyExponent1 (dP)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.dP)), | ||
|  |     // privateKeyExponent2 (dQ)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.dQ)), | ||
|  |     // coefficient (qInv)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.qInv)) | ||
|  |   ]); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey. | ||
|  |  * | ||
|  |  * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey. | ||
|  |  * | ||
|  |  * @return the public key. | ||
|  |  */ | ||
|  | pki.publicKeyFromAsn1 = function(obj) { | ||
|  |   // get SubjectPublicKeyInfo
 | ||
|  |   var capture = {}; | ||
|  |   var errors = []; | ||
|  |   if(asn1.validate(obj, publicKeyValidator, capture, errors)) { | ||
|  |     // get oid
 | ||
|  |     var oid = asn1.derToOid(capture.publicKeyOid); | ||
|  |     if(oid !== pki.oids.rsaEncryption) { | ||
|  |       var error = new Error('Cannot read public key. Unknown OID.'); | ||
|  |       error.oid = oid; | ||
|  |       throw error; | ||
|  |     } | ||
|  |     obj = capture.rsaPublicKey; | ||
|  |   } | ||
|  | 
 | ||
|  |   // get RSA params
 | ||
|  |   errors = []; | ||
|  |   if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) { | ||
|  |     var error = new Error('Cannot read public key. ' + | ||
|  |       'ASN.1 object does not contain an RSAPublicKey.'); | ||
|  |     error.errors = errors; | ||
|  |     throw error; | ||
|  |   } | ||
|  | 
 | ||
|  |   // FIXME: inefficient, get a BigInteger that uses byte strings
 | ||
|  |   var n = forge.util.createBuffer(capture.publicKeyModulus).toHex(); | ||
|  |   var e = forge.util.createBuffer(capture.publicKeyExponent).toHex(); | ||
|  | 
 | ||
|  |   // set public key
 | ||
|  |   return pki.setRsaPublicKey( | ||
|  |     new BigInteger(n, 16), | ||
|  |     new BigInteger(e, 16)); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a public key to an ASN.1 SubjectPublicKeyInfo. | ||
|  |  * | ||
|  |  * @param key the public key. | ||
|  |  * | ||
|  |  * @return the asn1 representation of a SubjectPublicKeyInfo. | ||
|  |  */ | ||
|  | pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) { | ||
|  |   // SubjectPublicKeyInfo
 | ||
|  |   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |     // AlgorithmIdentifier
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |       // algorithm
 | ||
|  |       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, | ||
|  |         asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), | ||
|  |       // parameters (null)
 | ||
|  |       asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') | ||
|  |     ]), | ||
|  |     // subjectPublicKey
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ | ||
|  |       pki.publicKeyToRSAPublicKey(key) | ||
|  |     ]) | ||
|  |   ]); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a public key to an ASN.1 RSAPublicKey. | ||
|  |  * | ||
|  |  * @param key the public key. | ||
|  |  * | ||
|  |  * @return the asn1 representation of a RSAPublicKey. | ||
|  |  */ | ||
|  | pki.publicKeyToRSAPublicKey = function(key) { | ||
|  |   // RSAPublicKey
 | ||
|  |   return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | ||
|  |     // modulus (n)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.n)), | ||
|  |     // publicExponent (e)
 | ||
|  |     asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | ||
|  |       _bnToBytes(key.e)) | ||
|  |   ]); | ||
|  | }; | ||
|  | 
 | ||
|  | /** | ||
|  |  * Encodes a message using PKCS#1 v1.5 padding. | ||
|  |  * | ||
|  |  * @param m the message to encode. | ||
|  |  * @param key the RSA key to use. | ||
|  |  * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02 | ||
|  |  *          (for encryption). | ||
|  |  * | ||
|  |  * @return the padded byte buffer. | ||
|  |  */ | ||
|  | function _encodePkcs1_v1_5(m, key, bt) { | ||
|  |   var eb = forge.util.createBuffer(); | ||
|  | 
 | ||
|  |   // get the length of the modulus in bytes
 | ||
|  |   var k = Math.ceil(key.n.bitLength() / 8); | ||
|  | 
 | ||
|  |   /* use PKCS#1 v1.5 padding */ | ||
|  |   if(m.length > (k - 11)) { | ||
|  |     var error = new Error('Message is too long for PKCS#1 v1.5 padding.'); | ||
|  |     error.length = m.length; | ||
|  |     error.max = k - 11; | ||
|  |     throw error; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* A block type BT, a padding string PS, and the data D shall be | ||
|  |     formatted into an octet string EB, the encryption block: | ||
|  | 
 | ||
|  |     EB = 00 || BT || PS || 00 || D | ||
|  | 
 | ||
|  |     The block type BT shall be a single octet indicating the structure of | ||
|  |     the encryption block. For this version of the document it shall have | ||
|  |     value 00, 01, or 02. For a private-key operation, the block type | ||
|  |     shall be 00 or 01. For a public-key operation, it shall be 02. | ||
|  | 
 | ||
|  |     The padding string PS shall consist of k-3-||D|| octets. For block | ||
|  |     type 00, the octets shall have value 00; for block type 01, they | ||
|  |     shall have value FF; and for block type 02, they shall be | ||
|  |     pseudorandomly generated and nonzero. This makes the length of the | ||
|  |     encryption block EB equal to k. */ | ||
|  | 
 | ||
|  |   // build the encryption block
 | ||
|  |   eb.putByte(0x00); | ||
|  |   eb.putByte(bt); | ||
|  | 
 | ||
|  |   // create the padding
 | ||
|  |   var padNum = k - 3 - m.length; | ||
|  |   var padByte; | ||
|  |   // private key op
 | ||
|  |   if(bt === 0x00 || bt === 0x01) { | ||
|  |     padByte = (bt === 0x00) ? 0x00 : 0xFF; | ||
|  |     for(var i = 0; i < padNum; ++i) { | ||
|  |       eb.putByte(padByte); | ||
|  |     } | ||
|  |   } else { | ||
|  |     // public key op
 | ||
|  |     // pad with random non-zero values
 | ||
|  |     while(padNum > 0) { | ||
|  |       var numZeros = 0; | ||
|  |       var padBytes = forge.random.getBytes(padNum); | ||
|  |       for(var i = 0; i < padNum; ++i) { | ||
|  |         padByte = padBytes.charCodeAt(i); | ||
|  |         if(padByte === 0) { | ||
|  |           ++numZeros; | ||
|  |         } else { | ||
|  |           eb.putByte(padByte); | ||
|  |         } | ||
|  |       } | ||
|  |       padNum = numZeros; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // zero followed by message
 | ||
|  |   eb.putByte(0x00); | ||
|  |   eb.putBytes(m); | ||
|  | 
 | ||
|  |   return eb; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Decodes a message using PKCS#1 v1.5 padding. | ||
|  |  * | ||
|  |  * @param em the message to decode. | ||
|  |  * @param key the RSA key to use. | ||
|  |  * @param pub true if the key is a public key, false if it is private. | ||
|  |  * @param ml the message length, if specified. | ||
|  |  * | ||
|  |  * @return the decoded bytes. | ||
|  |  */ | ||
|  | function _decodePkcs1_v1_5(em, key, pub, ml) { | ||
|  |   // get the length of the modulus in bytes
 | ||
|  |   var k = Math.ceil(key.n.bitLength() / 8); | ||
|  | 
 | ||
|  |   /* It is an error if any of the following conditions occurs: | ||
|  | 
 | ||
|  |     1. The encryption block EB cannot be parsed unambiguously. | ||
|  |     2. The padding string PS consists of fewer than eight octets | ||
|  |       or is inconsisent with the block type BT. | ||
|  |     3. The decryption process is a public-key operation and the block | ||
|  |       type BT is not 00 or 01, or the decryption process is a | ||
|  |       private-key operation and the block type is not 02. | ||
|  |    */ | ||
|  | 
 | ||
|  |   // parse the encryption block
 | ||
|  |   var eb = forge.util.createBuffer(em); | ||
|  |   var first = eb.getByte(); | ||
|  |   var bt = eb.getByte(); | ||
|  |   if(first !== 0x00 || | ||
|  |     (pub && bt !== 0x00 && bt !== 0x01) || | ||
|  |     (!pub && bt != 0x02) || | ||
|  |     (pub && bt === 0x00 && typeof(ml) === 'undefined')) { | ||
|  |     throw new Error('Encryption block is invalid.'); | ||
|  |   } | ||
|  | 
 | ||
|  |   var padNum = 0; | ||
|  |   if(bt === 0x00) { | ||
|  |     // check all padding bytes for 0x00
 | ||
|  |     padNum = k - 3 - ml; | ||
|  |     for(var i = 0; i < padNum; ++i) { | ||
|  |       if(eb.getByte() !== 0x00) { | ||
|  |         throw new Error('Encryption block is invalid.'); | ||
|  |       } | ||
|  |     } | ||
|  |   } else if(bt === 0x01) { | ||
|  |     // find the first byte that isn't 0xFF, should be after all padding
 | ||
|  |     padNum = 0; | ||
|  |     while(eb.length() > 1) { | ||
|  |       if(eb.getByte() !== 0xFF) { | ||
|  |         --eb.read; | ||
|  |         break; | ||
|  |       } | ||
|  |       ++padNum; | ||
|  |     } | ||
|  |   } else if(bt === 0x02) { | ||
|  |     // look for 0x00 byte
 | ||
|  |     padNum = 0; | ||
|  |     while(eb.length() > 1) { | ||
|  |       if(eb.getByte() === 0x00) { | ||
|  |         --eb.read; | ||
|  |         break; | ||
|  |       } | ||
|  |       ++padNum; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // zero must be 0x00 and padNum must be (k - 3 - message length)
 | ||
|  |   var zero = eb.getByte(); | ||
|  |   if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) { | ||
|  |     throw new Error('Encryption block is invalid.'); | ||
|  |   } | ||
|  | 
 | ||
|  |   return eb.getBytes(); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Runs the key-generation algorithm asynchronously, either in the background | ||
|  |  * via Web Workers, or using the main thread and setImmediate. | ||
|  |  * | ||
|  |  * @param state the key-pair generation state. | ||
|  |  * @param [options] options for key-pair generation: | ||
|  |  *          workerScript the worker script URL. | ||
|  |  *          workers the number of web workers (if supported) to use, | ||
|  |  *            (default: 2, -1 to use estimated cores minus one). | ||
|  |  *          workLoad the size of the work load, ie: number of possible prime | ||
|  |  *            numbers for each web worker to check per work assignment, | ||
|  |  *            (default: 100). | ||
|  |  * @param callback(err, keypair) called once the operation completes. | ||
|  |  */ | ||
|  | function _generateKeyPair(state, options, callback) { | ||
|  |   if(typeof options === 'function') { | ||
|  |     callback = options; | ||
|  |     options = {}; | ||
|  |   } | ||
|  |   options = options || {}; | ||
|  | 
 | ||
|  |   var opts = { | ||
|  |     algorithm: { | ||
|  |       name: options.algorithm || 'PRIMEINC', | ||
|  |       options: { | ||
|  |         workers: options.workers || 2, | ||
|  |         workLoad: options.workLoad || 100, | ||
|  |         workerScript: options.workerScript | ||
|  |       } | ||
|  |     } | ||
|  |   }; | ||
|  |   if('prng' in options) { | ||
|  |     opts.prng = options.prng; | ||
|  |   } | ||
|  | 
 | ||
|  |   generate(); | ||
|  | 
 | ||
|  |   function generate() { | ||
|  |     // find p and then q (done in series to simplify)
 | ||
|  |     getPrime(state.pBits, function(err, num) { | ||
|  |       if(err) { | ||
|  |         return callback(err); | ||
|  |       } | ||
|  |       state.p = num; | ||
|  |       if(state.q !== null) { | ||
|  |         return finish(err, state.q); | ||
|  |       } | ||
|  |       getPrime(state.qBits, finish); | ||
|  |     }); | ||
|  |   } | ||
|  | 
 | ||
|  |   function getPrime(bits, callback) { | ||
|  |     forge.prime.generateProbablePrime(bits, opts, callback); | ||
|  |   } | ||
|  | 
 | ||
|  |   function finish(err, num) { | ||
|  |     if(err) { | ||
|  |       return callback(err); | ||
|  |     } | ||
|  | 
 | ||
|  |     // set q
 | ||
|  |     state.q = num; | ||
|  | 
 | ||
|  |     // ensure p is larger than q (swap them if not)
 | ||
|  |     if(state.p.compareTo(state.q) < 0) { | ||
|  |       var tmp = state.p; | ||
|  |       state.p = state.q; | ||
|  |       state.q = tmp; | ||
|  |     } | ||
|  | 
 | ||
|  |     // ensure p is coprime with e
 | ||
|  |     if(state.p.subtract(BigInteger.ONE).gcd(state.e) | ||
|  |       .compareTo(BigInteger.ONE) !== 0) { | ||
|  |       state.p = null; | ||
|  |       generate(); | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // ensure q is coprime with e
 | ||
|  |     if(state.q.subtract(BigInteger.ONE).gcd(state.e) | ||
|  |       .compareTo(BigInteger.ONE) !== 0) { | ||
|  |       state.q = null; | ||
|  |       getPrime(state.qBits, finish); | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // compute phi: (p - 1)(q - 1) (Euler's totient function)
 | ||
|  |     state.p1 = state.p.subtract(BigInteger.ONE); | ||
|  |     state.q1 = state.q.subtract(BigInteger.ONE); | ||
|  |     state.phi = state.p1.multiply(state.q1); | ||
|  | 
 | ||
|  |     // ensure e and phi are coprime
 | ||
|  |     if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) { | ||
|  |       // phi and e aren't coprime, so generate a new p and q
 | ||
|  |       state.p = state.q = null; | ||
|  |       generate(); | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // create n, ensure n is has the right number of bits
 | ||
|  |     state.n = state.p.multiply(state.q); | ||
|  |     if(state.n.bitLength() !== state.bits) { | ||
|  |       // failed, get new q
 | ||
|  |       state.q = null; | ||
|  |       getPrime(state.qBits, finish); | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // set keys
 | ||
|  |     var d = state.e.modInverse(state.phi); | ||
|  |     state.keys = { | ||
|  |       privateKey: pki.rsa.setPrivateKey( | ||
|  |         state.n, state.e, d, state.p, state.q, | ||
|  |         d.mod(state.p1), d.mod(state.q1), | ||
|  |         state.q.modInverse(state.p)), | ||
|  |       publicKey: pki.rsa.setPublicKey(state.n, state.e) | ||
|  |     }; | ||
|  | 
 | ||
|  |     callback(null, state.keys); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Converts a positive BigInteger into 2's-complement big-endian bytes. | ||
|  |  * | ||
|  |  * @param b the big integer to convert. | ||
|  |  * | ||
|  |  * @return the bytes. | ||
|  |  */ | ||
|  | function _bnToBytes(b) { | ||
|  |   // prepend 0x00 if first byte >= 0x80
 | ||
|  |   var hex = b.toString(16); | ||
|  |   if(hex[0] >= '8') { | ||
|  |     hex = '00' + hex; | ||
|  |   } | ||
|  |   var bytes = forge.util.hexToBytes(hex); | ||
|  | 
 | ||
|  |   // ensure integer is minimally-encoded
 | ||
|  |   if(bytes.length > 1 && | ||
|  |     // leading 0x00 for positive integer
 | ||
|  |     ((bytes.charCodeAt(0) === 0 && | ||
|  |     (bytes.charCodeAt(1) & 0x80) === 0) || | ||
|  |     // leading 0xFF for negative integer
 | ||
|  |     (bytes.charCodeAt(0) === 0xFF && | ||
|  |     (bytes.charCodeAt(1) & 0x80) === 0x80))) { | ||
|  |     return bytes.substr(1); | ||
|  |   } | ||
|  |   return bytes; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Returns the required number of Miller-Rabin tests to generate a | ||
|  |  * prime with an error probability of (1/2)^80. | ||
|  |  * | ||
|  |  * See Handbook of Applied Cryptography Chapter 4, Table 4.4. | ||
|  |  * | ||
|  |  * @param bits the bit size. | ||
|  |  * | ||
|  |  * @return the required number of iterations. | ||
|  |  */ | ||
|  | function _getMillerRabinTests(bits) { | ||
|  |   if(bits <= 100) return 27; | ||
|  |   if(bits <= 150) return 18; | ||
|  |   if(bits <= 200) return 15; | ||
|  |   if(bits <= 250) return 12; | ||
|  |   if(bits <= 300) return 9; | ||
|  |   if(bits <= 350) return 8; | ||
|  |   if(bits <= 400) return 7; | ||
|  |   if(bits <= 500) return 6; | ||
|  |   if(bits <= 600) return 5; | ||
|  |   if(bits <= 800) return 4; | ||
|  |   if(bits <= 1250) return 3; | ||
|  |   return 2; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Performs feature detection on the Node crypto interface. | ||
|  |  * | ||
|  |  * @param fn the feature (function) to detect. | ||
|  |  * | ||
|  |  * @return true if detected, false if not. | ||
|  |  */ | ||
|  | function _detectNodeCrypto(fn) { | ||
|  |   return forge.util.isNodejs && typeof _crypto[fn] === 'function'; | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Performs feature detection on the SubtleCrypto interface. | ||
|  |  * | ||
|  |  * @param fn the feature (function) to detect. | ||
|  |  * | ||
|  |  * @return true if detected, false if not. | ||
|  |  */ | ||
|  | function _detectSubtleCrypto(fn) { | ||
|  |   return (typeof util.globalScope !== 'undefined' && | ||
|  |     typeof util.globalScope.crypto === 'object' && | ||
|  |     typeof util.globalScope.crypto.subtle === 'object' && | ||
|  |     typeof util.globalScope.crypto.subtle[fn] === 'function'); | ||
|  | } | ||
|  | 
 | ||
|  | /** | ||
|  |  * Performs feature detection on the deprecated Microsoft Internet Explorer | ||
|  |  * outdated SubtleCrypto interface. This function should only be used after | ||
|  |  * checking for the modern, standard SubtleCrypto interface. | ||
|  |  * | ||
|  |  * @param fn the feature (function) to detect. | ||
|  |  * | ||
|  |  * @return true if detected, false if not. | ||
|  |  */ | ||
|  | function _detectSubtleMsCrypto(fn) { | ||
|  |   return (typeof util.globalScope !== 'undefined' && | ||
|  |     typeof util.globalScope.msCrypto === 'object' && | ||
|  |     typeof util.globalScope.msCrypto.subtle === 'object' && | ||
|  |     typeof util.globalScope.msCrypto.subtle[fn] === 'function'); | ||
|  | } | ||
|  | 
 | ||
|  | function _intToUint8Array(x) { | ||
|  |   var bytes = forge.util.hexToBytes(x.toString(16)); | ||
|  |   var buffer = new Uint8Array(bytes.length); | ||
|  |   for(var i = 0; i < bytes.length; ++i) { | ||
|  |     buffer[i] = bytes.charCodeAt(i); | ||
|  |   } | ||
|  |   return buffer; | ||
|  | } | ||
|  | 
 | ||
|  | function _privateKeyFromJwk(jwk) { | ||
|  |   if(jwk.kty !== 'RSA') { | ||
|  |     throw new Error( | ||
|  |       'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".'); | ||
|  |   } | ||
|  |   return pki.setRsaPrivateKey( | ||
|  |     _base64ToBigInt(jwk.n), | ||
|  |     _base64ToBigInt(jwk.e), | ||
|  |     _base64ToBigInt(jwk.d), | ||
|  |     _base64ToBigInt(jwk.p), | ||
|  |     _base64ToBigInt(jwk.q), | ||
|  |     _base64ToBigInt(jwk.dp), | ||
|  |     _base64ToBigInt(jwk.dq), | ||
|  |     _base64ToBigInt(jwk.qi)); | ||
|  | } | ||
|  | 
 | ||
|  | function _publicKeyFromJwk(jwk) { | ||
|  |   if(jwk.kty !== 'RSA') { | ||
|  |     throw new Error('Key algorithm must be "RSA".'); | ||
|  |   } | ||
|  |   return pki.setRsaPublicKey( | ||
|  |     _base64ToBigInt(jwk.n), | ||
|  |     _base64ToBigInt(jwk.e)); | ||
|  | } | ||
|  | 
 | ||
|  | function _base64ToBigInt(b64) { | ||
|  |   return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16); | ||
|  | } |