You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					169 lines
				
				4.7 KiB
			
		
		
			
		
	
	
					169 lines
				
				4.7 KiB
			| 
								 
											2 years ago
										 
									 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * RSA Key Generation Worker.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @author Dave Longley
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2013 Digital Bazaar, Inc.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								// worker is built using CommonJS syntax to include all code in one worker file
							 | 
						||
| 
								 | 
							
								//importScripts('jsbn.js');
							 | 
						||
| 
								 | 
							
								var forge = require('./forge');
							 | 
						||
| 
								 | 
							
								require('./jsbn');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// prime constants
							 | 
						||
| 
								 | 
							
								var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
							 | 
						||
| 
								 | 
							
								var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								var BigInteger = forge.jsbn.BigInteger;
							 | 
						||
| 
								 | 
							
								var BIG_TWO = new BigInteger(null);
							 | 
						||
| 
								 | 
							
								BIG_TWO.fromInt(2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								self.addEventListener('message', function(e) {
							 | 
						||
| 
								 | 
							
								  var result = findPrime(e.data);
							 | 
						||
| 
								 | 
							
								  self.postMessage(result);
							 | 
						||
| 
								 | 
							
								});
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// start receiving ranges to check
							 | 
						||
| 
								 | 
							
								self.postMessage({found: false});
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
							 | 
						||
| 
								 | 
							
								var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function findPrime(data) {
							 | 
						||
| 
								 | 
							
								  // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // create BigInteger from given random bytes
							 | 
						||
| 
								 | 
							
								  var num = new BigInteger(data.hex, 16);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
							 | 
						||
| 
								 | 
							
								    number we are given is always aligned at 30k + 1. Each time the number is
							 | 
						||
| 
								 | 
							
								    determined not to be prime we add to get to the next 'i', eg: if the number
							 | 
						||
| 
								 | 
							
								    was at 30k + 1 we add 6. */
							 | 
						||
| 
								 | 
							
								  var deltaIdx = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // find nearest prime
							 | 
						||
| 
								 | 
							
								  var workLoad = data.workLoad;
							 | 
						||
| 
								 | 
							
								  for(var i = 0; i < workLoad; ++i) {
							 | 
						||
| 
								 | 
							
								    // do primality test
							 | 
						||
| 
								 | 
							
								    if(isProbablePrime(num)) {
							 | 
						||
| 
								 | 
							
								      return {found: true, prime: num.toString(16)};
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    // get next potential prime
							 | 
						||
| 
								 | 
							
								    num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return {found: false};
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function isProbablePrime(n) {
							 | 
						||
| 
								 | 
							
								  // divide by low primes, ignore even checks, etc (n alread aligned properly)
							 | 
						||
| 
								 | 
							
								  var i = 1;
							 | 
						||
| 
								 | 
							
								  while(i < LOW_PRIMES.length) {
							 | 
						||
| 
								 | 
							
								    var m = LOW_PRIMES[i];
							 | 
						||
| 
								 | 
							
								    var j = i + 1;
							 | 
						||
| 
								 | 
							
								    while(j < LOW_PRIMES.length && m < LP_LIMIT) {
							 | 
						||
| 
								 | 
							
								      m *= LOW_PRIMES[j++];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    m = n.modInt(m);
							 | 
						||
| 
								 | 
							
								    while(i < j) {
							 | 
						||
| 
								 | 
							
								      if(m % LOW_PRIMES[i++] === 0) {
							 | 
						||
| 
								 | 
							
								        return false;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return runMillerRabin(n);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// HAC 4.24, Miller-Rabin
							 | 
						||
| 
								 | 
							
								function runMillerRabin(n) {
							 | 
						||
| 
								 | 
							
								  // n1 = n - 1
							 | 
						||
| 
								 | 
							
								  var n1 = n.subtract(BigInteger.ONE);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // get s and d such that n1 = 2^s * d
							 | 
						||
| 
								 | 
							
								  var s = n1.getLowestSetBit();
							 | 
						||
| 
								 | 
							
								  if(s <= 0) {
							 | 
						||
| 
								 | 
							
								    return false;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  var d = n1.shiftRight(s);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  var k = _getMillerRabinTests(n.bitLength());
							 | 
						||
| 
								 | 
							
								  var prng = getPrng();
							 | 
						||
| 
								 | 
							
								  var a;
							 | 
						||
| 
								 | 
							
								  for(var i = 0; i < k; ++i) {
							 | 
						||
| 
								 | 
							
								    // select witness 'a' at random from between 1 and n - 1
							 | 
						||
| 
								 | 
							
								    do {
							 | 
						||
| 
								 | 
							
								      a = new BigInteger(n.bitLength(), prng);
							 | 
						||
| 
								 | 
							
								    } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* See if 'a' is a composite witness. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // x = a^d mod n
							 | 
						||
| 
								 | 
							
								    var x = a.modPow(d, n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // probably prime
							 | 
						||
| 
								 | 
							
								    if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
							 | 
						||
| 
								 | 
							
								      continue;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    var j = s;
							 | 
						||
| 
								 | 
							
								    while(--j) {
							 | 
						||
| 
								 | 
							
								      // x = x^2 mod a
							 | 
						||
| 
								 | 
							
								      x = x.modPowInt(2, n);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // 'n' is composite because no previous x == -1 mod n
							 | 
						||
| 
								 | 
							
								      if(x.compareTo(BigInteger.ONE) === 0) {
							 | 
						||
| 
								 | 
							
								        return false;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      // x == -1 mod n, so probably prime
							 | 
						||
| 
								 | 
							
								      if(x.compareTo(n1) === 0) {
							 | 
						||
| 
								 | 
							
								        break;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
							 | 
						||
| 
								 | 
							
								    if(j === 0) {
							 | 
						||
| 
								 | 
							
								      return false;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// get pseudo random number generator
							 | 
						||
| 
								 | 
							
								function getPrng() {
							 | 
						||
| 
								 | 
							
								  // create prng with api that matches BigInteger secure random
							 | 
						||
| 
								 | 
							
								  return {
							 | 
						||
| 
								 | 
							
								    // x is an array to fill with bytes
							 | 
						||
| 
								 | 
							
								    nextBytes: function(x) {
							 | 
						||
| 
								 | 
							
								      for(var i = 0; i < x.length; ++i) {
							 | 
						||
| 
								 | 
							
								        x[i] = Math.floor(Math.random() * 0xFF);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  };
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * Returns the required number of Miller-Rabin tests to generate a
							 | 
						||
| 
								 | 
							
								 * prime with an error probability of (1/2)^80.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param bits the bit size.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @return the required number of iterations.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function _getMillerRabinTests(bits) {
							 | 
						||
| 
								 | 
							
								  if(bits <= 100) return 27;
							 | 
						||
| 
								 | 
							
								  if(bits <= 150) return 18;
							 | 
						||
| 
								 | 
							
								  if(bits <= 200) return 15;
							 | 
						||
| 
								 | 
							
								  if(bits <= 250) return 12;
							 | 
						||
| 
								 | 
							
								  if(bits <= 300) return 9;
							 | 
						||
| 
								 | 
							
								  if(bits <= 350) return 8;
							 | 
						||
| 
								 | 
							
								  if(bits <= 400) return 7;
							 | 
						||
| 
								 | 
							
								  if(bits <= 500) return 6;
							 | 
						||
| 
								 | 
							
								  if(bits <= 600) return 5;
							 | 
						||
| 
								 | 
							
								  if(bits <= 800) return 4;
							 | 
						||
| 
								 | 
							
								  if(bits <= 1250) return 3;
							 | 
						||
| 
								 | 
							
								  return 2;
							 | 
						||
| 
								 | 
							
								}
							 |