Revert "poraga push chey"

This reverts commit 9bab06e3
master
VARUN 3 months ago
parent c45b362da5
commit 8d27bd2e77

@ -1,3 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

@ -1,10 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.12 (pythonProject11)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12 (pythonProject11)" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project>

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/pythonProject11.iml" filepath="$PROJECT_DIR$/.idea/pythonProject11.iml" />
</modules>
</component>
</project>

@ -1,16 +0,0 @@
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

@ -1,27 +0,0 @@
Copyright (c) Django Software Foundation and individual contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of Django nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@ -1,290 +0,0 @@
Django is licensed under the three-clause BSD license; see the file
LICENSE for details.
Django includes code from the Python standard library, which is licensed under
the Python license, a permissive open source license. The copyright and license
is included below for compliance with Python's terms.
----------------------------------------------------------------------
Copyright (c) 2001-present Python Software Foundation; All Rights Reserved
A. HISTORY OF THE SOFTWARE
==========================
Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.
In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations, which became
Zope Corporation. In 2001, the Python Software Foundation (PSF, see
https://www.python.org/psf/) was formed, a non-profit organization
created specifically to own Python-related Intellectual Property.
Zope Corporation was a sponsoring member of the PSF.
All Python releases are Open Source (see http://www.opensource.org for
the Open Source Definition). Historically, most, but not all, Python
releases have also been GPL-compatible; the table below summarizes
the various releases.
Release Derived Year Owner GPL-
from compatible? (1)
0.9.0 thru 1.2 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes
Footnotes:
(1) GPL-compatible doesn't mean that we're distributing Python under
the GPL. All Python licenses, unlike the GPL, let you distribute
a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with
other software that is released under the GPL; the others don't.
(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
because its license has a choice of law clause. According to
CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
is "not incompatible" with the GPL.
Thanks to the many outside volunteers who have worked under Guido's
direction to make these releases possible.
B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON
===============================================================
Python software and documentation are licensed under the
Python Software Foundation License Version 2.
Starting with Python 3.8.6, examples, recipes, and other code in
the documentation are dual licensed under the PSF License Version 2
and the Zero-Clause BSD license.
Some software incorporated into Python is under different licenses.
The licenses are listed with code falling under that license.
PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
--------------------------------------------
1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using this software ("Python") in source or binary form and
its associated documentation.
2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative version,
provided, however, that PSF's License Agreement and PSF's notice of copyright,
i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022 Python Software Foundation;
All Rights Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python.
4. PSF is making Python available to Licensee on an "AS IS"
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.
8. By copying, installing or otherwise using Python, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
-------------------------------------------
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1
1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization ("Licensee") accessing and otherwise using
this software in source or binary form and its associated
documentation ("the Software").
2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and
otherwise use the Software alone or in any derivative version,
provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.
3. BeOpen is making the Software available to Licensee on an "AS IS"
basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
5. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
6. This License Agreement shall be governed by and interpreted in all
respects by the law of the State of California, excluding conflict of
law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture
between BeOpen and Licensee. This License Agreement does not grant
permission to use BeOpen trademarks or trade names in a trademark
sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.
7. By copying, installing or otherwise using the software, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
---------------------------------------
1. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive,
Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and otherwise using Python 1.6.1 software in
source or binary form and its associated documentation.
2. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 1.6.1
alone or in any derivative version, provided, however, that CNRI's
License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
1995-2001 Corporation for National Research Initiatives; All Rights
Reserved" are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License
Agreement, Licensee may substitute the following text (omitting the
quotes): "Python 1.6.1 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with
Python 1.6.1 may be located on the internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the internet
using the following URL: http://hdl.handle.net/1895.22/1013".
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python 1.6.1 or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python 1.6.1.
4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. This License Agreement shall be governed by the federal
intellectual property law of the United States, including without
limitation the federal copyright law, and, to the extent such
U.S. federal law does not apply, by the law of the Commonwealth of
Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based
on Python 1.6.1 that incorporate non-separable material that was
previously distributed under the GNU General Public License (GPL), the
law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to
Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or
trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.
8. By clicking on the "ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be
bound by the terms and conditions of this License Agreement.
ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
--------------------------------------------------
Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
The Netherlands. All rights reserved.
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION
----------------------------------------------------------------------
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

@ -1,102 +0,0 @@
Metadata-Version: 2.1
Name: Django
Version: 4.2.11
Summary: A high-level Python web framework that encourages rapid development and clean, pragmatic design.
Home-page: https://www.djangoproject.com/
Author: Django Software Foundation
Author-email: foundation@djangoproject.com
License: BSD-3-Clause
Project-URL: Documentation, https://docs.djangoproject.com/
Project-URL: Release notes, https://docs.djangoproject.com/en/stable/releases/
Project-URL: Funding, https://www.djangoproject.com/fundraising/
Project-URL: Source, https://github.com/django/django
Project-URL: Tracker, https://code.djangoproject.com/
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Web Environment
Classifier: Framework :: Django
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Internet :: WWW/HTTP
Classifier: Topic :: Internet :: WWW/HTTP :: Dynamic Content
Classifier: Topic :: Internet :: WWW/HTTP :: WSGI
Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.8
License-File: LICENSE
License-File: LICENSE.python
License-File: AUTHORS
Requires-Dist: asgiref (<4,>=3.6.0)
Requires-Dist: sqlparse (>=0.3.1)
Requires-Dist: backports.zoneinfo ; python_version < "3.9"
Requires-Dist: tzdata ; sys_platform == "win32"
Provides-Extra: argon2
Requires-Dist: argon2-cffi (>=19.1.0) ; extra == 'argon2'
Provides-Extra: bcrypt
Requires-Dist: bcrypt ; extra == 'bcrypt'
======
Django
======
Django is a high-level Python web framework that encourages rapid development
and clean, pragmatic design. Thanks for checking it out.
All documentation is in the "``docs``" directory and online at
https://docs.djangoproject.com/en/stable/. If you're just getting started,
here's how we recommend you read the docs:
* First, read ``docs/intro/install.txt`` for instructions on installing Django.
* Next, work through the tutorials in order (``docs/intro/tutorial01.txt``,
``docs/intro/tutorial02.txt``, etc.).
* If you want to set up an actual deployment server, read
``docs/howto/deployment/index.txt`` for instructions.
* You'll probably want to read through the topical guides (in ``docs/topics``)
next; from there you can jump to the HOWTOs (in ``docs/howto``) for specific
problems, and check out the reference (``docs/ref``) for gory details.
* See ``docs/README`` for instructions on building an HTML version of the docs.
Docs are updated rigorously. If you find any problems in the docs, or think
they should be clarified in any way, please take 30 seconds to fill out a
ticket here: https://code.djangoproject.com/newticket
To get more help:
* Join the ``#django`` channel on ``irc.libera.chat``. Lots of helpful people
hang out there. See https://web.libera.chat if you're new to IRC.
* Join the django-users mailing list, or read the archives, at
https://groups.google.com/group/django-users.
To contribute to Django:
* Check out https://docs.djangoproject.com/en/dev/internals/contributing/ for
information about getting involved.
To run Django's test suite:
* Follow the instructions in the "Unit tests" section of
``docs/internals/contributing/writing-code/unit-tests.txt``, published online at
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/unit-tests/#running-the-unit-tests
Supporting the Development of Django
====================================
Django's development depends on your contributions.
If you depend on Django, remember to support the Django Software Foundation: https://www.djangoproject.com/fundraising/

@ -1,5 +0,0 @@
Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

@ -1,3 +0,0 @@
[console_scripts]
django-admin = django.core.management:execute_from_command_line

@ -1,168 +0,0 @@
"""
MySQLdb - A DB API v2.0 compatible interface to MySQL.
This package is a wrapper around _mysql, which mostly implements the
MySQL C API.
connect() -- connects to server
See the C API specification and the MySQL documentation for more info
on other items.
For information on how MySQLdb handles type conversion, see the
MySQLdb.converters module.
"""
from .release import version_info
from . import _mysql
if version_info != _mysql.version_info:
raise ImportError(
f"this is MySQLdb version {version_info}, "
f"but _mysql is version {_mysql.version_info!r}\n"
f"_mysql: {_mysql.__file__!r}"
)
from ._mysql import (
NotSupportedError,
OperationalError,
get_client_info,
ProgrammingError,
Error,
InterfaceError,
debug,
IntegrityError,
string_literal,
MySQLError,
DataError,
DatabaseError,
InternalError,
Warning,
)
from MySQLdb.constants import FIELD_TYPE
from MySQLdb.times import (
Date,
Time,
Timestamp,
DateFromTicks,
TimeFromTicks,
TimestampFromTicks,
)
threadsafety = 1
apilevel = "2.0"
paramstyle = "format"
class DBAPISet(frozenset):
"""A special type of set for which A == x is true if A is a
DBAPISet and x is a member of that set."""
def __eq__(self, other):
if isinstance(other, DBAPISet):
return not self.difference(other)
return other in self
STRING = DBAPISet([FIELD_TYPE.ENUM, FIELD_TYPE.STRING, FIELD_TYPE.VAR_STRING])
BINARY = DBAPISet(
[
FIELD_TYPE.BLOB,
FIELD_TYPE.LONG_BLOB,
FIELD_TYPE.MEDIUM_BLOB,
FIELD_TYPE.TINY_BLOB,
]
)
NUMBER = DBAPISet(
[
FIELD_TYPE.DECIMAL,
FIELD_TYPE.DOUBLE,
FIELD_TYPE.FLOAT,
FIELD_TYPE.INT24,
FIELD_TYPE.LONG,
FIELD_TYPE.LONGLONG,
FIELD_TYPE.TINY,
FIELD_TYPE.YEAR,
FIELD_TYPE.NEWDECIMAL,
]
)
DATE = DBAPISet([FIELD_TYPE.DATE])
TIME = DBAPISet([FIELD_TYPE.TIME])
TIMESTAMP = DBAPISet([FIELD_TYPE.TIMESTAMP, FIELD_TYPE.DATETIME])
DATETIME = TIMESTAMP
ROWID = DBAPISet()
def test_DBAPISet_set_equality():
assert STRING == STRING
def test_DBAPISet_set_inequality():
assert STRING != NUMBER
def test_DBAPISet_set_equality_membership():
assert FIELD_TYPE.VAR_STRING == STRING
def test_DBAPISet_set_inequality_membership():
assert FIELD_TYPE.DATE != STRING
def Binary(x):
return bytes(x)
def Connect(*args, **kwargs):
"""Factory function for connections.Connection."""
from MySQLdb.connections import Connection
return Connection(*args, **kwargs)
connect = Connection = Connect
__all__ = [
"BINARY",
"Binary",
"Connect",
"Connection",
"DATE",
"Date",
"Time",
"Timestamp",
"DateFromTicks",
"TimeFromTicks",
"TimestampFromTicks",
"DataError",
"DatabaseError",
"Error",
"FIELD_TYPE",
"IntegrityError",
"InterfaceError",
"InternalError",
"MySQLError",
"NUMBER",
"NotSupportedError",
"DBAPISet",
"OperationalError",
"ProgrammingError",
"ROWID",
"STRING",
"TIME",
"TIMESTAMP",
"Warning",
"apilevel",
"connect",
"connections",
"constants",
"converters",
"cursors",
"debug",
"get_client_info",
"paramstyle",
"string_literal",
"threadsafety",
"version_info",
]

@ -1,91 +0,0 @@
"""Exception classes for _mysql and MySQLdb.
These classes are dictated by the DB API v2.0:
https://www.python.org/dev/peps/pep-0249/
"""
class MySQLError(Exception):
"""Exception related to operation with MySQL."""
__module__ = "MySQLdb"
class Warning(Warning, MySQLError):
"""Exception raised for important warnings like data truncations
while inserting, etc."""
__module__ = "MySQLdb"
class Error(MySQLError):
"""Exception that is the base class of all other error exceptions
(not Warning)."""
__module__ = "MySQLdb"
class InterfaceError(Error):
"""Exception raised for errors that are related to the database
interface rather than the database itself."""
__module__ = "MySQLdb"
class DatabaseError(Error):
"""Exception raised for errors that are related to the
database."""
__module__ = "MySQLdb"
class DataError(DatabaseError):
"""Exception raised for errors that are due to problems with the
processed data like division by zero, numeric value out of range,
etc."""
__module__ = "MySQLdb"
class OperationalError(DatabaseError):
"""Exception raised for errors that are related to the database's
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, the data source name is not
found, a transaction could not be processed, a memory allocation
error occurred during processing, etc."""
__module__ = "MySQLdb"
class IntegrityError(DatabaseError):
"""Exception raised when the relational integrity of the database
is affected, e.g. a foreign key check fails, duplicate key,
etc."""
__module__ = "MySQLdb"
class InternalError(DatabaseError):
"""Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the transaction is
out of sync, etc."""
__module__ = "MySQLdb"
class ProgrammingError(DatabaseError):
"""Exception raised for programming errors, e.g. table not found
or already exists, syntax error in the SQL statement, wrong number
of parameters specified, etc."""
__module__ = "MySQLdb"
class NotSupportedError(DatabaseError):
"""Exception raised in case a method or database API was used
which is not supported by the database, e.g. requesting a
.rollback() on a connection that does not support transaction or
has transactions turned off."""
__module__ = "MySQLdb"

@ -1,343 +0,0 @@
"""
This module implements connections for MySQLdb. Presently there is
only one class: Connection. Others are unlikely. However, you might
want to make your own subclasses. In most cases, you will probably
override Connection.default_cursor with a non-standard Cursor class.
"""
import re
from . import cursors, _mysql
from ._exceptions import (
Warning,
Error,
InterfaceError,
DataError,
DatabaseError,
OperationalError,
IntegrityError,
InternalError,
NotSupportedError,
ProgrammingError,
)
# Mapping from MySQL charset name to Python codec name
_charset_to_encoding = {
"utf8mb4": "utf8",
"utf8mb3": "utf8",
"latin1": "cp1252",
"koi8r": "koi8_r",
"koi8u": "koi8_u",
}
re_numeric_part = re.compile(r"^(\d+)")
def numeric_part(s):
"""Returns the leading numeric part of a string.
>>> numeric_part("20-alpha")
20
>>> numeric_part("foo")
>>> numeric_part("16b")
16
"""
m = re_numeric_part.match(s)
if m:
return int(m.group(1))
return None
class Connection(_mysql.connection):
"""MySQL Database Connection Object"""
default_cursor = cursors.Cursor
def __init__(self, *args, **kwargs):
"""
Create a connection to the database. It is strongly recommended
that you only use keyword parameters. Consult the MySQL C API
documentation for more information.
:param str host: host to connect
:param str user: user to connect as
:param str password: password to use
:param str passwd: alias of password (deprecated)
:param str database: database to use
:param str db: alias of database (deprecated)
:param int port: TCP/IP port to connect to
:param str unix_socket: location of unix_socket to use
:param dict conv: conversion dictionary, see MySQLdb.converters
:param int connect_timeout:
number of seconds to wait before the connection attempt fails.
:param bool compress: if set, compression is enabled
:param str named_pipe: if set, a named pipe is used to connect (Windows only)
:param str init_command:
command which is run once the connection is created
:param str read_default_file:
file from which default client values are read
:param str read_default_group:
configuration group to use from the default file
:param type cursorclass:
class object, used to create cursors (keyword only)
:param bool use_unicode:
If True, text-like columns are returned as unicode objects
using the connection's character set. Otherwise, text-like
columns are returned as bytes. Unicode objects will always
be encoded to the connection's character set regardless of
this setting.
Default to True.
:param str charset:
If supplied, the connection character set will be changed
to this character set.
:param str collation:
If ``charset`` and ``collation`` are both supplied, the
character set and collation for the current connection
will be set.
If omitted, empty string, or None, the default collation
for the ``charset`` is implied.
:param str auth_plugin:
If supplied, the connection default authentication plugin will be
changed to this value. Example values:
`mysql_native_password` or `caching_sha2_password`
:param str sql_mode:
If supplied, the session SQL mode will be changed to this
setting.
For more details and legal values, see the MySQL documentation.
:param int client_flag:
flags to use or 0 (see MySQL docs or constants/CLIENTS.py)
:param bool multi_statements:
If True, enable multi statements for clients >= 4.1.
Defaults to True.
:param str ssl_mode:
specify the security settings for connection to the server;
see the MySQL documentation for more details
(mysql_option(), MYSQL_OPT_SSL_MODE).
Only one of 'DISABLED', 'PREFERRED', 'REQUIRED',
'VERIFY_CA', 'VERIFY_IDENTITY' can be specified.
:param dict ssl:
dictionary or mapping contains SSL connection parameters;
see the MySQL documentation for more details
(mysql_ssl_set()). If this is set, and the client does not
support SSL, NotSupportedError will be raised.
Since mysqlclient 2.2.4, ssl=True is alias of ssl_mode=REQUIRED
for better compatibility with PyMySQL and MariaDB.
:param bool local_infile:
enables LOAD LOCAL INFILE; zero disables
:param bool autocommit:
If False (default), autocommit is disabled.
If True, autocommit is enabled.
If None, autocommit isn't set and server default is used.
:param bool binary_prefix:
If set, the '_binary' prefix will be used for raw byte query
arguments (e.g. Binary). This is disabled by default.
There are a number of undocumented, non-standard methods. See the
documentation for the MySQL C API for some hints on what they do.
"""
from MySQLdb.constants import CLIENT, FIELD_TYPE
from MySQLdb.converters import conversions, _bytes_or_str
kwargs2 = kwargs.copy()
if "db" in kwargs2:
kwargs2["database"] = kwargs2.pop("db")
if "passwd" in kwargs2:
kwargs2["password"] = kwargs2.pop("passwd")
if "conv" in kwargs:
conv = kwargs["conv"]
else:
conv = conversions
conv2 = {}
for k, v in conv.items():
if isinstance(k, int) and isinstance(v, list):
conv2[k] = v[:]
else:
conv2[k] = v
kwargs2["conv"] = conv2
cursorclass = kwargs2.pop("cursorclass", self.default_cursor)
charset = kwargs2.get("charset", "")
collation = kwargs2.pop("collation", "")
use_unicode = kwargs2.pop("use_unicode", True)
sql_mode = kwargs2.pop("sql_mode", "")
self._binary_prefix = kwargs2.pop("binary_prefix", False)
client_flag = kwargs.get("client_flag", 0)
client_flag |= CLIENT.MULTI_RESULTS
multi_statements = kwargs2.pop("multi_statements", True)
if multi_statements:
client_flag |= CLIENT.MULTI_STATEMENTS
kwargs2["client_flag"] = client_flag
# PEP-249 requires autocommit to be initially off
autocommit = kwargs2.pop("autocommit", False)
super().__init__(*args, **kwargs2)
self.cursorclass = cursorclass
self.encoders = {
k: v
for k, v in conv.items()
if type(k) is not int # noqa: E721
}
self._server_version = tuple(
[numeric_part(n) for n in self.get_server_info().split(".")[:2]]
)
self.encoding = "ascii" # overridden in set_character_set()
if not charset:
charset = self.character_set_name()
self.set_character_set(charset, collation)
if sql_mode:
self.set_sql_mode(sql_mode)
if use_unicode:
for t in (
FIELD_TYPE.STRING,
FIELD_TYPE.VAR_STRING,
FIELD_TYPE.VARCHAR,
FIELD_TYPE.TINY_BLOB,
FIELD_TYPE.MEDIUM_BLOB,
FIELD_TYPE.LONG_BLOB,
FIELD_TYPE.BLOB,
):
self.converter[t] = _bytes_or_str
# Unlike other string/blob types, JSON is always text.
# MySQL may return JSON with charset==binary.
self.converter[FIELD_TYPE.JSON] = str
self._transactional = self.server_capabilities & CLIENT.TRANSACTIONS
if self._transactional:
if autocommit is not None:
self.autocommit(autocommit)
self.messages = []
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def autocommit(self, on):
on = bool(on)
if self.get_autocommit() != on:
_mysql.connection.autocommit(self, on)
def cursor(self, cursorclass=None):
"""
Create a cursor on which queries may be performed. The
optional cursorclass parameter is used to create the
Cursor. By default, self.cursorclass=cursors.Cursor is
used.
"""
return (cursorclass or self.cursorclass)(self)
def query(self, query):
# Since _mysql releases GIL while querying, we need immutable buffer.
if isinstance(query, bytearray):
query = bytes(query)
_mysql.connection.query(self, query)
def _bytes_literal(self, bs):
assert isinstance(bs, (bytes, bytearray))
x = self.string_literal(bs) # x is escaped and quoted bytes
if self._binary_prefix:
return b"_binary" + x
return x
def _tuple_literal(self, t):
return b"(%s)" % (b",".join(map(self.literal, t)))
def literal(self, o):
"""If o is a single object, returns an SQL literal as a string.
If o is a non-string sequence, the items of the sequence are
converted and returned as a sequence.
Non-standard. For internal use; do not use this in your
applications.
"""
if isinstance(o, str):
s = self.string_literal(o.encode(self.encoding))
elif isinstance(o, bytearray):
s = self._bytes_literal(o)
elif isinstance(o, bytes):
s = self._bytes_literal(o)
elif isinstance(o, (tuple, list)):
s = self._tuple_literal(o)
else:
s = self.escape(o, self.encoders)
if isinstance(s, str):
s = s.encode(self.encoding)
assert isinstance(s, bytes)
return s
def begin(self):
"""Explicitly begin a connection.
This method is not used when autocommit=False (default).
"""
self.query(b"BEGIN")
def set_character_set(self, charset, collation=None):
"""Set the connection character set to charset."""
super().set_character_set(charset)
self.encoding = _charset_to_encoding.get(charset, charset)
if collation:
self.query(f"SET NAMES {charset} COLLATE {collation}")
self.store_result()
def set_sql_mode(self, sql_mode):
"""Set the connection sql_mode. See MySQL documentation for
legal values."""
if self._server_version < (4, 1):
raise NotSupportedError("server is too old to set sql_mode")
self.query("SET SESSION sql_mode='%s'" % sql_mode)
self.store_result()
def show_warnings(self):
"""Return detailed information about warnings as a
sequence of tuples of (Level, Code, Message). This
is only supported in MySQL-4.1 and up. If your server
is an earlier version, an empty sequence is returned."""
if self._server_version < (4, 1):
return ()
self.query("SHOW WARNINGS")
r = self.store_result()
warnings = r.fetch_row(0)
return warnings
Warning = Warning
Error = Error
InterfaceError = InterfaceError
DatabaseError = DatabaseError
DataError = DataError
OperationalError = OperationalError
IntegrityError = IntegrityError
InternalError = InternalError
ProgrammingError = ProgrammingError
NotSupportedError = NotSupportedError
# vim: colorcolumn=100

@ -1,27 +0,0 @@
"""MySQL CLIENT constants
These constants are used when creating the connection. Use bitwise-OR
(|) to combine options together, and pass them as the client_flags
parameter to MySQLdb.Connection. For more information on these flags,
see the MySQL C API documentation for mysql_real_connect().
"""
LONG_PASSWORD = 1
FOUND_ROWS = 2
LONG_FLAG = 4
CONNECT_WITH_DB = 8
NO_SCHEMA = 16
COMPRESS = 32
ODBC = 64
LOCAL_FILES = 128
IGNORE_SPACE = 256
CHANGE_USER = 512
INTERACTIVE = 1024
SSL = 2048
IGNORE_SIGPIPE = 4096
TRANSACTIONS = 8192 # mysql_com.h was WRONG prior to 3.23.35
RESERVED = 16384
SECURE_CONNECTION = 32768
MULTI_STATEMENTS = 65536
MULTI_RESULTS = 131072

@ -1,105 +0,0 @@
"""MySQL Connection Errors
Nearly all of these raise OperationalError. COMMANDS_OUT_OF_SYNC
raises ProgrammingError.
"""
if __name__ == "__main__":
"""
Usage: python CR.py [/path/to/mysql/errmsg.h ...] >> CR.py
"""
import fileinput
import re
data = {}
error_last = None
for line in fileinput.input():
line = re.sub(r"/\*.*?\*/", "", line)
m = re.match(r"^\s*#define\s+CR_([A-Z0-9_]+)\s+(\d+)(\s.*|$)", line)
if m:
name = m.group(1)
value = int(m.group(2))
if name == "ERROR_LAST":
if error_last is None or error_last < value:
error_last = value
continue
if value not in data:
data[value] = set()
data[value].add(name)
for value, names in sorted(data.items()):
for name in sorted(names):
print(f"{name} = {value}")
if error_last is not None:
print("ERROR_LAST = %s" % error_last)
ERROR_FIRST = 2000
MIN_ERROR = 2000
UNKNOWN_ERROR = 2000
SOCKET_CREATE_ERROR = 2001
CONNECTION_ERROR = 2002
CONN_HOST_ERROR = 2003
IPSOCK_ERROR = 2004
UNKNOWN_HOST = 2005
SERVER_GONE_ERROR = 2006
VERSION_ERROR = 2007
OUT_OF_MEMORY = 2008
WRONG_HOST_INFO = 2009
LOCALHOST_CONNECTION = 2010
TCP_CONNECTION = 2011
SERVER_HANDSHAKE_ERR = 2012
SERVER_LOST = 2013
COMMANDS_OUT_OF_SYNC = 2014
NAMEDPIPE_CONNECTION = 2015
NAMEDPIPEWAIT_ERROR = 2016
NAMEDPIPEOPEN_ERROR = 2017
NAMEDPIPESETSTATE_ERROR = 2018
CANT_READ_CHARSET = 2019
NET_PACKET_TOO_LARGE = 2020
EMBEDDED_CONNECTION = 2021
PROBE_SLAVE_STATUS = 2022
PROBE_SLAVE_HOSTS = 2023
PROBE_SLAVE_CONNECT = 2024
PROBE_MASTER_CONNECT = 2025
SSL_CONNECTION_ERROR = 2026
MALFORMED_PACKET = 2027
WRONG_LICENSE = 2028
NULL_POINTER = 2029
NO_PREPARE_STMT = 2030
PARAMS_NOT_BOUND = 2031
DATA_TRUNCATED = 2032
NO_PARAMETERS_EXISTS = 2033
INVALID_PARAMETER_NO = 2034
INVALID_BUFFER_USE = 2035
UNSUPPORTED_PARAM_TYPE = 2036
SHARED_MEMORY_CONNECTION = 2037
SHARED_MEMORY_CONNECT_REQUEST_ERROR = 2038
SHARED_MEMORY_CONNECT_ANSWER_ERROR = 2039
SHARED_MEMORY_CONNECT_FILE_MAP_ERROR = 2040
SHARED_MEMORY_CONNECT_MAP_ERROR = 2041
SHARED_MEMORY_FILE_MAP_ERROR = 2042
SHARED_MEMORY_MAP_ERROR = 2043
SHARED_MEMORY_EVENT_ERROR = 2044
SHARED_MEMORY_CONNECT_ABANDONED_ERROR = 2045
SHARED_MEMORY_CONNECT_SET_ERROR = 2046
CONN_UNKNOW_PROTOCOL = 2047
INVALID_CONN_HANDLE = 2048
UNUSED_1 = 2049
FETCH_CANCELED = 2050
NO_DATA = 2051
NO_STMT_METADATA = 2052
NO_RESULT_SET = 2053
NOT_IMPLEMENTED = 2054
SERVER_LOST_EXTENDED = 2055
STMT_CLOSED = 2056
NEW_STMT_METADATA = 2057
ALREADY_CONNECTED = 2058
AUTH_PLUGIN_CANNOT_LOAD = 2059
DUPLICATE_CONNECTION_ATTR = 2060
AUTH_PLUGIN_ERR = 2061
INSECURE_API_ERR = 2062
FILE_NAME_TOO_LONG = 2063
SSL_FIPS_MODE_ERR = 2064
MAX_ERROR = 2999
ERROR_LAST = 2064

@ -1,827 +0,0 @@
"""MySQL ER Constants
These constants are error codes for the bulk of the error conditions
that may occur.
"""
if __name__ == "__main__":
"""
Usage: python ER.py [/path/to/mysql/mysqld_error.h ...] >> ER.py
"""
import fileinput
import re
data = {}
error_last = None
for line in fileinput.input():
line = re.sub(r"/\*.*?\*/", "", line)
m = re.match(r"^\s*#define\s+((ER|WARN)_[A-Z0-9_]+)\s+(\d+)\s*", line)
if m:
name = m.group(1)
if name.startswith("ER_"):
name = name[3:]
value = int(m.group(3))
if name == "ERROR_LAST":
if error_last is None or error_last < value:
error_last = value
continue
if value not in data:
data[value] = set()
data[value].add(name)
for value, names in sorted(data.items()):
for name in sorted(names):
print(f"{name} = {value}")
if error_last is not None:
print("ERROR_LAST = %s" % error_last)
ERROR_FIRST = 1000
NO = 1002
YES = 1003
CANT_CREATE_FILE = 1004
CANT_CREATE_TABLE = 1005
CANT_CREATE_DB = 1006
DB_CREATE_EXISTS = 1007
DB_DROP_EXISTS = 1008
DB_DROP_RMDIR = 1010
CANT_FIND_SYSTEM_REC = 1012
CANT_GET_STAT = 1013
CANT_LOCK = 1015
CANT_OPEN_FILE = 1016
FILE_NOT_FOUND = 1017
CANT_READ_DIR = 1018
CHECKREAD = 1020
DUP_KEY = 1022
ERROR_ON_READ = 1024
ERROR_ON_RENAME = 1025
ERROR_ON_WRITE = 1026
FILE_USED = 1027
FILSORT_ABORT = 1028
GET_ERRNO = 1030
ILLEGAL_HA = 1031
KEY_NOT_FOUND = 1032
NOT_FORM_FILE = 1033
NOT_KEYFILE = 1034
OLD_KEYFILE = 1035
OPEN_AS_READONLY = 1036
OUTOFMEMORY = 1037
OUT_OF_SORTMEMORY = 1038
CON_COUNT_ERROR = 1040
OUT_OF_RESOURCES = 1041
BAD_HOST_ERROR = 1042
HANDSHAKE_ERROR = 1043
DBACCESS_DENIED_ERROR = 1044
ACCESS_DENIED_ERROR = 1045
NO_DB_ERROR = 1046
UNKNOWN_COM_ERROR = 1047
BAD_NULL_ERROR = 1048
BAD_DB_ERROR = 1049
TABLE_EXISTS_ERROR = 1050
BAD_TABLE_ERROR = 1051
NON_UNIQ_ERROR = 1052
SERVER_SHUTDOWN = 1053
BAD_FIELD_ERROR = 1054
WRONG_FIELD_WITH_GROUP = 1055
WRONG_GROUP_FIELD = 1056
WRONG_SUM_SELECT = 1057
WRONG_VALUE_COUNT = 1058
TOO_LONG_IDENT = 1059
DUP_FIELDNAME = 1060
DUP_KEYNAME = 1061
DUP_ENTRY = 1062
WRONG_FIELD_SPEC = 1063
PARSE_ERROR = 1064
EMPTY_QUERY = 1065
NONUNIQ_TABLE = 1066
INVALID_DEFAULT = 1067
MULTIPLE_PRI_KEY = 1068
TOO_MANY_KEYS = 1069
TOO_MANY_KEY_PARTS = 1070
TOO_LONG_KEY = 1071
KEY_COLUMN_DOES_NOT_EXITS = 1072
BLOB_USED_AS_KEY = 1073
TOO_BIG_FIELDLENGTH = 1074
WRONG_AUTO_KEY = 1075
READY = 1076
SHUTDOWN_COMPLETE = 1079
FORCING_CLOSE = 1080
IPSOCK_ERROR = 1081
NO_SUCH_INDEX = 1082
WRONG_FIELD_TERMINATORS = 1083
BLOBS_AND_NO_TERMINATED = 1084
TEXTFILE_NOT_READABLE = 1085
FILE_EXISTS_ERROR = 1086
LOAD_INFO = 1087
ALTER_INFO = 1088
WRONG_SUB_KEY = 1089
CANT_REMOVE_ALL_FIELDS = 1090
CANT_DROP_FIELD_OR_KEY = 1091
INSERT_INFO = 1092
UPDATE_TABLE_USED = 1093
NO_SUCH_THREAD = 1094
KILL_DENIED_ERROR = 1095
NO_TABLES_USED = 1096
TOO_BIG_SET = 1097
NO_UNIQUE_LOGFILE = 1098
TABLE_NOT_LOCKED_FOR_WRITE = 1099
TABLE_NOT_LOCKED = 1100
BLOB_CANT_HAVE_DEFAULT = 1101
WRONG_DB_NAME = 1102
WRONG_TABLE_NAME = 1103
TOO_BIG_SELECT = 1104
UNKNOWN_ERROR = 1105
UNKNOWN_PROCEDURE = 1106
WRONG_PARAMCOUNT_TO_PROCEDURE = 1107
WRONG_PARAMETERS_TO_PROCEDURE = 1108
UNKNOWN_TABLE = 1109
FIELD_SPECIFIED_TWICE = 1110
INVALID_GROUP_FUNC_USE = 1111
UNSUPPORTED_EXTENSION = 1112
TABLE_MUST_HAVE_COLUMNS = 1113
RECORD_FILE_FULL = 1114
UNKNOWN_CHARACTER_SET = 1115
TOO_MANY_TABLES = 1116
TOO_MANY_FIELDS = 1117
TOO_BIG_ROWSIZE = 1118
STACK_OVERRUN = 1119
WRONG_OUTER_JOIN_UNUSED = 1120
NULL_COLUMN_IN_INDEX = 1121
CANT_FIND_UDF = 1122
CANT_INITIALIZE_UDF = 1123
UDF_NO_PATHS = 1124
UDF_EXISTS = 1125
CANT_OPEN_LIBRARY = 1126
CANT_FIND_DL_ENTRY = 1127
FUNCTION_NOT_DEFINED = 1128
HOST_IS_BLOCKED = 1129
HOST_NOT_PRIVILEGED = 1130
PASSWORD_ANONYMOUS_USER = 1131
PASSWORD_NOT_ALLOWED = 1132
PASSWORD_NO_MATCH = 1133
UPDATE_INFO = 1134
CANT_CREATE_THREAD = 1135
WRONG_VALUE_COUNT_ON_ROW = 1136
CANT_REOPEN_TABLE = 1137
INVALID_USE_OF_NULL = 1138
REGEXP_ERROR = 1139
MIX_OF_GROUP_FUNC_AND_FIELDS = 1140
NONEXISTING_GRANT = 1141
TABLEACCESS_DENIED_ERROR = 1142
COLUMNACCESS_DENIED_ERROR = 1143
ILLEGAL_GRANT_FOR_TABLE = 1144
GRANT_WRONG_HOST_OR_USER = 1145
NO_SUCH_TABLE = 1146
NONEXISTING_TABLE_GRANT = 1147
NOT_ALLOWED_COMMAND = 1148
SYNTAX_ERROR = 1149
ABORTING_CONNECTION = 1152
NET_PACKET_TOO_LARGE = 1153
NET_READ_ERROR_FROM_PIPE = 1154
NET_FCNTL_ERROR = 1155
NET_PACKETS_OUT_OF_ORDER = 1156
NET_UNCOMPRESS_ERROR = 1157
NET_READ_ERROR = 1158
NET_READ_INTERRUPTED = 1159
NET_ERROR_ON_WRITE = 1160
NET_WRITE_INTERRUPTED = 1161
TOO_LONG_STRING = 1162
TABLE_CANT_HANDLE_BLOB = 1163
TABLE_CANT_HANDLE_AUTO_INCREMENT = 1164
WRONG_COLUMN_NAME = 1166
WRONG_KEY_COLUMN = 1167
WRONG_MRG_TABLE = 1168
DUP_UNIQUE = 1169
BLOB_KEY_WITHOUT_LENGTH = 1170
PRIMARY_CANT_HAVE_NULL = 1171
TOO_MANY_ROWS = 1172
REQUIRES_PRIMARY_KEY = 1173
UPDATE_WITHOUT_KEY_IN_SAFE_MODE = 1175
KEY_DOES_NOT_EXITS = 1176
CHECK_NO_SUCH_TABLE = 1177
CHECK_NOT_IMPLEMENTED = 1178
CANT_DO_THIS_DURING_AN_TRANSACTION = 1179
ERROR_DURING_COMMIT = 1180
ERROR_DURING_ROLLBACK = 1181
ERROR_DURING_FLUSH_LOGS = 1182
NEW_ABORTING_CONNECTION = 1184
MASTER = 1188
MASTER_NET_READ = 1189
MASTER_NET_WRITE = 1190
FT_MATCHING_KEY_NOT_FOUND = 1191
LOCK_OR_ACTIVE_TRANSACTION = 1192
UNKNOWN_SYSTEM_VARIABLE = 1193
CRASHED_ON_USAGE = 1194
CRASHED_ON_REPAIR = 1195
WARNING_NOT_COMPLETE_ROLLBACK = 1196
TRANS_CACHE_FULL = 1197
SLAVE_NOT_RUNNING = 1199
BAD_SLAVE = 1200
MASTER_INFO = 1201
SLAVE_THREAD = 1202
TOO_MANY_USER_CONNECTIONS = 1203
SET_CONSTANTS_ONLY = 1204
LOCK_WAIT_TIMEOUT = 1205
LOCK_TABLE_FULL = 1206
READ_ONLY_TRANSACTION = 1207
WRONG_ARGUMENTS = 1210
NO_PERMISSION_TO_CREATE_USER = 1211
LOCK_DEADLOCK = 1213
TABLE_CANT_HANDLE_FT = 1214
CANNOT_ADD_FOREIGN = 1215
NO_REFERENCED_ROW = 1216
ROW_IS_REFERENCED = 1217
CONNECT_TO_MASTER = 1218
ERROR_WHEN_EXECUTING_COMMAND = 1220
WRONG_USAGE = 1221
WRONG_NUMBER_OF_COLUMNS_IN_SELECT = 1222
CANT_UPDATE_WITH_READLOCK = 1223
MIXING_NOT_ALLOWED = 1224
DUP_ARGUMENT = 1225
USER_LIMIT_REACHED = 1226
SPECIFIC_ACCESS_DENIED_ERROR = 1227
LOCAL_VARIABLE = 1228
GLOBAL_VARIABLE = 1229
NO_DEFAULT = 1230
WRONG_VALUE_FOR_VAR = 1231
WRONG_TYPE_FOR_VAR = 1232
VAR_CANT_BE_READ = 1233
CANT_USE_OPTION_HERE = 1234
NOT_SUPPORTED_YET = 1235
MASTER_FATAL_ERROR_READING_BINLOG = 1236
SLAVE_IGNORED_TABLE = 1237
INCORRECT_GLOBAL_LOCAL_VAR = 1238
WRONG_FK_DEF = 1239
KEY_REF_DO_NOT_MATCH_TABLE_REF = 1240
OPERAND_COLUMNS = 1241
SUBQUERY_NO_1_ROW = 1242
UNKNOWN_STMT_HANDLER = 1243
CORRUPT_HELP_DB = 1244
AUTO_CONVERT = 1246
ILLEGAL_REFERENCE = 1247
DERIVED_MUST_HAVE_ALIAS = 1248
SELECT_REDUCED = 1249
TABLENAME_NOT_ALLOWED_HERE = 1250
NOT_SUPPORTED_AUTH_MODE = 1251
SPATIAL_CANT_HAVE_NULL = 1252
COLLATION_CHARSET_MISMATCH = 1253
TOO_BIG_FOR_UNCOMPRESS = 1256
ZLIB_Z_MEM_ERROR = 1257
ZLIB_Z_BUF_ERROR = 1258
ZLIB_Z_DATA_ERROR = 1259
CUT_VALUE_GROUP_CONCAT = 1260
WARN_TOO_FEW_RECORDS = 1261
WARN_TOO_MANY_RECORDS = 1262
WARN_NULL_TO_NOTNULL = 1263
WARN_DATA_OUT_OF_RANGE = 1264
WARN_DATA_TRUNCATED = 1265
WARN_USING_OTHER_HANDLER = 1266
CANT_AGGREGATE_2COLLATIONS = 1267
REVOKE_GRANTS = 1269
CANT_AGGREGATE_3COLLATIONS = 1270
CANT_AGGREGATE_NCOLLATIONS = 1271
VARIABLE_IS_NOT_STRUCT = 1272
UNKNOWN_COLLATION = 1273
SLAVE_IGNORED_SSL_PARAMS = 1274
SERVER_IS_IN_SECURE_AUTH_MODE = 1275
WARN_FIELD_RESOLVED = 1276
BAD_SLAVE_UNTIL_COND = 1277
MISSING_SKIP_SLAVE = 1278
UNTIL_COND_IGNORED = 1279
WRONG_NAME_FOR_INDEX = 1280
WRONG_NAME_FOR_CATALOG = 1281
BAD_FT_COLUMN = 1283
UNKNOWN_KEY_CACHE = 1284
WARN_HOSTNAME_WONT_WORK = 1285
UNKNOWN_STORAGE_ENGINE = 1286
WARN_DEPRECATED_SYNTAX = 1287
NON_UPDATABLE_TABLE = 1288
FEATURE_DISABLED = 1289
OPTION_PREVENTS_STATEMENT = 1290
DUPLICATED_VALUE_IN_TYPE = 1291
TRUNCATED_WRONG_VALUE = 1292
INVALID_ON_UPDATE = 1294
UNSUPPORTED_PS = 1295
GET_ERRMSG = 1296
GET_TEMPORARY_ERRMSG = 1297
UNKNOWN_TIME_ZONE = 1298
WARN_INVALID_TIMESTAMP = 1299
INVALID_CHARACTER_STRING = 1300
WARN_ALLOWED_PACKET_OVERFLOWED = 1301
CONFLICTING_DECLARATIONS = 1302
SP_NO_RECURSIVE_CREATE = 1303
SP_ALREADY_EXISTS = 1304
SP_DOES_NOT_EXIST = 1305
SP_DROP_FAILED = 1306
SP_STORE_FAILED = 1307
SP_LILABEL_MISMATCH = 1308
SP_LABEL_REDEFINE = 1309
SP_LABEL_MISMATCH = 1310
SP_UNINIT_VAR = 1311
SP_BADSELECT = 1312
SP_BADRETURN = 1313
SP_BADSTATEMENT = 1314
UPDATE_LOG_DEPRECATED_IGNORED = 1315
UPDATE_LOG_DEPRECATED_TRANSLATED = 1316
QUERY_INTERRUPTED = 1317
SP_WRONG_NO_OF_ARGS = 1318
SP_COND_MISMATCH = 1319
SP_NORETURN = 1320
SP_NORETURNEND = 1321
SP_BAD_CURSOR_QUERY = 1322
SP_BAD_CURSOR_SELECT = 1323
SP_CURSOR_MISMATCH = 1324
SP_CURSOR_ALREADY_OPEN = 1325
SP_CURSOR_NOT_OPEN = 1326
SP_UNDECLARED_VAR = 1327
SP_WRONG_NO_OF_FETCH_ARGS = 1328
SP_FETCH_NO_DATA = 1329
SP_DUP_PARAM = 1330
SP_DUP_VAR = 1331
SP_DUP_COND = 1332
SP_DUP_CURS = 1333
SP_CANT_ALTER = 1334
SP_SUBSELECT_NYI = 1335
STMT_NOT_ALLOWED_IN_SF_OR_TRG = 1336
SP_VARCOND_AFTER_CURSHNDLR = 1337
SP_CURSOR_AFTER_HANDLER = 1338
SP_CASE_NOT_FOUND = 1339
FPARSER_TOO_BIG_FILE = 1340
FPARSER_BAD_HEADER = 1341
FPARSER_EOF_IN_COMMENT = 1342
FPARSER_ERROR_IN_PARAMETER = 1343
FPARSER_EOF_IN_UNKNOWN_PARAMETER = 1344
VIEW_NO_EXPLAIN = 1345
WRONG_OBJECT = 1347
NONUPDATEABLE_COLUMN = 1348
VIEW_SELECT_CLAUSE = 1350
VIEW_SELECT_VARIABLE = 1351
VIEW_SELECT_TMPTABLE = 1352
VIEW_WRONG_LIST = 1353
WARN_VIEW_MERGE = 1354
WARN_VIEW_WITHOUT_KEY = 1355
VIEW_INVALID = 1356
SP_NO_DROP_SP = 1357
TRG_ALREADY_EXISTS = 1359
TRG_DOES_NOT_EXIST = 1360
TRG_ON_VIEW_OR_TEMP_TABLE = 1361
TRG_CANT_CHANGE_ROW = 1362
TRG_NO_SUCH_ROW_IN_TRG = 1363
NO_DEFAULT_FOR_FIELD = 1364
DIVISION_BY_ZERO = 1365
TRUNCATED_WRONG_VALUE_FOR_FIELD = 1366
ILLEGAL_VALUE_FOR_TYPE = 1367
VIEW_NONUPD_CHECK = 1368
VIEW_CHECK_FAILED = 1369
PROCACCESS_DENIED_ERROR = 1370
RELAY_LOG_FAIL = 1371
UNKNOWN_TARGET_BINLOG = 1373
IO_ERR_LOG_INDEX_READ = 1374
BINLOG_PURGE_PROHIBITED = 1375
FSEEK_FAIL = 1376
BINLOG_PURGE_FATAL_ERR = 1377
LOG_IN_USE = 1378
LOG_PURGE_UNKNOWN_ERR = 1379
RELAY_LOG_INIT = 1380
NO_BINARY_LOGGING = 1381
RESERVED_SYNTAX = 1382
PS_MANY_PARAM = 1390
KEY_PART_0 = 1391
VIEW_CHECKSUM = 1392
VIEW_MULTIUPDATE = 1393
VIEW_NO_INSERT_FIELD_LIST = 1394
VIEW_DELETE_MERGE_VIEW = 1395
CANNOT_USER = 1396
XAER_NOTA = 1397
XAER_INVAL = 1398
XAER_RMFAIL = 1399
XAER_OUTSIDE = 1400
XAER_RMERR = 1401
XA_RBROLLBACK = 1402
NONEXISTING_PROC_GRANT = 1403
PROC_AUTO_GRANT_FAIL = 1404
PROC_AUTO_REVOKE_FAIL = 1405
DATA_TOO_LONG = 1406
SP_BAD_SQLSTATE = 1407
STARTUP = 1408
LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR = 1409
CANT_CREATE_USER_WITH_GRANT = 1410
WRONG_VALUE_FOR_TYPE = 1411
TABLE_DEF_CHANGED = 1412
SP_DUP_HANDLER = 1413
SP_NOT_VAR_ARG = 1414
SP_NO_RETSET = 1415
CANT_CREATE_GEOMETRY_OBJECT = 1416
BINLOG_UNSAFE_ROUTINE = 1418
BINLOG_CREATE_ROUTINE_NEED_SUPER = 1419
STMT_HAS_NO_OPEN_CURSOR = 1421
COMMIT_NOT_ALLOWED_IN_SF_OR_TRG = 1422
NO_DEFAULT_FOR_VIEW_FIELD = 1423
SP_NO_RECURSION = 1424
TOO_BIG_SCALE = 1425
TOO_BIG_PRECISION = 1426
M_BIGGER_THAN_D = 1427
WRONG_LOCK_OF_SYSTEM_TABLE = 1428
CONNECT_TO_FOREIGN_DATA_SOURCE = 1429
QUERY_ON_FOREIGN_DATA_SOURCE = 1430
FOREIGN_DATA_SOURCE_DOESNT_EXIST = 1431
FOREIGN_DATA_STRING_INVALID_CANT_CREATE = 1432
FOREIGN_DATA_STRING_INVALID = 1433
TRG_IN_WRONG_SCHEMA = 1435
STACK_OVERRUN_NEED_MORE = 1436
TOO_LONG_BODY = 1437
WARN_CANT_DROP_DEFAULT_KEYCACHE = 1438
TOO_BIG_DISPLAYWIDTH = 1439
XAER_DUPID = 1440
DATETIME_FUNCTION_OVERFLOW = 1441
CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG = 1442
VIEW_PREVENT_UPDATE = 1443
PS_NO_RECURSION = 1444
SP_CANT_SET_AUTOCOMMIT = 1445
VIEW_FRM_NO_USER = 1447
VIEW_OTHER_USER = 1448
NO_SUCH_USER = 1449
FORBID_SCHEMA_CHANGE = 1450
ROW_IS_REFERENCED_2 = 1451
NO_REFERENCED_ROW_2 = 1452
SP_BAD_VAR_SHADOW = 1453
TRG_NO_DEFINER = 1454
OLD_FILE_FORMAT = 1455
SP_RECURSION_LIMIT = 1456
SP_WRONG_NAME = 1458
TABLE_NEEDS_UPGRADE = 1459
SP_NO_AGGREGATE = 1460
MAX_PREPARED_STMT_COUNT_REACHED = 1461
VIEW_RECURSIVE = 1462
NON_GROUPING_FIELD_USED = 1463
TABLE_CANT_HANDLE_SPKEYS = 1464
NO_TRIGGERS_ON_SYSTEM_SCHEMA = 1465
REMOVED_SPACES = 1466
AUTOINC_READ_FAILED = 1467
USERNAME = 1468
HOSTNAME = 1469
WRONG_STRING_LENGTH = 1470
NON_INSERTABLE_TABLE = 1471
ADMIN_WRONG_MRG_TABLE = 1472
TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT = 1473
NAME_BECOMES_EMPTY = 1474
AMBIGUOUS_FIELD_TERM = 1475
FOREIGN_SERVER_EXISTS = 1476
FOREIGN_SERVER_DOESNT_EXIST = 1477
ILLEGAL_HA_CREATE_OPTION = 1478
PARTITION_REQUIRES_VALUES_ERROR = 1479
PARTITION_WRONG_VALUES_ERROR = 1480
PARTITION_MAXVALUE_ERROR = 1481
PARTITION_WRONG_NO_PART_ERROR = 1484
PARTITION_WRONG_NO_SUBPART_ERROR = 1485
WRONG_EXPR_IN_PARTITION_FUNC_ERROR = 1486
FIELD_NOT_FOUND_PART_ERROR = 1488
INCONSISTENT_PARTITION_INFO_ERROR = 1490
PARTITION_FUNC_NOT_ALLOWED_ERROR = 1491
PARTITIONS_MUST_BE_DEFINED_ERROR = 1492
RANGE_NOT_INCREASING_ERROR = 1493
INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR = 1494
MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR = 1495
PARTITION_ENTRY_ERROR = 1496
MIX_HANDLER_ERROR = 1497
PARTITION_NOT_DEFINED_ERROR = 1498
TOO_MANY_PARTITIONS_ERROR = 1499
SUBPARTITION_ERROR = 1500
CANT_CREATE_HANDLER_FILE = 1501
BLOB_FIELD_IN_PART_FUNC_ERROR = 1502
UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF = 1503
NO_PARTS_ERROR = 1504
PARTITION_MGMT_ON_NONPARTITIONED = 1505
FOREIGN_KEY_ON_PARTITIONED = 1506
DROP_PARTITION_NON_EXISTENT = 1507
DROP_LAST_PARTITION = 1508
COALESCE_ONLY_ON_HASH_PARTITION = 1509
REORG_HASH_ONLY_ON_SAME_NO = 1510
REORG_NO_PARAM_ERROR = 1511
ONLY_ON_RANGE_LIST_PARTITION = 1512
ADD_PARTITION_SUBPART_ERROR = 1513
ADD_PARTITION_NO_NEW_PARTITION = 1514
COALESCE_PARTITION_NO_PARTITION = 1515
REORG_PARTITION_NOT_EXIST = 1516
SAME_NAME_PARTITION = 1517
NO_BINLOG_ERROR = 1518
CONSECUTIVE_REORG_PARTITIONS = 1519
REORG_OUTSIDE_RANGE = 1520
PARTITION_FUNCTION_FAILURE = 1521
LIMITED_PART_RANGE = 1523
PLUGIN_IS_NOT_LOADED = 1524
WRONG_VALUE = 1525
NO_PARTITION_FOR_GIVEN_VALUE = 1526
FILEGROUP_OPTION_ONLY_ONCE = 1527
CREATE_FILEGROUP_FAILED = 1528
DROP_FILEGROUP_FAILED = 1529
TABLESPACE_AUTO_EXTEND_ERROR = 1530
WRONG_SIZE_NUMBER = 1531
SIZE_OVERFLOW_ERROR = 1532
ALTER_FILEGROUP_FAILED = 1533
BINLOG_ROW_LOGGING_FAILED = 1534
EVENT_ALREADY_EXISTS = 1537
EVENT_DOES_NOT_EXIST = 1539
EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG = 1542
EVENT_ENDS_BEFORE_STARTS = 1543
EVENT_EXEC_TIME_IN_THE_PAST = 1544
EVENT_SAME_NAME = 1551
DROP_INDEX_FK = 1553
WARN_DEPRECATED_SYNTAX_WITH_VER = 1554
CANT_LOCK_LOG_TABLE = 1556
FOREIGN_DUPLICATE_KEY_OLD_UNUSED = 1557
COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE = 1558
TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR = 1559
STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT = 1560
PARTITION_NO_TEMPORARY = 1562
PARTITION_CONST_DOMAIN_ERROR = 1563
PARTITION_FUNCTION_IS_NOT_ALLOWED = 1564
NULL_IN_VALUES_LESS_THAN = 1566
WRONG_PARTITION_NAME = 1567
CANT_CHANGE_TX_CHARACTERISTICS = 1568
DUP_ENTRY_AUTOINCREMENT_CASE = 1569
EVENT_SET_VAR_ERROR = 1571
PARTITION_MERGE_ERROR = 1572
BASE64_DECODE_ERROR = 1575
EVENT_RECURSION_FORBIDDEN = 1576
ONLY_INTEGERS_ALLOWED = 1578
UNSUPORTED_LOG_ENGINE = 1579
BAD_LOG_STATEMENT = 1580
CANT_RENAME_LOG_TABLE = 1581
WRONG_PARAMCOUNT_TO_NATIVE_FCT = 1582
WRONG_PARAMETERS_TO_NATIVE_FCT = 1583
WRONG_PARAMETERS_TO_STORED_FCT = 1584
NATIVE_FCT_NAME_COLLISION = 1585
DUP_ENTRY_WITH_KEY_NAME = 1586
BINLOG_PURGE_EMFILE = 1587
EVENT_CANNOT_CREATE_IN_THE_PAST = 1588
EVENT_CANNOT_ALTER_IN_THE_PAST = 1589
NO_PARTITION_FOR_GIVEN_VALUE_SILENT = 1591
BINLOG_UNSAFE_STATEMENT = 1592
BINLOG_FATAL_ERROR = 1593
BINLOG_LOGGING_IMPOSSIBLE = 1598
VIEW_NO_CREATION_CTX = 1599
VIEW_INVALID_CREATION_CTX = 1600
TRG_CORRUPTED_FILE = 1602
TRG_NO_CREATION_CTX = 1603
TRG_INVALID_CREATION_CTX = 1604
EVENT_INVALID_CREATION_CTX = 1605
TRG_CANT_OPEN_TABLE = 1606
NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT = 1609
SLAVE_CORRUPT_EVENT = 1610
LOG_PURGE_NO_FILE = 1612
XA_RBTIMEOUT = 1613
XA_RBDEADLOCK = 1614
NEED_REPREPARE = 1615
WARN_NO_MASTER_INFO = 1617
WARN_OPTION_IGNORED = 1618
PLUGIN_DELETE_BUILTIN = 1619
WARN_PLUGIN_BUSY = 1620
VARIABLE_IS_READONLY = 1621
WARN_ENGINE_TRANSACTION_ROLLBACK = 1622
SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE = 1624
NDB_REPLICATION_SCHEMA_ERROR = 1625
CONFLICT_FN_PARSE_ERROR = 1626
EXCEPTIONS_WRITE_ERROR = 1627
TOO_LONG_TABLE_COMMENT = 1628
TOO_LONG_FIELD_COMMENT = 1629
FUNC_INEXISTENT_NAME_COLLISION = 1630
DATABASE_NAME = 1631
TABLE_NAME = 1632
PARTITION_NAME = 1633
SUBPARTITION_NAME = 1634
TEMPORARY_NAME = 1635
RENAMED_NAME = 1636
TOO_MANY_CONCURRENT_TRXS = 1637
WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED = 1638
DEBUG_SYNC_TIMEOUT = 1639
DEBUG_SYNC_HIT_LIMIT = 1640
DUP_SIGNAL_SET = 1641
SIGNAL_WARN = 1642
SIGNAL_NOT_FOUND = 1643
SIGNAL_EXCEPTION = 1644
RESIGNAL_WITHOUT_ACTIVE_HANDLER = 1645
SIGNAL_BAD_CONDITION_TYPE = 1646
WARN_COND_ITEM_TRUNCATED = 1647
COND_ITEM_TOO_LONG = 1648
UNKNOWN_LOCALE = 1649
SLAVE_IGNORE_SERVER_IDS = 1650
SAME_NAME_PARTITION_FIELD = 1652
PARTITION_COLUMN_LIST_ERROR = 1653
WRONG_TYPE_COLUMN_VALUE_ERROR = 1654
TOO_MANY_PARTITION_FUNC_FIELDS_ERROR = 1655
MAXVALUE_IN_VALUES_IN = 1656
TOO_MANY_VALUES_ERROR = 1657
ROW_SINGLE_PARTITION_FIELD_ERROR = 1658
FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD = 1659
PARTITION_FIELDS_TOO_LONG = 1660
BINLOG_ROW_ENGINE_AND_STMT_ENGINE = 1661
BINLOG_ROW_MODE_AND_STMT_ENGINE = 1662
BINLOG_UNSAFE_AND_STMT_ENGINE = 1663
BINLOG_ROW_INJECTION_AND_STMT_ENGINE = 1664
BINLOG_STMT_MODE_AND_ROW_ENGINE = 1665
BINLOG_ROW_INJECTION_AND_STMT_MODE = 1666
BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE = 1667
BINLOG_UNSAFE_LIMIT = 1668
BINLOG_UNSAFE_SYSTEM_TABLE = 1670
BINLOG_UNSAFE_AUTOINC_COLUMNS = 1671
BINLOG_UNSAFE_UDF = 1672
BINLOG_UNSAFE_SYSTEM_VARIABLE = 1673
BINLOG_UNSAFE_SYSTEM_FUNCTION = 1674
BINLOG_UNSAFE_NONTRANS_AFTER_TRANS = 1675
MESSAGE_AND_STATEMENT = 1676
SLAVE_CANT_CREATE_CONVERSION = 1678
INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT = 1679
PATH_LENGTH = 1680
WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT = 1681
WRONG_NATIVE_TABLE_STRUCTURE = 1682
WRONG_PERFSCHEMA_USAGE = 1683
WARN_I_S_SKIPPED_TABLE = 1684
INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT = 1685
STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT = 1686
SPATIAL_MUST_HAVE_GEOM_COL = 1687
TOO_LONG_INDEX_COMMENT = 1688
LOCK_ABORTED = 1689
DATA_OUT_OF_RANGE = 1690
WRONG_SPVAR_TYPE_IN_LIMIT = 1691
BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE = 1692
BINLOG_UNSAFE_MIXED_STATEMENT = 1693
INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN = 1694
STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN = 1695
FAILED_READ_FROM_PAR_FILE = 1696
VALUES_IS_NOT_INT_TYPE_ERROR = 1697
ACCESS_DENIED_NO_PASSWORD_ERROR = 1698
SET_PASSWORD_AUTH_PLUGIN = 1699
TRUNCATE_ILLEGAL_FK = 1701
PLUGIN_IS_PERMANENT = 1702
SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN = 1703
SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX = 1704
STMT_CACHE_FULL = 1705
MULTI_UPDATE_KEY_CONFLICT = 1706
TABLE_NEEDS_REBUILD = 1707
WARN_OPTION_BELOW_LIMIT = 1708
INDEX_COLUMN_TOO_LONG = 1709
ERROR_IN_TRIGGER_BODY = 1710
ERROR_IN_UNKNOWN_TRIGGER_BODY = 1711
INDEX_CORRUPT = 1712
UNDO_RECORD_TOO_BIG = 1713
BINLOG_UNSAFE_INSERT_IGNORE_SELECT = 1714
BINLOG_UNSAFE_INSERT_SELECT_UPDATE = 1715
BINLOG_UNSAFE_REPLACE_SELECT = 1716
BINLOG_UNSAFE_CREATE_IGNORE_SELECT = 1717
BINLOG_UNSAFE_CREATE_REPLACE_SELECT = 1718
BINLOG_UNSAFE_UPDATE_IGNORE = 1719
PLUGIN_NO_UNINSTALL = 1720
PLUGIN_NO_INSTALL = 1721
BINLOG_UNSAFE_WRITE_AUTOINC_SELECT = 1722
BINLOG_UNSAFE_CREATE_SELECT_AUTOINC = 1723
BINLOG_UNSAFE_INSERT_TWO_KEYS = 1724
TABLE_IN_FK_CHECK = 1725
UNSUPPORTED_ENGINE = 1726
BINLOG_UNSAFE_AUTOINC_NOT_FIRST = 1727
CANNOT_LOAD_FROM_TABLE_V2 = 1728
MASTER_DELAY_VALUE_OUT_OF_RANGE = 1729
ONLY_FD_AND_RBR_EVENTS_ALLOWED_IN_BINLOG_STATEMENT = 1730
PARTITION_EXCHANGE_DIFFERENT_OPTION = 1731
PARTITION_EXCHANGE_PART_TABLE = 1732
PARTITION_EXCHANGE_TEMP_TABLE = 1733
PARTITION_INSTEAD_OF_SUBPARTITION = 1734
UNKNOWN_PARTITION = 1735
TABLES_DIFFERENT_METADATA = 1736
ROW_DOES_NOT_MATCH_PARTITION = 1737
BINLOG_CACHE_SIZE_GREATER_THAN_MAX = 1738
WARN_INDEX_NOT_APPLICABLE = 1739
PARTITION_EXCHANGE_FOREIGN_KEY = 1740
RPL_INFO_DATA_TOO_LONG = 1742
BINLOG_STMT_CACHE_SIZE_GREATER_THAN_MAX = 1745
CANT_UPDATE_TABLE_IN_CREATE_TABLE_SELECT = 1746
PARTITION_CLAUSE_ON_NONPARTITIONED = 1747
ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET = 1748
CHANGE_RPL_INFO_REPOSITORY_FAILURE = 1750
WARNING_NOT_COMPLETE_ROLLBACK_WITH_CREATED_TEMP_TABLE = 1751
WARNING_NOT_COMPLETE_ROLLBACK_WITH_DROPPED_TEMP_TABLE = 1752
MTS_FEATURE_IS_NOT_SUPPORTED = 1753
MTS_UPDATED_DBS_GREATER_MAX = 1754
MTS_CANT_PARALLEL = 1755
MTS_INCONSISTENT_DATA = 1756
FULLTEXT_NOT_SUPPORTED_WITH_PARTITIONING = 1757
DA_INVALID_CONDITION_NUMBER = 1758
INSECURE_PLAIN_TEXT = 1759
INSECURE_CHANGE_MASTER = 1760
FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO = 1761
FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO = 1762
SQLTHREAD_WITH_SECURE_SLAVE = 1763
TABLE_HAS_NO_FT = 1764
VARIABLE_NOT_SETTABLE_IN_SF_OR_TRIGGER = 1765
VARIABLE_NOT_SETTABLE_IN_TRANSACTION = 1766
SET_STATEMENT_CANNOT_INVOKE_FUNCTION = 1769
GTID_NEXT_CANT_BE_AUTOMATIC_IF_GTID_NEXT_LIST_IS_NON_NULL = 1770
MALFORMED_GTID_SET_SPECIFICATION = 1772
MALFORMED_GTID_SET_ENCODING = 1773
MALFORMED_GTID_SPECIFICATION = 1774
GNO_EXHAUSTED = 1775
BAD_SLAVE_AUTO_POSITION = 1776
AUTO_POSITION_REQUIRES_GTID_MODE_NOT_OFF = 1777
CANT_DO_IMPLICIT_COMMIT_IN_TRX_WHEN_GTID_NEXT_IS_SET = 1778
GTID_MODE_ON_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON = 1779
CANT_SET_GTID_NEXT_TO_GTID_WHEN_GTID_MODE_IS_OFF = 1781
CANT_SET_GTID_NEXT_TO_ANONYMOUS_WHEN_GTID_MODE_IS_ON = 1782
CANT_SET_GTID_NEXT_LIST_TO_NON_NULL_WHEN_GTID_MODE_IS_OFF = 1783
GTID_UNSAFE_NON_TRANSACTIONAL_TABLE = 1785
GTID_UNSAFE_CREATE_SELECT = 1786
GTID_UNSAFE_CREATE_DROP_TEMPORARY_TABLE_IN_TRANSACTION = 1787
GTID_MODE_CAN_ONLY_CHANGE_ONE_STEP_AT_A_TIME = 1788
MASTER_HAS_PURGED_REQUIRED_GTIDS = 1789
CANT_SET_GTID_NEXT_WHEN_OWNING_GTID = 1790
UNKNOWN_EXPLAIN_FORMAT = 1791
CANT_EXECUTE_IN_READ_ONLY_TRANSACTION = 1792
TOO_LONG_TABLE_PARTITION_COMMENT = 1793
SLAVE_CONFIGURATION = 1794
INNODB_FT_LIMIT = 1795
INNODB_NO_FT_TEMP_TABLE = 1796
INNODB_FT_WRONG_DOCID_COLUMN = 1797
INNODB_FT_WRONG_DOCID_INDEX = 1798
INNODB_ONLINE_LOG_TOO_BIG = 1799
UNKNOWN_ALTER_ALGORITHM = 1800
UNKNOWN_ALTER_LOCK = 1801
MTS_CHANGE_MASTER_CANT_RUN_WITH_GAPS = 1802
MTS_RECOVERY_FAILURE = 1803
MTS_RESET_WORKERS = 1804
COL_COUNT_DOESNT_MATCH_CORRUPTED_V2 = 1805
SLAVE_SILENT_RETRY_TRANSACTION = 1806
DISCARD_FK_CHECKS_RUNNING = 1807
TABLE_SCHEMA_MISMATCH = 1808
TABLE_IN_SYSTEM_TABLESPACE = 1809
IO_READ_ERROR = 1810
IO_WRITE_ERROR = 1811
TABLESPACE_MISSING = 1812
TABLESPACE_EXISTS = 1813
TABLESPACE_DISCARDED = 1814
INTERNAL_ERROR = 1815
INNODB_IMPORT_ERROR = 1816
INNODB_INDEX_CORRUPT = 1817
INVALID_YEAR_COLUMN_LENGTH = 1818
NOT_VALID_PASSWORD = 1819
MUST_CHANGE_PASSWORD = 1820
FK_NO_INDEX_CHILD = 1821
FK_NO_INDEX_PARENT = 1822
FK_FAIL_ADD_SYSTEM = 1823
FK_CANNOT_OPEN_PARENT = 1824
FK_INCORRECT_OPTION = 1825
FK_DUP_NAME = 1826
PASSWORD_FORMAT = 1827
FK_COLUMN_CANNOT_DROP = 1828
FK_COLUMN_CANNOT_DROP_CHILD = 1829
FK_COLUMN_NOT_NULL = 1830
DUP_INDEX = 1831
FK_COLUMN_CANNOT_CHANGE = 1832
FK_COLUMN_CANNOT_CHANGE_CHILD = 1833
MALFORMED_PACKET = 1835
READ_ONLY_MODE = 1836
GTID_NEXT_TYPE_UNDEFINED_GTID = 1837
VARIABLE_NOT_SETTABLE_IN_SP = 1838
CANT_SET_GTID_PURGED_WHEN_GTID_EXECUTED_IS_NOT_EMPTY = 1840
CANT_SET_GTID_PURGED_WHEN_OWNED_GTIDS_IS_NOT_EMPTY = 1841
GTID_PURGED_WAS_CHANGED = 1842
GTID_EXECUTED_WAS_CHANGED = 1843
BINLOG_STMT_MODE_AND_NO_REPL_TABLES = 1844
ALTER_OPERATION_NOT_SUPPORTED = 1845
ALTER_OPERATION_NOT_SUPPORTED_REASON = 1846
ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY = 1847
ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION = 1848
ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME = 1849
ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE = 1850
ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK = 1851
ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK = 1853
ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC = 1854
ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS = 1855
ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS = 1856
ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS = 1857
SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE = 1858
DUP_UNKNOWN_IN_INDEX = 1859
IDENT_CAUSES_TOO_LONG_PATH = 1860
ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL = 1861
MUST_CHANGE_PASSWORD_LOGIN = 1862
ROW_IN_WRONG_PARTITION = 1863
MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX = 1864
BINLOG_LOGICAL_CORRUPTION = 1866
WARN_PURGE_LOG_IN_USE = 1867
WARN_PURGE_LOG_IS_ACTIVE = 1868
AUTO_INCREMENT_CONFLICT = 1869
WARN_ON_BLOCKHOLE_IN_RBR = 1870
SLAVE_MI_INIT_REPOSITORY = 1871
SLAVE_RLI_INIT_REPOSITORY = 1872
ACCESS_DENIED_CHANGE_USER_ERROR = 1873
INNODB_READ_ONLY = 1874
STOP_SLAVE_SQL_THREAD_TIMEOUT = 1875
STOP_SLAVE_IO_THREAD_TIMEOUT = 1876
TABLE_CORRUPT = 1877
TEMP_FILE_WRITE_FAILURE = 1878
INNODB_FT_AUX_NOT_HEX_ID = 1879
OLD_TEMPORALS_UPGRADED = 1880
INNODB_FORCED_RECOVERY = 1881
AES_INVALID_IV = 1882
PLUGIN_CANNOT_BE_UNINSTALLED = 1883
GTID_UNSAFE_BINLOG_SPLITTABLE_STATEMENT_AND_ASSIGNED_GTID = 1884
SLAVE_HAS_MORE_GTIDS_THAN_MASTER = 1885
MISSING_KEY = 1886
ERROR_LAST = 1973

@ -1,40 +0,0 @@
"""MySQL FIELD_TYPE Constants
These constants represent the various column (field) types that are
supported by MySQL.
"""
DECIMAL = 0
TINY = 1
SHORT = 2
LONG = 3
FLOAT = 4
DOUBLE = 5
NULL = 6
TIMESTAMP = 7
LONGLONG = 8
INT24 = 9
DATE = 10
TIME = 11
DATETIME = 12
YEAR = 13
# NEWDATE = 14 # Internal to MySQL.
VARCHAR = 15
BIT = 16
# TIMESTAMP2 = 17
# DATETIME2 = 18
# TIME2 = 19
JSON = 245
NEWDECIMAL = 246
ENUM = 247
SET = 248
TINY_BLOB = 249
MEDIUM_BLOB = 250
LONG_BLOB = 251
BLOB = 252
VAR_STRING = 253
STRING = 254
GEOMETRY = 255
CHAR = TINY
INTERVAL = ENUM

@ -1,23 +0,0 @@
"""MySQL FLAG Constants
These flags are used along with the FIELD_TYPE to indicate various
properties of columns in a result set.
"""
NOT_NULL = 1
PRI_KEY = 2
UNIQUE_KEY = 4
MULTIPLE_KEY = 8
BLOB = 16
UNSIGNED = 32
ZEROFILL = 64
BINARY = 128
ENUM = 256
AUTO_INCREMENT = 512
TIMESTAMP = 1024
SET = 2048
NUM = 32768
PART_KEY = 16384
GROUP = 32768
UNIQUE = 65536

@ -1 +0,0 @@
__all__ = ["CR", "FIELD_TYPE", "CLIENT", "ER", "FLAG"]

@ -1,139 +0,0 @@
"""MySQLdb type conversion module
This module handles all the type conversions for MySQL. If the default
type conversions aren't what you need, you can make your own. The
dictionary conversions maps some kind of type to a conversion function
which returns the corresponding value:
Key: FIELD_TYPE.* (from MySQLdb.constants)
Conversion function:
Arguments: string
Returns: Python object
Key: Python type object (from types) or class
Conversion function:
Arguments: Python object of indicated type or class AND
conversion dictionary
Returns: SQL literal value
Notes: Most conversion functions can ignore the dictionary, but
it is a required parameter. It is necessary for converting
things like sequences and instances.
Don't modify conversions if you can avoid it. Instead, make copies
(with the copy() method), modify the copies, and then pass them to
MySQL.connect().
"""
from decimal import Decimal
from MySQLdb._mysql import string_literal
from MySQLdb.constants import FIELD_TYPE, FLAG
from MySQLdb.times import (
Date,
DateTimeType,
DateTime2literal,
DateTimeDeltaType,
DateTimeDelta2literal,
DateTime_or_None,
TimeDelta_or_None,
Date_or_None,
)
from MySQLdb._exceptions import ProgrammingError
import array
NoneType = type(None)
try:
ArrayType = array.ArrayType
except AttributeError:
ArrayType = array.array
def Bool2Str(s, d):
return b"1" if s else b"0"
def Set2Str(s, d):
# Only support ascii string. Not tested.
return string_literal(",".join(s))
def Thing2Str(s, d):
"""Convert something into a string via str()."""
return str(s)
def Float2Str(o, d):
s = repr(o)
if s in ("inf", "-inf", "nan"):
raise ProgrammingError("%s can not be used with MySQL" % s)
if "e" not in s:
s += "e0"
return s
def None2NULL(o, d):
"""Convert None to NULL."""
return b"NULL"
def Thing2Literal(o, d):
"""Convert something into a SQL string literal. If using
MySQL-3.23 or newer, string_literal() is a method of the
_mysql.MYSQL object, and this function will be overridden with
that method when the connection is created."""
return string_literal(o)
def Decimal2Literal(o, d):
return format(o, "f")
def array2Str(o, d):
return Thing2Literal(o.tostring(), d)
# bytes or str regarding to BINARY_FLAG.
_bytes_or_str = ((FLAG.BINARY, bytes), (None, str))
conversions = {
int: Thing2Str,
float: Float2Str,
NoneType: None2NULL,
ArrayType: array2Str,
bool: Bool2Str,
Date: Thing2Literal,
DateTimeType: DateTime2literal,
DateTimeDeltaType: DateTimeDelta2literal,
set: Set2Str,
Decimal: Decimal2Literal,
FIELD_TYPE.TINY: int,
FIELD_TYPE.SHORT: int,
FIELD_TYPE.LONG: int,
FIELD_TYPE.FLOAT: float,
FIELD_TYPE.DOUBLE: float,
FIELD_TYPE.DECIMAL: Decimal,
FIELD_TYPE.NEWDECIMAL: Decimal,
FIELD_TYPE.LONGLONG: int,
FIELD_TYPE.INT24: int,
FIELD_TYPE.YEAR: int,
FIELD_TYPE.TIMESTAMP: DateTime_or_None,
FIELD_TYPE.DATETIME: DateTime_or_None,
FIELD_TYPE.TIME: TimeDelta_or_None,
FIELD_TYPE.DATE: Date_or_None,
FIELD_TYPE.TINY_BLOB: bytes,
FIELD_TYPE.MEDIUM_BLOB: bytes,
FIELD_TYPE.LONG_BLOB: bytes,
FIELD_TYPE.BLOB: bytes,
FIELD_TYPE.STRING: bytes,
FIELD_TYPE.VAR_STRING: bytes,
FIELD_TYPE.VARCHAR: bytes,
FIELD_TYPE.JSON: bytes,
}

@ -1,500 +0,0 @@
"""MySQLdb Cursors
This module implements Cursors of various types for MySQLdb. By
default, MySQLdb uses the Cursor class.
"""
import re
from ._exceptions import ProgrammingError
#: Regular expression for ``Cursor.executemany```.
#: executemany only supports simple bulk insert.
#: You can use it to load large dataset.
RE_INSERT_VALUES = re.compile(
"".join(
[
r"\s*((?:INSERT|REPLACE)\b.+\bVALUES?\s*)",
r"(\(\s*(?:%s|%\(.+\)s)\s*(?:,\s*(?:%s|%\(.+\)s)\s*)*\))",
r"(\s*(?:ON DUPLICATE.*)?);?\s*\Z",
]
),
re.IGNORECASE | re.DOTALL,
)
class BaseCursor:
"""A base for Cursor classes. Useful attributes:
description
A tuple of DB API 7-tuples describing the columns in
the last executed query; see PEP-249 for details.
description_flags
Tuple of column flags for last query, one entry per column
in the result set. Values correspond to those in
MySQLdb.constants.FLAG. See MySQL documentation (C API)
for more information. Non-standard extension.
arraysize
default number of rows fetchmany() will fetch
"""
#: Max statement size which :meth:`executemany` generates.
#:
#: Max size of allowed statement is max_allowed_packet - packet_header_size.
#: Default value of max_allowed_packet is 1048576.
max_stmt_length = 64 * 1024
from ._exceptions import (
MySQLError,
Warning,
Error,
InterfaceError,
DatabaseError,
DataError,
OperationalError,
IntegrityError,
InternalError,
ProgrammingError,
NotSupportedError,
)
connection = None
def __init__(self, connection):
self.connection = connection
self.description = None
self.description_flags = None
self.rowcount = 0
self.arraysize = 1
self._executed = None
self.lastrowid = None
self._result = None
self.rownumber = None
self._rows = None
def _discard(self):
self.description = None
self.description_flags = None
# Django uses some member after __exit__.
# So we keep rowcount and lastrowid here. They are cleared in Cursor._query().
# self.rowcount = 0
# self.lastrowid = None
self._rows = None
self.rownumber = None
if self._result:
self._result.discard()
self._result = None
con = self.connection
if con is None:
return
while con.next_result() == 0: # -1 means no more data.
con.discard_result()
def close(self):
"""Close the cursor. No further queries will be possible."""
try:
if self.connection is None:
return
self._discard()
finally:
self.connection = None
self._result = None
def __enter__(self):
return self
def __exit__(self, *exc_info):
del exc_info
self.close()
def _check_executed(self):
if not self._executed:
raise ProgrammingError("execute() first")
def nextset(self):
"""Advance to the next result set.
Returns None if there are no more result sets.
"""
if self._executed:
self.fetchall()
db = self._get_db()
nr = db.next_result()
if nr == -1:
return None
self._do_get_result(db)
self._post_get_result()
return 1
def _do_get_result(self, db):
self._result = result = self._get_result()
if result is None:
self.description = self.description_flags = None
else:
self.description = result.describe()
self.description_flags = result.field_flags()
self.rowcount = db.affected_rows()
self.rownumber = 0
self.lastrowid = db.insert_id()
def _post_get_result(self):
pass
def setinputsizes(self, *args):
"""Does nothing, required by DB API."""
def setoutputsizes(self, *args):
"""Does nothing, required by DB API."""
def _get_db(self):
con = self.connection
if con is None:
raise ProgrammingError("cursor closed")
return con
def execute(self, query, args=None):
"""Execute a query.
query -- string, query to execute on server
args -- optional sequence or mapping, parameters to use with query.
Note: If args is a sequence, then %s must be used as the
parameter placeholder in the query. If a mapping is used,
%(key)s must be used as the placeholder.
Returns integer represents rows affected, if any
"""
self._discard()
mogrified_query = self._mogrify(query, args)
assert isinstance(mogrified_query, (bytes, bytearray))
res = self._query(mogrified_query)
return res
def _mogrify(self, query, args=None):
"""Return query after binding args."""
db = self._get_db()
if isinstance(query, str):
query = query.encode(db.encoding)
if args is not None:
if isinstance(args, dict):
nargs = {}
for key, item in args.items():
if isinstance(key, str):
key = key.encode(db.encoding)
nargs[key] = db.literal(item)
args = nargs
else:
args = tuple(map(db.literal, args))
try:
query = query % args
except TypeError as m:
raise ProgrammingError(str(m))
return query
def mogrify(self, query, args=None):
"""Return query after binding args.
query -- string, query to mogrify
args -- optional sequence or mapping, parameters to use with query.
Note: If args is a sequence, then %s must be used as the
parameter placeholder in the query. If a mapping is used,
%(key)s must be used as the placeholder.
Returns string representing query that would be executed by the server
"""
return self._mogrify(query, args).decode(self._get_db().encoding)
def executemany(self, query, args):
# type: (str, list) -> int
"""Execute a multi-row query.
:param query: query to execute on server
:param args: Sequence of sequences or mappings. It is used as parameter.
:return: Number of rows affected, if any.
This method improves performance on multiple-row INSERT and
REPLACE. Otherwise it is equivalent to looping over args with
execute().
"""
if not args:
return
m = RE_INSERT_VALUES.match(query)
if m:
q_prefix = m.group(1) % ()
q_values = m.group(2).rstrip()
q_postfix = m.group(3) or ""
assert q_values[0] == "(" and q_values[-1] == ")"
return self._do_execute_many(
q_prefix,
q_values,
q_postfix,
args,
self.max_stmt_length,
self._get_db().encoding,
)
self.rowcount = sum(self.execute(query, arg) for arg in args)
return self.rowcount
def _do_execute_many(
self, prefix, values, postfix, args, max_stmt_length, encoding
):
if isinstance(prefix, str):
prefix = prefix.encode(encoding)
if isinstance(values, str):
values = values.encode(encoding)
if isinstance(postfix, str):
postfix = postfix.encode(encoding)
sql = bytearray(prefix)
args = iter(args)
v = self._mogrify(values, next(args))
sql += v
rows = 0
for arg in args:
v = self._mogrify(values, arg)
if len(sql) + len(v) + len(postfix) + 1 > max_stmt_length:
rows += self.execute(sql + postfix)
sql = bytearray(prefix)
else:
sql += b","
sql += v
rows += self.execute(sql + postfix)
self.rowcount = rows
return rows
def callproc(self, procname, args=()):
"""Execute stored procedure procname with args
procname -- string, name of procedure to execute on server
args -- Sequence of parameters to use with procedure
Returns the original args.
Compatibility warning: PEP-249 specifies that any modified
parameters must be returned. This is currently impossible
as they are only available by storing them in a server
variable and then retrieved by a query. Since stored
procedures return zero or more result sets, there is no
reliable way to get at OUT or INOUT parameters via callproc.
The server variables are named @_procname_n, where procname
is the parameter above and n is the position of the parameter
(from zero). Once all result sets generated by the procedure
have been fetched, you can issue a SELECT @_procname_0, ...
query using .execute() to get any OUT or INOUT values.
Compatibility warning: The act of calling a stored procedure
itself creates an empty result set. This appears after any
result sets generated by the procedure. This is non-standard
behavior with respect to the DB-API. Be sure to use nextset()
to advance through all result sets; otherwise you may get
disconnected.
"""
db = self._get_db()
if isinstance(procname, str):
procname = procname.encode(db.encoding)
if args:
fmt = b"@_" + procname + b"_%d=%s"
q = b"SET %s" % b",".join(
fmt % (index, db.literal(arg)) for index, arg in enumerate(args)
)
self._query(q)
self.nextset()
q = b"CALL %s(%s)" % (
procname,
b",".join([b"@_%s_%d" % (procname, i) for i in range(len(args))]),
)
self._query(q)
return args
def _query(self, q):
db = self._get_db()
self._result = None
self.rowcount = None
self.lastrowid = None
db.query(q)
self._do_get_result(db)
self._post_get_result()
self._executed = q
return self.rowcount
def _fetch_row(self, size=1):
if not self._result:
return ()
return self._result.fetch_row(size, self._fetch_type)
def __iter__(self):
return iter(self.fetchone, None)
Warning = Warning
Error = Error
InterfaceError = InterfaceError
DatabaseError = DatabaseError
DataError = DataError
OperationalError = OperationalError
IntegrityError = IntegrityError
InternalError = InternalError
ProgrammingError = ProgrammingError
NotSupportedError = NotSupportedError
class CursorStoreResultMixIn:
"""This is a MixIn class which causes the entire result set to be
stored on the client side, i.e. it uses mysql_store_result(). If the
result set can be very large, consider adding a LIMIT clause to your
query, or using CursorUseResultMixIn instead."""
def _get_result(self):
return self._get_db().store_result()
def _post_get_result(self):
self._rows = self._fetch_row(0)
self._result = None
def fetchone(self):
"""Fetches a single row from the cursor. None indicates that
no more rows are available."""
self._check_executed()
if self.rownumber >= len(self._rows):
return None
result = self._rows[self.rownumber]
self.rownumber = self.rownumber + 1
return result
def fetchmany(self, size=None):
"""Fetch up to size rows from the cursor. Result set may be smaller
than size. If size is not defined, cursor.arraysize is used."""
self._check_executed()
end = self.rownumber + (size or self.arraysize)
result = self._rows[self.rownumber : end]
self.rownumber = min(end, len(self._rows))
return result
def fetchall(self):
"""Fetches all available rows from the cursor."""
self._check_executed()
if self.rownumber:
result = self._rows[self.rownumber :]
else:
result = self._rows
self.rownumber = len(self._rows)
return result
def scroll(self, value, mode="relative"):
"""Scroll the cursor in the result set to a new position according
to mode.
If mode is 'relative' (default), value is taken as offset to
the current position in the result set, if set to 'absolute',
value states an absolute target position."""
self._check_executed()
if mode == "relative":
r = self.rownumber + value
elif mode == "absolute":
r = value
else:
raise ProgrammingError("unknown scroll mode %s" % repr(mode))
if r < 0 or r >= len(self._rows):
raise IndexError("out of range")
self.rownumber = r
def __iter__(self):
self._check_executed()
result = self.rownumber and self._rows[self.rownumber :] or self._rows
return iter(result)
class CursorUseResultMixIn:
"""This is a MixIn class which causes the result set to be stored
in the server and sent row-by-row to client side, i.e. it uses
mysql_use_result(). You MUST retrieve the entire result set and
close() the cursor before additional queries can be performed on
the connection."""
def _get_result(self):
return self._get_db().use_result()
def fetchone(self):
"""Fetches a single row from the cursor."""
self._check_executed()
r = self._fetch_row(1)
if not r:
return None
self.rownumber = self.rownumber + 1
return r[0]
def fetchmany(self, size=None):
"""Fetch up to size rows from the cursor. Result set may be smaller
than size. If size is not defined, cursor.arraysize is used."""
self._check_executed()
r = self._fetch_row(size or self.arraysize)
self.rownumber = self.rownumber + len(r)
return r
def fetchall(self):
"""Fetches all available rows from the cursor."""
self._check_executed()
r = self._fetch_row(0)
self.rownumber = self.rownumber + len(r)
return r
def __iter__(self):
return self
def next(self):
row = self.fetchone()
if row is None:
raise StopIteration
return row
__next__ = next
class CursorTupleRowsMixIn:
"""This is a MixIn class that causes all rows to be returned as tuples,
which is the standard form required by DB API."""
_fetch_type = 0
class CursorDictRowsMixIn:
"""This is a MixIn class that causes all rows to be returned as
dictionaries. This is a non-standard feature."""
_fetch_type = 1
class Cursor(CursorStoreResultMixIn, CursorTupleRowsMixIn, BaseCursor):
"""This is the standard Cursor class that returns rows as tuples
and stores the result set in the client."""
class DictCursor(CursorStoreResultMixIn, CursorDictRowsMixIn, BaseCursor):
"""This is a Cursor class that returns rows as dictionaries and
stores the result set in the client."""
class SSCursor(CursorUseResultMixIn, CursorTupleRowsMixIn, BaseCursor):
"""This is a Cursor class that returns rows as tuples and stores
the result set in the server."""
class SSDictCursor(CursorUseResultMixIn, CursorDictRowsMixIn, BaseCursor):
"""This is a Cursor class that returns rows as dictionaries and
stores the result set in the server."""

@ -1,3 +0,0 @@
__author__ = "Inada Naoki <songofacandy@gmail.com>"
__version__ = "2.2.4"
version_info = (2, 2, 4, "final", 0)

@ -1,150 +0,0 @@
"""times module
This module provides some Date and Time classes for dealing with MySQL data.
Use Python datetime module to handle date and time columns.
"""
from time import localtime
from datetime import date, datetime, time, timedelta
from MySQLdb._mysql import string_literal
Date = date
Time = time
TimeDelta = timedelta
Timestamp = datetime
DateTimeDeltaType = timedelta
DateTimeType = datetime
def DateFromTicks(ticks):
"""Convert UNIX ticks into a date instance."""
return date(*localtime(ticks)[:3])
def TimeFromTicks(ticks):
"""Convert UNIX ticks into a time instance."""
return time(*localtime(ticks)[3:6])
def TimestampFromTicks(ticks):
"""Convert UNIX ticks into a datetime instance."""
return datetime(*localtime(ticks)[:6])
format_TIME = format_DATE = str
def format_TIMEDELTA(v):
seconds = int(v.seconds) % 60
minutes = int(v.seconds // 60) % 60
hours = int(v.seconds // 3600) % 24
return "%d %d:%d:%d" % (v.days, hours, minutes, seconds)
def format_TIMESTAMP(d):
"""
:type d: datetime.datetime
"""
if d.microsecond:
fmt = " ".join(
[
"{0.year:04}-{0.month:02}-{0.day:02}",
"{0.hour:02}:{0.minute:02}:{0.second:02}.{0.microsecond:06}",
]
)
else:
fmt = " ".join(
[
"{0.year:04}-{0.month:02}-{0.day:02}",
"{0.hour:02}:{0.minute:02}:{0.second:02}",
]
)
return fmt.format(d)
def DateTime_or_None(s):
try:
if len(s) < 11:
return Date_or_None(s)
micros = s[20:]
if len(micros) == 0:
# 12:00:00
micros = 0
elif len(micros) < 7:
# 12:00:00.123456
micros = int(micros) * 10 ** (6 - len(micros))
else:
return None
return datetime(
int(s[:4]), # year
int(s[5:7]), # month
int(s[8:10]), # day
int(s[11:13] or 0), # hour
int(s[14:16] or 0), # minute
int(s[17:19] or 0), # second
micros, # microsecond
)
except ValueError:
return None
def TimeDelta_or_None(s):
try:
h, m, s = s.split(":")
if "." in s:
s, ms = s.split(".")
ms = ms.ljust(6, "0")
else:
ms = 0
if h[0] == "-":
negative = True
else:
negative = False
h, m, s, ms = abs(int(h)), int(m), int(s), int(ms)
td = timedelta(hours=h, minutes=m, seconds=s, microseconds=ms)
if negative:
return -td
else:
return td
except ValueError:
# unpacking or int/float conversion failed
return None
def Time_or_None(s):
try:
h, m, s = s.split(":")
if "." in s:
s, ms = s.split(".")
ms = ms.ljust(6, "0")
else:
ms = 0
h, m, s, ms = int(h), int(m), int(s), int(ms)
return time(hour=h, minute=m, second=s, microsecond=ms)
except ValueError:
return None
def Date_or_None(s):
try:
return date(
int(s[:4]),
int(s[5:7]),
int(s[8:10]),
) # year # month # day
except ValueError:
return None
def DateTime2literal(d, c):
"""Format a DateTime object as an ISO timestamp."""
return string_literal(format_TIMESTAMP(d))
def DateTimeDelta2literal(d, c):
"""Format a DateTimeDelta object as a time."""
return string_literal(format_TIMEDELTA(d))

@ -1,133 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# bitmap distribution font (bdf) file parser
#
# history:
# 1996-05-16 fl created (as bdf2pil)
# 1997-08-25 fl converted to FontFile driver
# 2001-05-25 fl removed bogus __init__ call
# 2002-11-20 fl robustification (from Kevin Cazabon, Dmitry Vasiliev)
# 2003-04-22 fl more robustification (from Graham Dumpleton)
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1997-2003 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
"""
Parse X Bitmap Distribution Format (BDF)
"""
from __future__ import annotations
from typing import BinaryIO
from . import FontFile, Image
bdf_slant = {
"R": "Roman",
"I": "Italic",
"O": "Oblique",
"RI": "Reverse Italic",
"RO": "Reverse Oblique",
"OT": "Other",
}
bdf_spacing = {"P": "Proportional", "M": "Monospaced", "C": "Cell"}
def bdf_char(
f: BinaryIO,
) -> (
tuple[
str,
int,
tuple[tuple[int, int], tuple[int, int, int, int], tuple[int, int, int, int]],
Image.Image,
]
| None
):
# skip to STARTCHAR
while True:
s = f.readline()
if not s:
return None
if s[:9] == b"STARTCHAR":
break
id = s[9:].strip().decode("ascii")
# load symbol properties
props = {}
while True:
s = f.readline()
if not s or s[:6] == b"BITMAP":
break
i = s.find(b" ")
props[s[:i].decode("ascii")] = s[i + 1 : -1].decode("ascii")
# load bitmap
bitmap = bytearray()
while True:
s = f.readline()
if not s or s[:7] == b"ENDCHAR":
break
bitmap += s[:-1]
# The word BBX
# followed by the width in x (BBw), height in y (BBh),
# and x and y displacement (BBxoff0, BByoff0)
# of the lower left corner from the origin of the character.
width, height, x_disp, y_disp = (int(p) for p in props["BBX"].split())
# The word DWIDTH
# followed by the width in x and y of the character in device pixels.
dwx, dwy = (int(p) for p in props["DWIDTH"].split())
bbox = (
(dwx, dwy),
(x_disp, -y_disp - height, width + x_disp, -y_disp),
(0, 0, width, height),
)
try:
im = Image.frombytes("1", (width, height), bitmap, "hex", "1")
except ValueError:
# deal with zero-width characters
im = Image.new("1", (width, height))
return id, int(props["ENCODING"]), bbox, im
class BdfFontFile(FontFile.FontFile):
"""Font file plugin for the X11 BDF format."""
def __init__(self, fp: BinaryIO):
super().__init__()
s = fp.readline()
if s[:13] != b"STARTFONT 2.1":
msg = "not a valid BDF file"
raise SyntaxError(msg)
props = {}
comments = []
while True:
s = fp.readline()
if not s or s[:13] == b"ENDPROPERTIES":
break
i = s.find(b" ")
props[s[:i].decode("ascii")] = s[i + 1 : -1].decode("ascii")
if s[:i] in [b"COMMENT", b"COPYRIGHT"]:
if s.find(b"LogicalFontDescription") < 0:
comments.append(s[i + 1 : -1].decode("ascii"))
while True:
c = bdf_char(fp)
if not c:
break
id, ch, (xy, dst, src), im = c
if 0 <= ch < len(self.glyph):
self.glyph[ch] = xy, dst, src, im

@ -1,475 +0,0 @@
"""
Blizzard Mipmap Format (.blp)
Jerome Leclanche <jerome@leclan.ch>
The contents of this file are hereby released in the public domain (CC0)
Full text of the CC0 license:
https://creativecommons.org/publicdomain/zero/1.0/
BLP1 files, used mostly in Warcraft III, are not fully supported.
All types of BLP2 files used in World of Warcraft are supported.
The BLP file structure consists of a header, up to 16 mipmaps of the
texture
Texture sizes must be powers of two, though the two dimensions do
not have to be equal; 512x256 is valid, but 512x200 is not.
The first mipmap (mipmap #0) is the full size image; each subsequent
mipmap halves both dimensions. The final mipmap should be 1x1.
BLP files come in many different flavours:
* JPEG-compressed (type == 0) - only supported for BLP1.
* RAW images (type == 1, encoding == 1). Each mipmap is stored as an
array of 8-bit values, one per pixel, left to right, top to bottom.
Each value is an index to the palette.
* DXT-compressed (type == 1, encoding == 2):
- DXT1 compression is used if alpha_encoding == 0.
- An additional alpha bit is used if alpha_depth == 1.
- DXT3 compression is used if alpha_encoding == 1.
- DXT5 compression is used if alpha_encoding == 7.
"""
from __future__ import annotations
import os
import struct
from enum import IntEnum
from io import BytesIO
from . import Image, ImageFile
class Format(IntEnum):
JPEG = 0
class Encoding(IntEnum):
UNCOMPRESSED = 1
DXT = 2
UNCOMPRESSED_RAW_BGRA = 3
class AlphaEncoding(IntEnum):
DXT1 = 0
DXT3 = 1
DXT5 = 7
def unpack_565(i):
return ((i >> 11) & 0x1F) << 3, ((i >> 5) & 0x3F) << 2, (i & 0x1F) << 3
def decode_dxt1(data, alpha=False):
"""
input: one "row" of data (i.e. will produce 4*width pixels)
"""
blocks = len(data) // 8 # number of blocks in row
ret = (bytearray(), bytearray(), bytearray(), bytearray())
for block in range(blocks):
# Decode next 8-byte block.
idx = block * 8
color0, color1, bits = struct.unpack_from("<HHI", data, idx)
r0, g0, b0 = unpack_565(color0)
r1, g1, b1 = unpack_565(color1)
# Decode this block into 4x4 pixels
# Accumulate the results onto our 4 row accumulators
for j in range(4):
for i in range(4):
# get next control op and generate a pixel
control = bits & 3
bits = bits >> 2
a = 0xFF
if control == 0:
r, g, b = r0, g0, b0
elif control == 1:
r, g, b = r1, g1, b1
elif control == 2:
if color0 > color1:
r = (2 * r0 + r1) // 3
g = (2 * g0 + g1) // 3
b = (2 * b0 + b1) // 3
else:
r = (r0 + r1) // 2
g = (g0 + g1) // 2
b = (b0 + b1) // 2
elif control == 3:
if color0 > color1:
r = (2 * r1 + r0) // 3
g = (2 * g1 + g0) // 3
b = (2 * b1 + b0) // 3
else:
r, g, b, a = 0, 0, 0, 0
if alpha:
ret[j].extend([r, g, b, a])
else:
ret[j].extend([r, g, b])
return ret
def decode_dxt3(data):
"""
input: one "row" of data (i.e. will produce 4*width pixels)
"""
blocks = len(data) // 16 # number of blocks in row
ret = (bytearray(), bytearray(), bytearray(), bytearray())
for block in range(blocks):
idx = block * 16
block = data[idx : idx + 16]
# Decode next 16-byte block.
bits = struct.unpack_from("<8B", block)
color0, color1 = struct.unpack_from("<HH", block, 8)
(code,) = struct.unpack_from("<I", block, 12)
r0, g0, b0 = unpack_565(color0)
r1, g1, b1 = unpack_565(color1)
for j in range(4):
high = False # Do we want the higher bits?
for i in range(4):
alphacode_index = (4 * j + i) // 2
a = bits[alphacode_index]
if high:
high = False
a >>= 4
else:
high = True
a &= 0xF
a *= 17 # We get a value between 0 and 15
color_code = (code >> 2 * (4 * j + i)) & 0x03
if color_code == 0:
r, g, b = r0, g0, b0
elif color_code == 1:
r, g, b = r1, g1, b1
elif color_code == 2:
r = (2 * r0 + r1) // 3
g = (2 * g0 + g1) // 3
b = (2 * b0 + b1) // 3
elif color_code == 3:
r = (2 * r1 + r0) // 3
g = (2 * g1 + g0) // 3
b = (2 * b1 + b0) // 3
ret[j].extend([r, g, b, a])
return ret
def decode_dxt5(data):
"""
input: one "row" of data (i.e. will produce 4 * width pixels)
"""
blocks = len(data) // 16 # number of blocks in row
ret = (bytearray(), bytearray(), bytearray(), bytearray())
for block in range(blocks):
idx = block * 16
block = data[idx : idx + 16]
# Decode next 16-byte block.
a0, a1 = struct.unpack_from("<BB", block)
bits = struct.unpack_from("<6B", block, 2)
alphacode1 = bits[2] | (bits[3] << 8) | (bits[4] << 16) | (bits[5] << 24)
alphacode2 = bits[0] | (bits[1] << 8)
color0, color1 = struct.unpack_from("<HH", block, 8)
(code,) = struct.unpack_from("<I", block, 12)
r0, g0, b0 = unpack_565(color0)
r1, g1, b1 = unpack_565(color1)
for j in range(4):
for i in range(4):
# get next control op and generate a pixel
alphacode_index = 3 * (4 * j + i)
if alphacode_index <= 12:
alphacode = (alphacode2 >> alphacode_index) & 0x07
elif alphacode_index == 15:
alphacode = (alphacode2 >> 15) | ((alphacode1 << 1) & 0x06)
else: # alphacode_index >= 18 and alphacode_index <= 45
alphacode = (alphacode1 >> (alphacode_index - 16)) & 0x07
if alphacode == 0:
a = a0
elif alphacode == 1:
a = a1
elif a0 > a1:
a = ((8 - alphacode) * a0 + (alphacode - 1) * a1) // 7
elif alphacode == 6:
a = 0
elif alphacode == 7:
a = 255
else:
a = ((6 - alphacode) * a0 + (alphacode - 1) * a1) // 5
color_code = (code >> 2 * (4 * j + i)) & 0x03
if color_code == 0:
r, g, b = r0, g0, b0
elif color_code == 1:
r, g, b = r1, g1, b1
elif color_code == 2:
r = (2 * r0 + r1) // 3
g = (2 * g0 + g1) // 3
b = (2 * b0 + b1) // 3
elif color_code == 3:
r = (2 * r1 + r0) // 3
g = (2 * g1 + g0) // 3
b = (2 * b1 + b0) // 3
ret[j].extend([r, g, b, a])
return ret
class BLPFormatError(NotImplementedError):
pass
def _accept(prefix):
return prefix[:4] in (b"BLP1", b"BLP2")
class BlpImageFile(ImageFile.ImageFile):
"""
Blizzard Mipmap Format
"""
format = "BLP"
format_description = "Blizzard Mipmap Format"
def _open(self):
self.magic = self.fp.read(4)
self.fp.seek(5, os.SEEK_CUR)
(self._blp_alpha_depth,) = struct.unpack("<b", self.fp.read(1))
self.fp.seek(2, os.SEEK_CUR)
self._size = struct.unpack("<II", self.fp.read(8))
if self.magic in (b"BLP1", b"BLP2"):
decoder = self.magic.decode()
else:
msg = f"Bad BLP magic {repr(self.magic)}"
raise BLPFormatError(msg)
self._mode = "RGBA" if self._blp_alpha_depth else "RGB"
self.tile = [(decoder, (0, 0) + self.size, 0, (self.mode, 0, 1))]
class _BLPBaseDecoder(ImageFile.PyDecoder):
_pulls_fd = True
def decode(self, buffer):
try:
self._read_blp_header()
self._load()
except struct.error as e:
msg = "Truncated BLP file"
raise OSError(msg) from e
return -1, 0
def _read_blp_header(self):
self.fd.seek(4)
(self._blp_compression,) = struct.unpack("<i", self._safe_read(4))
(self._blp_encoding,) = struct.unpack("<b", self._safe_read(1))
(self._blp_alpha_depth,) = struct.unpack("<b", self._safe_read(1))
(self._blp_alpha_encoding,) = struct.unpack("<b", self._safe_read(1))
self.fd.seek(1, os.SEEK_CUR) # mips
self.size = struct.unpack("<II", self._safe_read(8))
if isinstance(self, BLP1Decoder):
# Only present for BLP1
(self._blp_encoding,) = struct.unpack("<i", self._safe_read(4))
self.fd.seek(4, os.SEEK_CUR) # subtype
self._blp_offsets = struct.unpack("<16I", self._safe_read(16 * 4))
self._blp_lengths = struct.unpack("<16I", self._safe_read(16 * 4))
def _safe_read(self, length):
return ImageFile._safe_read(self.fd, length)
def _read_palette(self):
ret = []
for i in range(256):
try:
b, g, r, a = struct.unpack("<4B", self._safe_read(4))
except struct.error:
break
ret.append((b, g, r, a))
return ret
def _read_bgra(self, palette):
data = bytearray()
_data = BytesIO(self._safe_read(self._blp_lengths[0]))
while True:
try:
(offset,) = struct.unpack("<B", _data.read(1))
except struct.error:
break
b, g, r, a = palette[offset]
d = (r, g, b)
if self._blp_alpha_depth:
d += (a,)
data.extend(d)
return data
class BLP1Decoder(_BLPBaseDecoder):
def _load(self):
if self._blp_compression == Format.JPEG:
self._decode_jpeg_stream()
elif self._blp_compression == 1:
if self._blp_encoding in (4, 5):
palette = self._read_palette()
data = self._read_bgra(palette)
self.set_as_raw(bytes(data))
else:
msg = f"Unsupported BLP encoding {repr(self._blp_encoding)}"
raise BLPFormatError(msg)
else:
msg = f"Unsupported BLP compression {repr(self._blp_encoding)}"
raise BLPFormatError(msg)
def _decode_jpeg_stream(self):
from .JpegImagePlugin import JpegImageFile
(jpeg_header_size,) = struct.unpack("<I", self._safe_read(4))
jpeg_header = self._safe_read(jpeg_header_size)
self._safe_read(self._blp_offsets[0] - self.fd.tell()) # What IS this?
data = self._safe_read(self._blp_lengths[0])
data = jpeg_header + data
data = BytesIO(data)
image = JpegImageFile(data)
Image._decompression_bomb_check(image.size)
if image.mode == "CMYK":
decoder_name, extents, offset, args = image.tile[0]
image.tile = [(decoder_name, extents, offset, (args[0], "CMYK"))]
r, g, b = image.convert("RGB").split()
image = Image.merge("RGB", (b, g, r))
self.set_as_raw(image.tobytes())
class BLP2Decoder(_BLPBaseDecoder):
def _load(self):
palette = self._read_palette()
self.fd.seek(self._blp_offsets[0])
if self._blp_compression == 1:
# Uncompressed or DirectX compression
if self._blp_encoding == Encoding.UNCOMPRESSED:
data = self._read_bgra(palette)
elif self._blp_encoding == Encoding.DXT:
data = bytearray()
if self._blp_alpha_encoding == AlphaEncoding.DXT1:
linesize = (self.size[0] + 3) // 4 * 8
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt1(
self._safe_read(linesize), alpha=bool(self._blp_alpha_depth)
):
data += d
elif self._blp_alpha_encoding == AlphaEncoding.DXT3:
linesize = (self.size[0] + 3) // 4 * 16
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt3(self._safe_read(linesize)):
data += d
elif self._blp_alpha_encoding == AlphaEncoding.DXT5:
linesize = (self.size[0] + 3) // 4 * 16
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt5(self._safe_read(linesize)):
data += d
else:
msg = f"Unsupported alpha encoding {repr(self._blp_alpha_encoding)}"
raise BLPFormatError(msg)
else:
msg = f"Unknown BLP encoding {repr(self._blp_encoding)}"
raise BLPFormatError(msg)
else:
msg = f"Unknown BLP compression {repr(self._blp_compression)}"
raise BLPFormatError(msg)
self.set_as_raw(bytes(data))
class BLPEncoder(ImageFile.PyEncoder):
_pushes_fd = True
def _write_palette(self):
data = b""
palette = self.im.getpalette("RGBA", "RGBA")
for i in range(len(palette) // 4):
r, g, b, a = palette[i * 4 : (i + 1) * 4]
data += struct.pack("<4B", b, g, r, a)
while len(data) < 256 * 4:
data += b"\x00" * 4
return data
def encode(self, bufsize):
palette_data = self._write_palette()
offset = 20 + 16 * 4 * 2 + len(palette_data)
data = struct.pack("<16I", offset, *((0,) * 15))
w, h = self.im.size
data += struct.pack("<16I", w * h, *((0,) * 15))
data += palette_data
for y in range(h):
for x in range(w):
data += struct.pack("<B", self.im.getpixel((x, y)))
return len(data), 0, data
def _save(im, fp, filename):
if im.mode != "P":
msg = "Unsupported BLP image mode"
raise ValueError(msg)
magic = b"BLP1" if im.encoderinfo.get("blp_version") == "BLP1" else b"BLP2"
fp.write(magic)
fp.write(struct.pack("<i", 1)) # Uncompressed or DirectX compression
fp.write(struct.pack("<b", Encoding.UNCOMPRESSED))
fp.write(struct.pack("<b", 1 if im.palette.mode == "RGBA" else 0))
fp.write(struct.pack("<b", 0)) # alpha encoding
fp.write(struct.pack("<b", 0)) # mips
fp.write(struct.pack("<II", *im.size))
if magic == b"BLP1":
fp.write(struct.pack("<i", 5))
fp.write(struct.pack("<i", 0))
ImageFile._save(im, fp, [("BLP", (0, 0) + im.size, 0, im.mode)])
Image.register_open(BlpImageFile.format, BlpImageFile, _accept)
Image.register_extension(BlpImageFile.format, ".blp")
Image.register_decoder("BLP1", BLP1Decoder)
Image.register_decoder("BLP2", BLP2Decoder)
Image.register_save(BlpImageFile.format, _save)
Image.register_encoder("BLP", BLPEncoder)

@ -1,471 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# BMP file handler
#
# Windows (and OS/2) native bitmap storage format.
#
# history:
# 1995-09-01 fl Created
# 1996-04-30 fl Added save
# 1997-08-27 fl Fixed save of 1-bit images
# 1998-03-06 fl Load P images as L where possible
# 1998-07-03 fl Load P images as 1 where possible
# 1998-12-29 fl Handle small palettes
# 2002-12-30 fl Fixed load of 1-bit palette images
# 2003-04-21 fl Fixed load of 1-bit monochrome images
# 2003-04-23 fl Added limited support for BI_BITFIELDS compression
#
# Copyright (c) 1997-2003 by Secret Labs AB
# Copyright (c) 1995-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import os
from . import Image, ImageFile, ImagePalette
from ._binary import i16le as i16
from ._binary import i32le as i32
from ._binary import o8
from ._binary import o16le as o16
from ._binary import o32le as o32
#
# --------------------------------------------------------------------
# Read BMP file
BIT2MODE = {
# bits => mode, rawmode
1: ("P", "P;1"),
4: ("P", "P;4"),
8: ("P", "P"),
16: ("RGB", "BGR;15"),
24: ("RGB", "BGR"),
32: ("RGB", "BGRX"),
}
def _accept(prefix):
return prefix[:2] == b"BM"
def _dib_accept(prefix):
return i32(prefix) in [12, 40, 64, 108, 124]
# =============================================================================
# Image plugin for the Windows BMP format.
# =============================================================================
class BmpImageFile(ImageFile.ImageFile):
"""Image plugin for the Windows Bitmap format (BMP)"""
# ------------------------------------------------------------- Description
format_description = "Windows Bitmap"
format = "BMP"
# -------------------------------------------------- BMP Compression values
COMPRESSIONS = {"RAW": 0, "RLE8": 1, "RLE4": 2, "BITFIELDS": 3, "JPEG": 4, "PNG": 5}
for k, v in COMPRESSIONS.items():
vars()[k] = v
def _bitmap(self, header=0, offset=0):
"""Read relevant info about the BMP"""
read, seek = self.fp.read, self.fp.seek
if header:
seek(header)
# read bmp header size @offset 14 (this is part of the header size)
file_info = {"header_size": i32(read(4)), "direction": -1}
# -------------------- If requested, read header at a specific position
# read the rest of the bmp header, without its size
header_data = ImageFile._safe_read(self.fp, file_info["header_size"] - 4)
# -------------------------------------------------- IBM OS/2 Bitmap v1
# ----- This format has different offsets because of width/height types
if file_info["header_size"] == 12:
file_info["width"] = i16(header_data, 0)
file_info["height"] = i16(header_data, 2)
file_info["planes"] = i16(header_data, 4)
file_info["bits"] = i16(header_data, 6)
file_info["compression"] = self.RAW
file_info["palette_padding"] = 3
# --------------------------------------------- Windows Bitmap v2 to v5
# v3, OS/2 v2, v4, v5
elif file_info["header_size"] in (40, 64, 108, 124):
file_info["y_flip"] = header_data[7] == 0xFF
file_info["direction"] = 1 if file_info["y_flip"] else -1
file_info["width"] = i32(header_data, 0)
file_info["height"] = (
i32(header_data, 4)
if not file_info["y_flip"]
else 2**32 - i32(header_data, 4)
)
file_info["planes"] = i16(header_data, 8)
file_info["bits"] = i16(header_data, 10)
file_info["compression"] = i32(header_data, 12)
# byte size of pixel data
file_info["data_size"] = i32(header_data, 16)
file_info["pixels_per_meter"] = (
i32(header_data, 20),
i32(header_data, 24),
)
file_info["colors"] = i32(header_data, 28)
file_info["palette_padding"] = 4
self.info["dpi"] = tuple(x / 39.3701 for x in file_info["pixels_per_meter"])
if file_info["compression"] == self.BITFIELDS:
if len(header_data) >= 52:
for idx, mask in enumerate(
["r_mask", "g_mask", "b_mask", "a_mask"]
):
file_info[mask] = i32(header_data, 36 + idx * 4)
else:
# 40 byte headers only have the three components in the
# bitfields masks, ref:
# https://msdn.microsoft.com/en-us/library/windows/desktop/dd183376(v=vs.85).aspx
# See also
# https://github.com/python-pillow/Pillow/issues/1293
# There is a 4th component in the RGBQuad, in the alpha
# location, but it is listed as a reserved component,
# and it is not generally an alpha channel
file_info["a_mask"] = 0x0
for mask in ["r_mask", "g_mask", "b_mask"]:
file_info[mask] = i32(read(4))
file_info["rgb_mask"] = (
file_info["r_mask"],
file_info["g_mask"],
file_info["b_mask"],
)
file_info["rgba_mask"] = (
file_info["r_mask"],
file_info["g_mask"],
file_info["b_mask"],
file_info["a_mask"],
)
else:
msg = f"Unsupported BMP header type ({file_info['header_size']})"
raise OSError(msg)
# ------------------ Special case : header is reported 40, which
# ---------------------- is shorter than real size for bpp >= 16
self._size = file_info["width"], file_info["height"]
# ------- If color count was not found in the header, compute from bits
file_info["colors"] = (
file_info["colors"]
if file_info.get("colors", 0)
else (1 << file_info["bits"])
)
if offset == 14 + file_info["header_size"] and file_info["bits"] <= 8:
offset += 4 * file_info["colors"]
# ---------------------- Check bit depth for unusual unsupported values
self._mode, raw_mode = BIT2MODE.get(file_info["bits"], (None, None))
if self.mode is None:
msg = f"Unsupported BMP pixel depth ({file_info['bits']})"
raise OSError(msg)
# ---------------- Process BMP with Bitfields compression (not palette)
decoder_name = "raw"
if file_info["compression"] == self.BITFIELDS:
SUPPORTED = {
32: [
(0xFF0000, 0xFF00, 0xFF, 0x0),
(0xFF000000, 0xFF0000, 0xFF00, 0x0),
(0xFF000000, 0xFF0000, 0xFF00, 0xFF),
(0xFF, 0xFF00, 0xFF0000, 0xFF000000),
(0xFF0000, 0xFF00, 0xFF, 0xFF000000),
(0x0, 0x0, 0x0, 0x0),
],
24: [(0xFF0000, 0xFF00, 0xFF)],
16: [(0xF800, 0x7E0, 0x1F), (0x7C00, 0x3E0, 0x1F)],
}
MASK_MODES = {
(32, (0xFF0000, 0xFF00, 0xFF, 0x0)): "BGRX",
(32, (0xFF000000, 0xFF0000, 0xFF00, 0x0)): "XBGR",
(32, (0xFF000000, 0xFF0000, 0xFF00, 0xFF)): "ABGR",
(32, (0xFF, 0xFF00, 0xFF0000, 0xFF000000)): "RGBA",
(32, (0xFF0000, 0xFF00, 0xFF, 0xFF000000)): "BGRA",
(32, (0x0, 0x0, 0x0, 0x0)): "BGRA",
(24, (0xFF0000, 0xFF00, 0xFF)): "BGR",
(16, (0xF800, 0x7E0, 0x1F)): "BGR;16",
(16, (0x7C00, 0x3E0, 0x1F)): "BGR;15",
}
if file_info["bits"] in SUPPORTED:
if (
file_info["bits"] == 32
and file_info["rgba_mask"] in SUPPORTED[file_info["bits"]]
):
raw_mode = MASK_MODES[(file_info["bits"], file_info["rgba_mask"])]
self._mode = "RGBA" if "A" in raw_mode else self.mode
elif (
file_info["bits"] in (24, 16)
and file_info["rgb_mask"] in SUPPORTED[file_info["bits"]]
):
raw_mode = MASK_MODES[(file_info["bits"], file_info["rgb_mask"])]
else:
msg = "Unsupported BMP bitfields layout"
raise OSError(msg)
else:
msg = "Unsupported BMP bitfields layout"
raise OSError(msg)
elif file_info["compression"] == self.RAW:
if file_info["bits"] == 32 and header == 22: # 32-bit .cur offset
raw_mode, self._mode = "BGRA", "RGBA"
elif file_info["compression"] in (self.RLE8, self.RLE4):
decoder_name = "bmp_rle"
else:
msg = f"Unsupported BMP compression ({file_info['compression']})"
raise OSError(msg)
# --------------- Once the header is processed, process the palette/LUT
if self.mode == "P": # Paletted for 1, 4 and 8 bit images
# ---------------------------------------------------- 1-bit images
if not (0 < file_info["colors"] <= 65536):
msg = f"Unsupported BMP Palette size ({file_info['colors']})"
raise OSError(msg)
else:
padding = file_info["palette_padding"]
palette = read(padding * file_info["colors"])
grayscale = True
indices = (
(0, 255)
if file_info["colors"] == 2
else list(range(file_info["colors"]))
)
# ----------------- Check if grayscale and ignore palette if so
for ind, val in enumerate(indices):
rgb = palette[ind * padding : ind * padding + 3]
if rgb != o8(val) * 3:
grayscale = False
# ------- If all colors are gray, white or black, ditch palette
if grayscale:
self._mode = "1" if file_info["colors"] == 2 else "L"
raw_mode = self.mode
else:
self._mode = "P"
self.palette = ImagePalette.raw(
"BGRX" if padding == 4 else "BGR", palette
)
# ---------------------------- Finally set the tile data for the plugin
self.info["compression"] = file_info["compression"]
args = [raw_mode]
if decoder_name == "bmp_rle":
args.append(file_info["compression"] == self.RLE4)
else:
args.append(((file_info["width"] * file_info["bits"] + 31) >> 3) & (~3))
args.append(file_info["direction"])
self.tile = [
(
decoder_name,
(0, 0, file_info["width"], file_info["height"]),
offset or self.fp.tell(),
tuple(args),
)
]
def _open(self):
"""Open file, check magic number and read header"""
# read 14 bytes: magic number, filesize, reserved, header final offset
head_data = self.fp.read(14)
# choke if the file does not have the required magic bytes
if not _accept(head_data):
msg = "Not a BMP file"
raise SyntaxError(msg)
# read the start position of the BMP image data (u32)
offset = i32(head_data, 10)
# load bitmap information (offset=raster info)
self._bitmap(offset=offset)
class BmpRleDecoder(ImageFile.PyDecoder):
_pulls_fd = True
def decode(self, buffer):
rle4 = self.args[1]
data = bytearray()
x = 0
while len(data) < self.state.xsize * self.state.ysize:
pixels = self.fd.read(1)
byte = self.fd.read(1)
if not pixels or not byte:
break
num_pixels = pixels[0]
if num_pixels:
# encoded mode
if x + num_pixels > self.state.xsize:
# Too much data for row
num_pixels = max(0, self.state.xsize - x)
if rle4:
first_pixel = o8(byte[0] >> 4)
second_pixel = o8(byte[0] & 0x0F)
for index in range(num_pixels):
if index % 2 == 0:
data += first_pixel
else:
data += second_pixel
else:
data += byte * num_pixels
x += num_pixels
else:
if byte[0] == 0:
# end of line
while len(data) % self.state.xsize != 0:
data += b"\x00"
x = 0
elif byte[0] == 1:
# end of bitmap
break
elif byte[0] == 2:
# delta
bytes_read = self.fd.read(2)
if len(bytes_read) < 2:
break
right, up = self.fd.read(2)
data += b"\x00" * (right + up * self.state.xsize)
x = len(data) % self.state.xsize
else:
# absolute mode
if rle4:
# 2 pixels per byte
byte_count = byte[0] // 2
bytes_read = self.fd.read(byte_count)
for byte_read in bytes_read:
data += o8(byte_read >> 4)
data += o8(byte_read & 0x0F)
else:
byte_count = byte[0]
bytes_read = self.fd.read(byte_count)
data += bytes_read
if len(bytes_read) < byte_count:
break
x += byte[0]
# align to 16-bit word boundary
if self.fd.tell() % 2 != 0:
self.fd.seek(1, os.SEEK_CUR)
rawmode = "L" if self.mode == "L" else "P"
self.set_as_raw(bytes(data), (rawmode, 0, self.args[-1]))
return -1, 0
# =============================================================================
# Image plugin for the DIB format (BMP alias)
# =============================================================================
class DibImageFile(BmpImageFile):
format = "DIB"
format_description = "Windows Bitmap"
def _open(self):
self._bitmap()
#
# --------------------------------------------------------------------
# Write BMP file
SAVE = {
"1": ("1", 1, 2),
"L": ("L", 8, 256),
"P": ("P", 8, 256),
"RGB": ("BGR", 24, 0),
"RGBA": ("BGRA", 32, 0),
}
def _dib_save(im, fp, filename):
_save(im, fp, filename, False)
def _save(im, fp, filename, bitmap_header=True):
try:
rawmode, bits, colors = SAVE[im.mode]
except KeyError as e:
msg = f"cannot write mode {im.mode} as BMP"
raise OSError(msg) from e
info = im.encoderinfo
dpi = info.get("dpi", (96, 96))
# 1 meter == 39.3701 inches
ppm = tuple(int(x * 39.3701 + 0.5) for x in dpi)
stride = ((im.size[0] * bits + 7) // 8 + 3) & (~3)
header = 40 # or 64 for OS/2 version 2
image = stride * im.size[1]
if im.mode == "1":
palette = b"".join(o8(i) * 4 for i in (0, 255))
elif im.mode == "L":
palette = b"".join(o8(i) * 4 for i in range(256))
elif im.mode == "P":
palette = im.im.getpalette("RGB", "BGRX")
colors = len(palette) // 4
else:
palette = None
# bitmap header
if bitmap_header:
offset = 14 + header + colors * 4
file_size = offset + image
if file_size > 2**32 - 1:
msg = "File size is too large for the BMP format"
raise ValueError(msg)
fp.write(
b"BM" # file type (magic)
+ o32(file_size) # file size
+ o32(0) # reserved
+ o32(offset) # image data offset
)
# bitmap info header
fp.write(
o32(header) # info header size
+ o32(im.size[0]) # width
+ o32(im.size[1]) # height
+ o16(1) # planes
+ o16(bits) # depth
+ o32(0) # compression (0=uncompressed)
+ o32(image) # size of bitmap
+ o32(ppm[0]) # resolution
+ o32(ppm[1]) # resolution
+ o32(colors) # colors used
+ o32(colors) # colors important
)
fp.write(b"\0" * (header - 40)) # padding (for OS/2 format)
if palette:
fp.write(palette)
ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 0, (rawmode, stride, -1))])
#
# --------------------------------------------------------------------
# Registry
Image.register_open(BmpImageFile.format, BmpImageFile, _accept)
Image.register_save(BmpImageFile.format, _save)
Image.register_extension(BmpImageFile.format, ".bmp")
Image.register_mime(BmpImageFile.format, "image/bmp")
Image.register_decoder("bmp_rle", BmpRleDecoder)
Image.register_open(DibImageFile.format, DibImageFile, _dib_accept)
Image.register_save(DibImageFile.format, _dib_save)
Image.register_extension(DibImageFile.format, ".dib")
Image.register_mime(DibImageFile.format, "image/bmp")

@ -1,74 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# BUFR stub adapter
#
# Copyright (c) 1996-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
_handler = None
def register_handler(handler):
"""
Install application-specific BUFR image handler.
:param handler: Handler object.
"""
global _handler
_handler = handler
# --------------------------------------------------------------------
# Image adapter
def _accept(prefix):
return prefix[:4] == b"BUFR" or prefix[:4] == b"ZCZC"
class BufrStubImageFile(ImageFile.StubImageFile):
format = "BUFR"
format_description = "BUFR"
def _open(self):
offset = self.fp.tell()
if not _accept(self.fp.read(4)):
msg = "Not a BUFR file"
raise SyntaxError(msg)
self.fp.seek(offset)
# make something up
self._mode = "F"
self._size = 1, 1
loader = self._load()
if loader:
loader.open(self)
def _load(self):
return _handler
def _save(im, fp, filename):
if _handler is None or not hasattr(_handler, "save"):
msg = "BUFR save handler not installed"
raise OSError(msg)
_handler.save(im, fp, filename)
# --------------------------------------------------------------------
# Registry
Image.register_open(BufrStubImageFile.format, BufrStubImageFile, _accept)
Image.register_save(BufrStubImageFile.format, _save)
Image.register_extension(BufrStubImageFile.format, ".bufr")

@ -1,121 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# a class to read from a container file
#
# History:
# 1995-06-18 fl Created
# 1995-09-07 fl Added readline(), readlines()
#
# Copyright (c) 1997-2001 by Secret Labs AB
# Copyright (c) 1995 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
from typing import IO, AnyStr, Generic, Literal
class ContainerIO(Generic[AnyStr]):
"""
A file object that provides read access to a part of an existing
file (for example a TAR file).
"""
def __init__(self, file: IO[AnyStr], offset: int, length: int) -> None:
"""
Create file object.
:param file: Existing file.
:param offset: Start of region, in bytes.
:param length: Size of region, in bytes.
"""
self.fh: IO[AnyStr] = file
self.pos = 0
self.offset = offset
self.length = length
self.fh.seek(offset)
##
# Always false.
def isatty(self) -> bool:
return False
def seek(self, offset: int, mode: Literal[0, 1, 2] = io.SEEK_SET) -> None:
"""
Move file pointer.
:param offset: Offset in bytes.
:param mode: Starting position. Use 0 for beginning of region, 1
for current offset, and 2 for end of region. You cannot move
the pointer outside the defined region.
"""
if mode == 1:
self.pos = self.pos + offset
elif mode == 2:
self.pos = self.length + offset
else:
self.pos = offset
# clamp
self.pos = max(0, min(self.pos, self.length))
self.fh.seek(self.offset + self.pos)
def tell(self) -> int:
"""
Get current file pointer.
:returns: Offset from start of region, in bytes.
"""
return self.pos
def read(self, n: int = 0) -> AnyStr:
"""
Read data.
:param n: Number of bytes to read. If omitted or zero,
read until end of region.
:returns: An 8-bit string.
"""
if n:
n = min(n, self.length - self.pos)
else:
n = self.length - self.pos
if not n: # EOF
return b"" if "b" in self.fh.mode else "" # type: ignore[return-value]
self.pos = self.pos + n
return self.fh.read(n)
def readline(self) -> AnyStr:
"""
Read a line of text.
:returns: An 8-bit string.
"""
s: AnyStr = b"" if "b" in self.fh.mode else "" # type: ignore[assignment]
newline_character = b"\n" if "b" in self.fh.mode else "\n"
while True:
c = self.read(1)
if not c:
break
s = s + c
if c == newline_character:
break
return s
def readlines(self) -> list[AnyStr]:
"""
Read multiple lines of text.
:returns: A list of 8-bit strings.
"""
lines = []
while True:
s = self.readline()
if not s:
break
lines.append(s)
return lines

@ -1,75 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# Windows Cursor support for PIL
#
# notes:
# uses BmpImagePlugin.py to read the bitmap data.
#
# history:
# 96-05-27 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import BmpImagePlugin, Image
from ._binary import i16le as i16
from ._binary import i32le as i32
#
# --------------------------------------------------------------------
def _accept(prefix):
return prefix[:4] == b"\0\0\2\0"
##
# Image plugin for Windows Cursor files.
class CurImageFile(BmpImagePlugin.BmpImageFile):
format = "CUR"
format_description = "Windows Cursor"
def _open(self):
offset = self.fp.tell()
# check magic
s = self.fp.read(6)
if not _accept(s):
msg = "not a CUR file"
raise SyntaxError(msg)
# pick the largest cursor in the file
m = b""
for i in range(i16(s, 4)):
s = self.fp.read(16)
if not m:
m = s
elif s[0] > m[0] and s[1] > m[1]:
m = s
if not m:
msg = "No cursors were found"
raise TypeError(msg)
# load as bitmap
self._bitmap(i32(m, 12) + offset)
# patch up the bitmap height
self._size = self.size[0], self.size[1] // 2
d, e, o, a = self.tile[0]
self.tile[0] = d, (0, 0) + self.size, o, a
#
# --------------------------------------------------------------------
Image.register_open(CurImageFile.format, CurImageFile, _accept)
Image.register_extension(CurImageFile.format, ".cur")

@ -1,80 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# DCX file handling
#
# DCX is a container file format defined by Intel, commonly used
# for fax applications. Each DCX file consists of a directory
# (a list of file offsets) followed by a set of (usually 1-bit)
# PCX files.
#
# History:
# 1995-09-09 fl Created
# 1996-03-20 fl Properly derived from PcxImageFile.
# 1998-07-15 fl Renamed offset attribute to avoid name clash
# 2002-07-30 fl Fixed file handling
#
# Copyright (c) 1997-98 by Secret Labs AB.
# Copyright (c) 1995-96 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image
from ._binary import i32le as i32
from .PcxImagePlugin import PcxImageFile
MAGIC = 0x3ADE68B1 # QUIZ: what's this value, then?
def _accept(prefix):
return len(prefix) >= 4 and i32(prefix) == MAGIC
##
# Image plugin for the Intel DCX format.
class DcxImageFile(PcxImageFile):
format = "DCX"
format_description = "Intel DCX"
_close_exclusive_fp_after_loading = False
def _open(self):
# Header
s = self.fp.read(4)
if not _accept(s):
msg = "not a DCX file"
raise SyntaxError(msg)
# Component directory
self._offset = []
for i in range(1024):
offset = i32(self.fp.read(4))
if not offset:
break
self._offset.append(offset)
self._fp = self.fp
self.frame = None
self.n_frames = len(self._offset)
self.is_animated = self.n_frames > 1
self.seek(0)
def seek(self, frame):
if not self._seek_check(frame):
return
self.frame = frame
self.fp = self._fp
self.fp.seek(self._offset[frame])
PcxImageFile._open(self)
def tell(self):
return self.frame
Image.register_open(DcxImageFile.format, DcxImageFile, _accept)
Image.register_extension(DcxImageFile.format, ".dcx")

@ -1,566 +0,0 @@
"""
A Pillow loader for .dds files (S3TC-compressed aka DXTC)
Jerome Leclanche <jerome@leclan.ch>
Documentation:
https://web.archive.org/web/20170802060935/http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
The contents of this file are hereby released in the public domain (CC0)
Full text of the CC0 license:
https://creativecommons.org/publicdomain/zero/1.0/
"""
from __future__ import annotations
import io
import struct
import sys
from enum import IntEnum, IntFlag
from . import Image, ImageFile, ImagePalette
from ._binary import i32le as i32
from ._binary import o8
from ._binary import o32le as o32
# Magic ("DDS ")
DDS_MAGIC = 0x20534444
# DDS flags
class DDSD(IntFlag):
CAPS = 0x1
HEIGHT = 0x2
WIDTH = 0x4
PITCH = 0x8
PIXELFORMAT = 0x1000
MIPMAPCOUNT = 0x20000
LINEARSIZE = 0x80000
DEPTH = 0x800000
# DDS caps
class DDSCAPS(IntFlag):
COMPLEX = 0x8
TEXTURE = 0x1000
MIPMAP = 0x400000
class DDSCAPS2(IntFlag):
CUBEMAP = 0x200
CUBEMAP_POSITIVEX = 0x400
CUBEMAP_NEGATIVEX = 0x800
CUBEMAP_POSITIVEY = 0x1000
CUBEMAP_NEGATIVEY = 0x2000
CUBEMAP_POSITIVEZ = 0x4000
CUBEMAP_NEGATIVEZ = 0x8000
VOLUME = 0x200000
# Pixel Format
class DDPF(IntFlag):
ALPHAPIXELS = 0x1
ALPHA = 0x2
FOURCC = 0x4
PALETTEINDEXED8 = 0x20
RGB = 0x40
LUMINANCE = 0x20000
# dxgiformat.h
class DXGI_FORMAT(IntEnum):
UNKNOWN = 0
R32G32B32A32_TYPELESS = 1
R32G32B32A32_FLOAT = 2
R32G32B32A32_UINT = 3
R32G32B32A32_SINT = 4
R32G32B32_TYPELESS = 5
R32G32B32_FLOAT = 6
R32G32B32_UINT = 7
R32G32B32_SINT = 8
R16G16B16A16_TYPELESS = 9
R16G16B16A16_FLOAT = 10
R16G16B16A16_UNORM = 11
R16G16B16A16_UINT = 12
R16G16B16A16_SNORM = 13
R16G16B16A16_SINT = 14
R32G32_TYPELESS = 15
R32G32_FLOAT = 16
R32G32_UINT = 17
R32G32_SINT = 18
R32G8X24_TYPELESS = 19
D32_FLOAT_S8X24_UINT = 20
R32_FLOAT_X8X24_TYPELESS = 21
X32_TYPELESS_G8X24_UINT = 22
R10G10B10A2_TYPELESS = 23
R10G10B10A2_UNORM = 24
R10G10B10A2_UINT = 25
R11G11B10_FLOAT = 26
R8G8B8A8_TYPELESS = 27
R8G8B8A8_UNORM = 28
R8G8B8A8_UNORM_SRGB = 29
R8G8B8A8_UINT = 30
R8G8B8A8_SNORM = 31
R8G8B8A8_SINT = 32
R16G16_TYPELESS = 33
R16G16_FLOAT = 34
R16G16_UNORM = 35
R16G16_UINT = 36
R16G16_SNORM = 37
R16G16_SINT = 38
R32_TYPELESS = 39
D32_FLOAT = 40
R32_FLOAT = 41
R32_UINT = 42
R32_SINT = 43
R24G8_TYPELESS = 44
D24_UNORM_S8_UINT = 45
R24_UNORM_X8_TYPELESS = 46
X24_TYPELESS_G8_UINT = 47
R8G8_TYPELESS = 48
R8G8_UNORM = 49
R8G8_UINT = 50
R8G8_SNORM = 51
R8G8_SINT = 52
R16_TYPELESS = 53
R16_FLOAT = 54
D16_UNORM = 55
R16_UNORM = 56
R16_UINT = 57
R16_SNORM = 58
R16_SINT = 59
R8_TYPELESS = 60
R8_UNORM = 61
R8_UINT = 62
R8_SNORM = 63
R8_SINT = 64
A8_UNORM = 65
R1_UNORM = 66
R9G9B9E5_SHAREDEXP = 67
R8G8_B8G8_UNORM = 68
G8R8_G8B8_UNORM = 69
BC1_TYPELESS = 70
BC1_UNORM = 71
BC1_UNORM_SRGB = 72
BC2_TYPELESS = 73
BC2_UNORM = 74
BC2_UNORM_SRGB = 75
BC3_TYPELESS = 76
BC3_UNORM = 77
BC3_UNORM_SRGB = 78
BC4_TYPELESS = 79
BC4_UNORM = 80
BC4_SNORM = 81
BC5_TYPELESS = 82
BC5_UNORM = 83
BC5_SNORM = 84
B5G6R5_UNORM = 85
B5G5R5A1_UNORM = 86
B8G8R8A8_UNORM = 87
B8G8R8X8_UNORM = 88
R10G10B10_XR_BIAS_A2_UNORM = 89
B8G8R8A8_TYPELESS = 90
B8G8R8A8_UNORM_SRGB = 91
B8G8R8X8_TYPELESS = 92
B8G8R8X8_UNORM_SRGB = 93
BC6H_TYPELESS = 94
BC6H_UF16 = 95
BC6H_SF16 = 96
BC7_TYPELESS = 97
BC7_UNORM = 98
BC7_UNORM_SRGB = 99
AYUV = 100
Y410 = 101
Y416 = 102
NV12 = 103
P010 = 104
P016 = 105
OPAQUE_420 = 106
YUY2 = 107
Y210 = 108
Y216 = 109
NV11 = 110
AI44 = 111
IA44 = 112
P8 = 113
A8P8 = 114
B4G4R4A4_UNORM = 115
P208 = 130
V208 = 131
V408 = 132
SAMPLER_FEEDBACK_MIN_MIP_OPAQUE = 189
SAMPLER_FEEDBACK_MIP_REGION_USED_OPAQUE = 190
class D3DFMT(IntEnum):
UNKNOWN = 0
R8G8B8 = 20
A8R8G8B8 = 21
X8R8G8B8 = 22
R5G6B5 = 23
X1R5G5B5 = 24
A1R5G5B5 = 25
A4R4G4B4 = 26
R3G3B2 = 27
A8 = 28
A8R3G3B2 = 29
X4R4G4B4 = 30
A2B10G10R10 = 31
A8B8G8R8 = 32
X8B8G8R8 = 33
G16R16 = 34
A2R10G10B10 = 35
A16B16G16R16 = 36
A8P8 = 40
P8 = 41
L8 = 50
A8L8 = 51
A4L4 = 52
V8U8 = 60
L6V5U5 = 61
X8L8V8U8 = 62
Q8W8V8U8 = 63
V16U16 = 64
A2W10V10U10 = 67
D16_LOCKABLE = 70
D32 = 71
D15S1 = 73
D24S8 = 75
D24X8 = 77
D24X4S4 = 79
D16 = 80
D32F_LOCKABLE = 82
D24FS8 = 83
D32_LOCKABLE = 84
S8_LOCKABLE = 85
L16 = 81
VERTEXDATA = 100
INDEX16 = 101
INDEX32 = 102
Q16W16V16U16 = 110
R16F = 111
G16R16F = 112
A16B16G16R16F = 113
R32F = 114
G32R32F = 115
A32B32G32R32F = 116
CxV8U8 = 117
A1 = 118
A2B10G10R10_XR_BIAS = 119
BINARYBUFFER = 199
UYVY = i32(b"UYVY")
R8G8_B8G8 = i32(b"RGBG")
YUY2 = i32(b"YUY2")
G8R8_G8B8 = i32(b"GRGB")
DXT1 = i32(b"DXT1")
DXT2 = i32(b"DXT2")
DXT3 = i32(b"DXT3")
DXT4 = i32(b"DXT4")
DXT5 = i32(b"DXT5")
DX10 = i32(b"DX10")
BC4S = i32(b"BC4S")
BC4U = i32(b"BC4U")
BC5S = i32(b"BC5S")
BC5U = i32(b"BC5U")
ATI1 = i32(b"ATI1")
ATI2 = i32(b"ATI2")
MULTI2_ARGB8 = i32(b"MET1")
# Backward compatibility layer
module = sys.modules[__name__]
for item in DDSD:
setattr(module, "DDSD_" + item.name, item.value)
for item in DDSCAPS:
setattr(module, "DDSCAPS_" + item.name, item.value)
for item in DDSCAPS2:
setattr(module, "DDSCAPS2_" + item.name, item.value)
for item in DDPF:
setattr(module, "DDPF_" + item.name, item.value)
DDS_FOURCC = DDPF.FOURCC
DDS_RGB = DDPF.RGB
DDS_RGBA = DDPF.RGB | DDPF.ALPHAPIXELS
DDS_LUMINANCE = DDPF.LUMINANCE
DDS_LUMINANCEA = DDPF.LUMINANCE | DDPF.ALPHAPIXELS
DDS_ALPHA = DDPF.ALPHA
DDS_PAL8 = DDPF.PALETTEINDEXED8
DDS_HEADER_FLAGS_TEXTURE = DDSD.CAPS | DDSD.HEIGHT | DDSD.WIDTH | DDSD.PIXELFORMAT
DDS_HEADER_FLAGS_MIPMAP = DDSD.MIPMAPCOUNT
DDS_HEADER_FLAGS_VOLUME = DDSD.DEPTH
DDS_HEADER_FLAGS_PITCH = DDSD.PITCH
DDS_HEADER_FLAGS_LINEARSIZE = DDSD.LINEARSIZE
DDS_HEIGHT = DDSD.HEIGHT
DDS_WIDTH = DDSD.WIDTH
DDS_SURFACE_FLAGS_TEXTURE = DDSCAPS.TEXTURE
DDS_SURFACE_FLAGS_MIPMAP = DDSCAPS.COMPLEX | DDSCAPS.MIPMAP
DDS_SURFACE_FLAGS_CUBEMAP = DDSCAPS.COMPLEX
DDS_CUBEMAP_POSITIVEX = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_POSITIVEX
DDS_CUBEMAP_NEGATIVEX = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_NEGATIVEX
DDS_CUBEMAP_POSITIVEY = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_POSITIVEY
DDS_CUBEMAP_NEGATIVEY = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_NEGATIVEY
DDS_CUBEMAP_POSITIVEZ = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_POSITIVEZ
DDS_CUBEMAP_NEGATIVEZ = DDSCAPS2.CUBEMAP | DDSCAPS2.CUBEMAP_NEGATIVEZ
DXT1_FOURCC = D3DFMT.DXT1
DXT3_FOURCC = D3DFMT.DXT3
DXT5_FOURCC = D3DFMT.DXT5
DXGI_FORMAT_R8G8B8A8_TYPELESS = DXGI_FORMAT.R8G8B8A8_TYPELESS
DXGI_FORMAT_R8G8B8A8_UNORM = DXGI_FORMAT.R8G8B8A8_UNORM
DXGI_FORMAT_R8G8B8A8_UNORM_SRGB = DXGI_FORMAT.R8G8B8A8_UNORM_SRGB
DXGI_FORMAT_BC5_TYPELESS = DXGI_FORMAT.BC5_TYPELESS
DXGI_FORMAT_BC5_UNORM = DXGI_FORMAT.BC5_UNORM
DXGI_FORMAT_BC5_SNORM = DXGI_FORMAT.BC5_SNORM
DXGI_FORMAT_BC6H_UF16 = DXGI_FORMAT.BC6H_UF16
DXGI_FORMAT_BC6H_SF16 = DXGI_FORMAT.BC6H_SF16
DXGI_FORMAT_BC7_TYPELESS = DXGI_FORMAT.BC7_TYPELESS
DXGI_FORMAT_BC7_UNORM = DXGI_FORMAT.BC7_UNORM
DXGI_FORMAT_BC7_UNORM_SRGB = DXGI_FORMAT.BC7_UNORM_SRGB
class DdsImageFile(ImageFile.ImageFile):
format = "DDS"
format_description = "DirectDraw Surface"
def _open(self):
if not _accept(self.fp.read(4)):
msg = "not a DDS file"
raise SyntaxError(msg)
(header_size,) = struct.unpack("<I", self.fp.read(4))
if header_size != 124:
msg = f"Unsupported header size {repr(header_size)}"
raise OSError(msg)
header_bytes = self.fp.read(header_size - 4)
if len(header_bytes) != 120:
msg = f"Incomplete header: {len(header_bytes)} bytes"
raise OSError(msg)
header = io.BytesIO(header_bytes)
flags, height, width = struct.unpack("<3I", header.read(12))
self._size = (width, height)
extents = (0, 0) + self.size
pitch, depth, mipmaps = struct.unpack("<3I", header.read(12))
struct.unpack("<11I", header.read(44)) # reserved
# pixel format
pfsize, pfflags, fourcc, bitcount = struct.unpack("<4I", header.read(16))
n = 0
rawmode = None
if pfflags & DDPF.RGB:
# Texture contains uncompressed RGB data
if pfflags & DDPF.ALPHAPIXELS:
self._mode = "RGBA"
mask_count = 4
else:
self._mode = "RGB"
mask_count = 3
masks = struct.unpack(f"<{mask_count}I", header.read(mask_count * 4))
self.tile = [("dds_rgb", extents, 0, (bitcount, masks))]
return
elif pfflags & DDPF.LUMINANCE:
if bitcount == 8:
self._mode = "L"
elif bitcount == 16 and pfflags & DDPF.ALPHAPIXELS:
self._mode = "LA"
else:
msg = f"Unsupported bitcount {bitcount} for {pfflags}"
raise OSError(msg)
elif pfflags & DDPF.PALETTEINDEXED8:
self._mode = "P"
self.palette = ImagePalette.raw("RGBA", self.fp.read(1024))
elif pfflags & DDPF.FOURCC:
offset = header_size + 4
if fourcc == D3DFMT.DXT1:
self._mode = "RGBA"
self.pixel_format = "DXT1"
n = 1
elif fourcc == D3DFMT.DXT3:
self._mode = "RGBA"
self.pixel_format = "DXT3"
n = 2
elif fourcc == D3DFMT.DXT5:
self._mode = "RGBA"
self.pixel_format = "DXT5"
n = 3
elif fourcc in (D3DFMT.BC4U, D3DFMT.ATI1):
self._mode = "L"
self.pixel_format = "BC4"
n = 4
elif fourcc == D3DFMT.BC5S:
self._mode = "RGB"
self.pixel_format = "BC5S"
n = 5
elif fourcc in (D3DFMT.BC5U, D3DFMT.ATI2):
self._mode = "RGB"
self.pixel_format = "BC5"
n = 5
elif fourcc == D3DFMT.DX10:
offset += 20
# ignoring flags which pertain to volume textures and cubemaps
(dxgi_format,) = struct.unpack("<I", self.fp.read(4))
self.fp.read(16)
if dxgi_format in (
DXGI_FORMAT.BC1_UNORM,
DXGI_FORMAT.BC1_TYPELESS,
):
self._mode = "RGBA"
self.pixel_format = "BC1"
n = 1
elif dxgi_format in (DXGI_FORMAT.BC4_TYPELESS, DXGI_FORMAT.BC4_UNORM):
self._mode = "L"
self.pixel_format = "BC4"
n = 4
elif dxgi_format in (DXGI_FORMAT.BC5_TYPELESS, DXGI_FORMAT.BC5_UNORM):
self._mode = "RGB"
self.pixel_format = "BC5"
n = 5
elif dxgi_format == DXGI_FORMAT.BC5_SNORM:
self._mode = "RGB"
self.pixel_format = "BC5S"
n = 5
elif dxgi_format == DXGI_FORMAT.BC6H_UF16:
self._mode = "RGB"
self.pixel_format = "BC6H"
n = 6
elif dxgi_format == DXGI_FORMAT.BC6H_SF16:
self._mode = "RGB"
self.pixel_format = "BC6HS"
n = 6
elif dxgi_format in (
DXGI_FORMAT.BC7_TYPELESS,
DXGI_FORMAT.BC7_UNORM,
DXGI_FORMAT.BC7_UNORM_SRGB,
):
self._mode = "RGBA"
self.pixel_format = "BC7"
n = 7
if dxgi_format == DXGI_FORMAT.BC7_UNORM_SRGB:
self.info["gamma"] = 1 / 2.2
elif dxgi_format in (
DXGI_FORMAT.R8G8B8A8_TYPELESS,
DXGI_FORMAT.R8G8B8A8_UNORM,
DXGI_FORMAT.R8G8B8A8_UNORM_SRGB,
):
self._mode = "RGBA"
if dxgi_format == DXGI_FORMAT.R8G8B8A8_UNORM_SRGB:
self.info["gamma"] = 1 / 2.2
else:
msg = f"Unimplemented DXGI format {dxgi_format}"
raise NotImplementedError(msg)
else:
msg = f"Unimplemented pixel format {repr(fourcc)}"
raise NotImplementedError(msg)
else:
msg = f"Unknown pixel format flags {pfflags}"
raise NotImplementedError(msg)
if n:
self.tile = [
ImageFile._Tile("bcn", extents, offset, (n, self.pixel_format))
]
else:
self.tile = [ImageFile._Tile("raw", extents, 0, rawmode or self.mode)]
def load_seek(self, pos):
pass
class DdsRgbDecoder(ImageFile.PyDecoder):
_pulls_fd = True
def decode(self, buffer):
bitcount, masks = self.args
# Some masks will be padded with zeros, e.g. R 0b11 G 0b1100
# Calculate how many zeros each mask is padded with
mask_offsets = []
# And the maximum value of each channel without the padding
mask_totals = []
for mask in masks:
offset = 0
if mask != 0:
while mask >> (offset + 1) << (offset + 1) == mask:
offset += 1
mask_offsets.append(offset)
mask_totals.append(mask >> offset)
data = bytearray()
bytecount = bitcount // 8
while len(data) < self.state.xsize * self.state.ysize * len(masks):
value = int.from_bytes(self.fd.read(bytecount), "little")
for i, mask in enumerate(masks):
masked_value = value & mask
# Remove the zero padding, and scale it to 8 bits
data += o8(
int(((masked_value >> mask_offsets[i]) / mask_totals[i]) * 255)
)
self.set_as_raw(bytes(data))
return -1, 0
def _save(im, fp, filename):
if im.mode not in ("RGB", "RGBA", "L", "LA"):
msg = f"cannot write mode {im.mode} as DDS"
raise OSError(msg)
alpha = im.mode[-1] == "A"
if im.mode[0] == "L":
pixel_flags = DDPF.LUMINANCE
rawmode = im.mode
if alpha:
rgba_mask = [0x000000FF, 0x000000FF, 0x000000FF]
else:
rgba_mask = [0xFF000000, 0xFF000000, 0xFF000000]
else:
pixel_flags = DDPF.RGB
rawmode = im.mode[::-1]
rgba_mask = [0x00FF0000, 0x0000FF00, 0x000000FF]
if alpha:
r, g, b, a = im.split()
im = Image.merge("RGBA", (a, r, g, b))
if alpha:
pixel_flags |= DDPF.ALPHAPIXELS
rgba_mask.append(0xFF000000 if alpha else 0)
flags = DDSD.CAPS | DDSD.HEIGHT | DDSD.WIDTH | DDSD.PITCH | DDSD.PIXELFORMAT
bitcount = len(im.getbands()) * 8
pitch = (im.width * bitcount + 7) // 8
fp.write(
o32(DDS_MAGIC)
+ struct.pack(
"<7I",
124, # header size
flags, # flags
im.height,
im.width,
pitch,
0, # depth
0, # mipmaps
)
+ struct.pack("11I", *((0,) * 11)) # reserved
# pfsize, pfflags, fourcc, bitcount
+ struct.pack("<4I", 32, pixel_flags, 0, bitcount)
+ struct.pack("<4I", *rgba_mask) # dwRGBABitMask
+ struct.pack("<5I", DDSCAPS.TEXTURE, 0, 0, 0, 0)
)
ImageFile._save(
im, fp, [ImageFile._Tile("raw", (0, 0) + im.size, 0, (rawmode, 0, 1))]
)
def _accept(prefix):
return prefix[:4] == b"DDS "
Image.register_open(DdsImageFile.format, DdsImageFile, _accept)
Image.register_decoder("dds_rgb", DdsRgbDecoder)
Image.register_save(DdsImageFile.format, _save)
Image.register_extension(DdsImageFile.format, ".dds")

@ -1,478 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# EPS file handling
#
# History:
# 1995-09-01 fl Created (0.1)
# 1996-05-18 fl Don't choke on "atend" fields, Ghostscript interface (0.2)
# 1996-08-22 fl Don't choke on floating point BoundingBox values
# 1996-08-23 fl Handle files from Macintosh (0.3)
# 2001-02-17 fl Use 're' instead of 'regex' (Python 2.1) (0.4)
# 2003-09-07 fl Check gs.close status (from Federico Di Gregorio) (0.5)
# 2014-05-07 e Handling of EPS with binary preview and fixed resolution
# resizing
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import os
import re
import subprocess
import sys
import tempfile
from . import Image, ImageFile
from ._binary import i32le as i32
from ._deprecate import deprecate
# --------------------------------------------------------------------
split = re.compile(r"^%%([^:]*):[ \t]*(.*)[ \t]*$")
field = re.compile(r"^%[%!\w]([^:]*)[ \t]*$")
gs_binary = None
gs_windows_binary = None
def has_ghostscript():
global gs_binary, gs_windows_binary
if gs_binary is None:
if sys.platform.startswith("win"):
if gs_windows_binary is None:
import shutil
for binary in ("gswin32c", "gswin64c", "gs"):
if shutil.which(binary) is not None:
gs_windows_binary = binary
break
else:
gs_windows_binary = False
gs_binary = gs_windows_binary
else:
try:
subprocess.check_call(["gs", "--version"], stdout=subprocess.DEVNULL)
gs_binary = "gs"
except OSError:
gs_binary = False
return gs_binary is not False
def Ghostscript(tile, size, fp, scale=1, transparency=False):
"""Render an image using Ghostscript"""
global gs_binary
if not has_ghostscript():
msg = "Unable to locate Ghostscript on paths"
raise OSError(msg)
# Unpack decoder tile
decoder, tile, offset, data = tile[0]
length, bbox = data
# Hack to support hi-res rendering
scale = int(scale) or 1
width = size[0] * scale
height = size[1] * scale
# resolution is dependent on bbox and size
res_x = 72.0 * width / (bbox[2] - bbox[0])
res_y = 72.0 * height / (bbox[3] - bbox[1])
out_fd, outfile = tempfile.mkstemp()
os.close(out_fd)
infile_temp = None
if hasattr(fp, "name") and os.path.exists(fp.name):
infile = fp.name
else:
in_fd, infile_temp = tempfile.mkstemp()
os.close(in_fd)
infile = infile_temp
# Ignore length and offset!
# Ghostscript can read it
# Copy whole file to read in Ghostscript
with open(infile_temp, "wb") as f:
# fetch length of fp
fp.seek(0, io.SEEK_END)
fsize = fp.tell()
# ensure start position
# go back
fp.seek(0)
lengthfile = fsize
while lengthfile > 0:
s = fp.read(min(lengthfile, 100 * 1024))
if not s:
break
lengthfile -= len(s)
f.write(s)
device = "pngalpha" if transparency else "ppmraw"
# Build Ghostscript command
command = [
gs_binary,
"-q", # quiet mode
f"-g{width:d}x{height:d}", # set output geometry (pixels)
f"-r{res_x:f}x{res_y:f}", # set input DPI (dots per inch)
"-dBATCH", # exit after processing
"-dNOPAUSE", # don't pause between pages
"-dSAFER", # safe mode
f"-sDEVICE={device}",
f"-sOutputFile={outfile}", # output file
# adjust for image origin
"-c",
f"{-bbox[0]} {-bbox[1]} translate",
"-f",
infile, # input file
# showpage (see https://bugs.ghostscript.com/show_bug.cgi?id=698272)
"-c",
"showpage",
]
# push data through Ghostscript
try:
startupinfo = None
if sys.platform.startswith("win"):
startupinfo = subprocess.STARTUPINFO()
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
subprocess.check_call(command, startupinfo=startupinfo)
out_im = Image.open(outfile)
out_im.load()
finally:
try:
os.unlink(outfile)
if infile_temp:
os.unlink(infile_temp)
except OSError:
pass
im = out_im.im.copy()
out_im.close()
return im
class PSFile:
"""
Wrapper for bytesio object that treats either CR or LF as end of line.
This class is no longer used internally, but kept for backwards compatibility.
"""
def __init__(self, fp):
deprecate(
"PSFile",
11,
action="If you need the functionality of this class "
"you will need to implement it yourself.",
)
self.fp = fp
self.char = None
def seek(self, offset, whence=io.SEEK_SET):
self.char = None
self.fp.seek(offset, whence)
def readline(self):
s = [self.char or b""]
self.char = None
c = self.fp.read(1)
while (c not in b"\r\n") and len(c):
s.append(c)
c = self.fp.read(1)
self.char = self.fp.read(1)
# line endings can be 1 or 2 of \r \n, in either order
if self.char in b"\r\n":
self.char = None
return b"".join(s).decode("latin-1")
def _accept(prefix):
return prefix[:4] == b"%!PS" or (len(prefix) >= 4 and i32(prefix) == 0xC6D3D0C5)
##
# Image plugin for Encapsulated PostScript. This plugin supports only
# a few variants of this format.
class EpsImageFile(ImageFile.ImageFile):
"""EPS File Parser for the Python Imaging Library"""
format = "EPS"
format_description = "Encapsulated Postscript"
mode_map = {1: "L", 2: "LAB", 3: "RGB", 4: "CMYK"}
def _open(self):
(length, offset) = self._find_offset(self.fp)
# go to offset - start of "%!PS"
self.fp.seek(offset)
self._mode = "RGB"
self._size = None
byte_arr = bytearray(255)
bytes_mv = memoryview(byte_arr)
bytes_read = 0
reading_header_comments = True
reading_trailer_comments = False
trailer_reached = False
def check_required_header_comments():
if "PS-Adobe" not in self.info:
msg = 'EPS header missing "%!PS-Adobe" comment'
raise SyntaxError(msg)
if "BoundingBox" not in self.info:
msg = 'EPS header missing "%%BoundingBox" comment'
raise SyntaxError(msg)
def _read_comment(s):
nonlocal reading_trailer_comments
try:
m = split.match(s)
except re.error as e:
msg = "not an EPS file"
raise SyntaxError(msg) from e
if m:
k, v = m.group(1, 2)
self.info[k] = v
if k == "BoundingBox":
if v == "(atend)":
reading_trailer_comments = True
elif not self._size or (
trailer_reached and reading_trailer_comments
):
try:
# Note: The DSC spec says that BoundingBox
# fields should be integers, but some drivers
# put floating point values there anyway.
box = [int(float(i)) for i in v.split()]
self._size = box[2] - box[0], box[3] - box[1]
self.tile = [
("eps", (0, 0) + self.size, offset, (length, box))
]
except Exception:
pass
return True
while True:
byte = self.fp.read(1)
if byte == b"":
# if we didn't read a byte we must be at the end of the file
if bytes_read == 0:
break
elif byte in b"\r\n":
# if we read a line ending character, ignore it and parse what
# we have already read. if we haven't read any other characters,
# continue reading
if bytes_read == 0:
continue
else:
# ASCII/hexadecimal lines in an EPS file must not exceed
# 255 characters, not including line ending characters
if bytes_read >= 255:
# only enforce this for lines starting with a "%",
# otherwise assume it's binary data
if byte_arr[0] == ord("%"):
msg = "not an EPS file"
raise SyntaxError(msg)
else:
if reading_header_comments:
check_required_header_comments()
reading_header_comments = False
# reset bytes_read so we can keep reading
# data until the end of the line
bytes_read = 0
byte_arr[bytes_read] = byte[0]
bytes_read += 1
continue
if reading_header_comments:
# Load EPS header
# if this line doesn't start with a "%",
# or does start with "%%EndComments",
# then we've reached the end of the header/comments
if byte_arr[0] != ord("%") or bytes_mv[:13] == b"%%EndComments":
check_required_header_comments()
reading_header_comments = False
continue
s = str(bytes_mv[:bytes_read], "latin-1")
if not _read_comment(s):
m = field.match(s)
if m:
k = m.group(1)
if k[:8] == "PS-Adobe":
self.info["PS-Adobe"] = k[9:]
else:
self.info[k] = ""
elif s[0] == "%":
# handle non-DSC PostScript comments that some
# tools mistakenly put in the Comments section
pass
else:
msg = "bad EPS header"
raise OSError(msg)
elif bytes_mv[:11] == b"%ImageData:":
# Check for an "ImageData" descriptor
# https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#50577413_pgfId-1035096
# Values:
# columns
# rows
# bit depth (1 or 8)
# mode (1: L, 2: LAB, 3: RGB, 4: CMYK)
# number of padding channels
# block size (number of bytes per row per channel)
# binary/ascii (1: binary, 2: ascii)
# data start identifier (the image data follows after a single line
# consisting only of this quoted value)
image_data_values = byte_arr[11:bytes_read].split(None, 7)
columns, rows, bit_depth, mode_id = (
int(value) for value in image_data_values[:4]
)
if bit_depth == 1:
self._mode = "1"
elif bit_depth == 8:
try:
self._mode = self.mode_map[mode_id]
except ValueError:
break
else:
break
self._size = columns, rows
return
elif trailer_reached and reading_trailer_comments:
# Load EPS trailer
# if this line starts with "%%EOF",
# then we've reached the end of the file
if bytes_mv[:5] == b"%%EOF":
break
s = str(bytes_mv[:bytes_read], "latin-1")
_read_comment(s)
elif bytes_mv[:9] == b"%%Trailer":
trailer_reached = True
bytes_read = 0
check_required_header_comments()
if not self._size:
msg = "cannot determine EPS bounding box"
raise OSError(msg)
def _find_offset(self, fp):
s = fp.read(4)
if s == b"%!PS":
# for HEAD without binary preview
fp.seek(0, io.SEEK_END)
length = fp.tell()
offset = 0
elif i32(s) == 0xC6D3D0C5:
# FIX for: Some EPS file not handled correctly / issue #302
# EPS can contain binary data
# or start directly with latin coding
# more info see:
# https://web.archive.org/web/20160528181353/http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
s = fp.read(8)
offset = i32(s)
length = i32(s, 4)
else:
msg = "not an EPS file"
raise SyntaxError(msg)
return length, offset
def load(self, scale=1, transparency=False):
# Load EPS via Ghostscript
if self.tile:
self.im = Ghostscript(self.tile, self.size, self.fp, scale, transparency)
self._mode = self.im.mode
self._size = self.im.size
self.tile = []
return Image.Image.load(self)
def load_seek(self, *args, **kwargs):
# we can't incrementally load, so force ImageFile.parser to
# use our custom load method by defining this method.
pass
# --------------------------------------------------------------------
def _save(im, fp, filename, eps=1):
"""EPS Writer for the Python Imaging Library."""
# make sure image data is available
im.load()
# determine PostScript image mode
if im.mode == "L":
operator = (8, 1, b"image")
elif im.mode == "RGB":
operator = (8, 3, b"false 3 colorimage")
elif im.mode == "CMYK":
operator = (8, 4, b"false 4 colorimage")
else:
msg = "image mode is not supported"
raise ValueError(msg)
if eps:
# write EPS header
fp.write(b"%!PS-Adobe-3.0 EPSF-3.0\n")
fp.write(b"%%Creator: PIL 0.1 EpsEncode\n")
# fp.write("%%CreationDate: %s"...)
fp.write(b"%%%%BoundingBox: 0 0 %d %d\n" % im.size)
fp.write(b"%%Pages: 1\n")
fp.write(b"%%EndComments\n")
fp.write(b"%%Page: 1 1\n")
fp.write(b"%%ImageData: %d %d " % im.size)
fp.write(b'%d %d 0 1 1 "%s"\n' % operator)
# image header
fp.write(b"gsave\n")
fp.write(b"10 dict begin\n")
fp.write(b"/buf %d string def\n" % (im.size[0] * operator[1]))
fp.write(b"%d %d scale\n" % im.size)
fp.write(b"%d %d 8\n" % im.size) # <= bits
fp.write(b"[%d 0 0 -%d 0 %d]\n" % (im.size[0], im.size[1], im.size[1]))
fp.write(b"{ currentfile buf readhexstring pop } bind\n")
fp.write(operator[2] + b"\n")
if hasattr(fp, "flush"):
fp.flush()
ImageFile._save(im, fp, [("eps", (0, 0) + im.size, 0, None)])
fp.write(b"\n%%%%EndBinary\n")
fp.write(b"grestore end\n")
if hasattr(fp, "flush"):
fp.flush()
# --------------------------------------------------------------------
Image.register_open(EpsImageFile.format, EpsImageFile, _accept)
Image.register_save(EpsImageFile.format, _save)
Image.register_extensions(EpsImageFile.format, [".ps", ".eps"])
Image.register_mime(EpsImageFile.format, "application/postscript")

@ -1,381 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# EXIF tags
#
# Copyright (c) 2003 by Secret Labs AB
#
# See the README file for information on usage and redistribution.
#
"""
This module provides constants and clear-text names for various
well-known EXIF tags.
"""
from __future__ import annotations
from enum import IntEnum
class Base(IntEnum):
# possibly incomplete
InteropIndex = 0x0001
ProcessingSoftware = 0x000B
NewSubfileType = 0x00FE
SubfileType = 0x00FF
ImageWidth = 0x0100
ImageLength = 0x0101
BitsPerSample = 0x0102
Compression = 0x0103
PhotometricInterpretation = 0x0106
Thresholding = 0x0107
CellWidth = 0x0108
CellLength = 0x0109
FillOrder = 0x010A
DocumentName = 0x010D
ImageDescription = 0x010E
Make = 0x010F
Model = 0x0110
StripOffsets = 0x0111
Orientation = 0x0112
SamplesPerPixel = 0x0115
RowsPerStrip = 0x0116
StripByteCounts = 0x0117
MinSampleValue = 0x0118
MaxSampleValue = 0x0119
XResolution = 0x011A
YResolution = 0x011B
PlanarConfiguration = 0x011C
PageName = 0x011D
FreeOffsets = 0x0120
FreeByteCounts = 0x0121
GrayResponseUnit = 0x0122
GrayResponseCurve = 0x0123
T4Options = 0x0124
T6Options = 0x0125
ResolutionUnit = 0x0128
PageNumber = 0x0129
TransferFunction = 0x012D
Software = 0x0131
DateTime = 0x0132
Artist = 0x013B
HostComputer = 0x013C
Predictor = 0x013D
WhitePoint = 0x013E
PrimaryChromaticities = 0x013F
ColorMap = 0x0140
HalftoneHints = 0x0141
TileWidth = 0x0142
TileLength = 0x0143
TileOffsets = 0x0144
TileByteCounts = 0x0145
SubIFDs = 0x014A
InkSet = 0x014C
InkNames = 0x014D
NumberOfInks = 0x014E
DotRange = 0x0150
TargetPrinter = 0x0151
ExtraSamples = 0x0152
SampleFormat = 0x0153
SMinSampleValue = 0x0154
SMaxSampleValue = 0x0155
TransferRange = 0x0156
ClipPath = 0x0157
XClipPathUnits = 0x0158
YClipPathUnits = 0x0159
Indexed = 0x015A
JPEGTables = 0x015B
OPIProxy = 0x015F
JPEGProc = 0x0200
JpegIFOffset = 0x0201
JpegIFByteCount = 0x0202
JpegRestartInterval = 0x0203
JpegLosslessPredictors = 0x0205
JpegPointTransforms = 0x0206
JpegQTables = 0x0207
JpegDCTables = 0x0208
JpegACTables = 0x0209
YCbCrCoefficients = 0x0211
YCbCrSubSampling = 0x0212
YCbCrPositioning = 0x0213
ReferenceBlackWhite = 0x0214
XMLPacket = 0x02BC
RelatedImageFileFormat = 0x1000
RelatedImageWidth = 0x1001
RelatedImageLength = 0x1002
Rating = 0x4746
RatingPercent = 0x4749
ImageID = 0x800D
CFARepeatPatternDim = 0x828D
BatteryLevel = 0x828F
Copyright = 0x8298
ExposureTime = 0x829A
FNumber = 0x829D
IPTCNAA = 0x83BB
ImageResources = 0x8649
ExifOffset = 0x8769
InterColorProfile = 0x8773
ExposureProgram = 0x8822
SpectralSensitivity = 0x8824
GPSInfo = 0x8825
ISOSpeedRatings = 0x8827
OECF = 0x8828
Interlace = 0x8829
TimeZoneOffset = 0x882A
SelfTimerMode = 0x882B
SensitivityType = 0x8830
StandardOutputSensitivity = 0x8831
RecommendedExposureIndex = 0x8832
ISOSpeed = 0x8833
ISOSpeedLatitudeyyy = 0x8834
ISOSpeedLatitudezzz = 0x8835
ExifVersion = 0x9000
DateTimeOriginal = 0x9003
DateTimeDigitized = 0x9004
OffsetTime = 0x9010
OffsetTimeOriginal = 0x9011
OffsetTimeDigitized = 0x9012
ComponentsConfiguration = 0x9101
CompressedBitsPerPixel = 0x9102
ShutterSpeedValue = 0x9201
ApertureValue = 0x9202
BrightnessValue = 0x9203
ExposureBiasValue = 0x9204
MaxApertureValue = 0x9205
SubjectDistance = 0x9206
MeteringMode = 0x9207
LightSource = 0x9208
Flash = 0x9209
FocalLength = 0x920A
Noise = 0x920D
ImageNumber = 0x9211
SecurityClassification = 0x9212
ImageHistory = 0x9213
TIFFEPStandardID = 0x9216
MakerNote = 0x927C
UserComment = 0x9286
SubsecTime = 0x9290
SubsecTimeOriginal = 0x9291
SubsecTimeDigitized = 0x9292
AmbientTemperature = 0x9400
Humidity = 0x9401
Pressure = 0x9402
WaterDepth = 0x9403
Acceleration = 0x9404
CameraElevationAngle = 0x9405
XPTitle = 0x9C9B
XPComment = 0x9C9C
XPAuthor = 0x9C9D
XPKeywords = 0x9C9E
XPSubject = 0x9C9F
FlashPixVersion = 0xA000
ColorSpace = 0xA001
ExifImageWidth = 0xA002
ExifImageHeight = 0xA003
RelatedSoundFile = 0xA004
ExifInteroperabilityOffset = 0xA005
FlashEnergy = 0xA20B
SpatialFrequencyResponse = 0xA20C
FocalPlaneXResolution = 0xA20E
FocalPlaneYResolution = 0xA20F
FocalPlaneResolutionUnit = 0xA210
SubjectLocation = 0xA214
ExposureIndex = 0xA215
SensingMethod = 0xA217
FileSource = 0xA300
SceneType = 0xA301
CFAPattern = 0xA302
CustomRendered = 0xA401
ExposureMode = 0xA402
WhiteBalance = 0xA403
DigitalZoomRatio = 0xA404
FocalLengthIn35mmFilm = 0xA405
SceneCaptureType = 0xA406
GainControl = 0xA407
Contrast = 0xA408
Saturation = 0xA409
Sharpness = 0xA40A
DeviceSettingDescription = 0xA40B
SubjectDistanceRange = 0xA40C
ImageUniqueID = 0xA420
CameraOwnerName = 0xA430
BodySerialNumber = 0xA431
LensSpecification = 0xA432
LensMake = 0xA433
LensModel = 0xA434
LensSerialNumber = 0xA435
CompositeImage = 0xA460
CompositeImageCount = 0xA461
CompositeImageExposureTimes = 0xA462
Gamma = 0xA500
PrintImageMatching = 0xC4A5
DNGVersion = 0xC612
DNGBackwardVersion = 0xC613
UniqueCameraModel = 0xC614
LocalizedCameraModel = 0xC615
CFAPlaneColor = 0xC616
CFALayout = 0xC617
LinearizationTable = 0xC618
BlackLevelRepeatDim = 0xC619
BlackLevel = 0xC61A
BlackLevelDeltaH = 0xC61B
BlackLevelDeltaV = 0xC61C
WhiteLevel = 0xC61D
DefaultScale = 0xC61E
DefaultCropOrigin = 0xC61F
DefaultCropSize = 0xC620
ColorMatrix1 = 0xC621
ColorMatrix2 = 0xC622
CameraCalibration1 = 0xC623
CameraCalibration2 = 0xC624
ReductionMatrix1 = 0xC625
ReductionMatrix2 = 0xC626
AnalogBalance = 0xC627
AsShotNeutral = 0xC628
AsShotWhiteXY = 0xC629
BaselineExposure = 0xC62A
BaselineNoise = 0xC62B
BaselineSharpness = 0xC62C
BayerGreenSplit = 0xC62D
LinearResponseLimit = 0xC62E
CameraSerialNumber = 0xC62F
LensInfo = 0xC630
ChromaBlurRadius = 0xC631
AntiAliasStrength = 0xC632
ShadowScale = 0xC633
DNGPrivateData = 0xC634
MakerNoteSafety = 0xC635
CalibrationIlluminant1 = 0xC65A
CalibrationIlluminant2 = 0xC65B
BestQualityScale = 0xC65C
RawDataUniqueID = 0xC65D
OriginalRawFileName = 0xC68B
OriginalRawFileData = 0xC68C
ActiveArea = 0xC68D
MaskedAreas = 0xC68E
AsShotICCProfile = 0xC68F
AsShotPreProfileMatrix = 0xC690
CurrentICCProfile = 0xC691
CurrentPreProfileMatrix = 0xC692
ColorimetricReference = 0xC6BF
CameraCalibrationSignature = 0xC6F3
ProfileCalibrationSignature = 0xC6F4
AsShotProfileName = 0xC6F6
NoiseReductionApplied = 0xC6F7
ProfileName = 0xC6F8
ProfileHueSatMapDims = 0xC6F9
ProfileHueSatMapData1 = 0xC6FA
ProfileHueSatMapData2 = 0xC6FB
ProfileToneCurve = 0xC6FC
ProfileEmbedPolicy = 0xC6FD
ProfileCopyright = 0xC6FE
ForwardMatrix1 = 0xC714
ForwardMatrix2 = 0xC715
PreviewApplicationName = 0xC716
PreviewApplicationVersion = 0xC717
PreviewSettingsName = 0xC718
PreviewSettingsDigest = 0xC719
PreviewColorSpace = 0xC71A
PreviewDateTime = 0xC71B
RawImageDigest = 0xC71C
OriginalRawFileDigest = 0xC71D
SubTileBlockSize = 0xC71E
RowInterleaveFactor = 0xC71F
ProfileLookTableDims = 0xC725
ProfileLookTableData = 0xC726
OpcodeList1 = 0xC740
OpcodeList2 = 0xC741
OpcodeList3 = 0xC74E
NoiseProfile = 0xC761
"""Maps EXIF tags to tag names."""
TAGS = {
**{i.value: i.name for i in Base},
0x920C: "SpatialFrequencyResponse",
0x9214: "SubjectLocation",
0x9215: "ExposureIndex",
0x828E: "CFAPattern",
0x920B: "FlashEnergy",
0x9216: "TIFF/EPStandardID",
}
class GPS(IntEnum):
GPSVersionID = 0
GPSLatitudeRef = 1
GPSLatitude = 2
GPSLongitudeRef = 3
GPSLongitude = 4
GPSAltitudeRef = 5
GPSAltitude = 6
GPSTimeStamp = 7
GPSSatellites = 8
GPSStatus = 9
GPSMeasureMode = 10
GPSDOP = 11
GPSSpeedRef = 12
GPSSpeed = 13
GPSTrackRef = 14
GPSTrack = 15
GPSImgDirectionRef = 16
GPSImgDirection = 17
GPSMapDatum = 18
GPSDestLatitudeRef = 19
GPSDestLatitude = 20
GPSDestLongitudeRef = 21
GPSDestLongitude = 22
GPSDestBearingRef = 23
GPSDestBearing = 24
GPSDestDistanceRef = 25
GPSDestDistance = 26
GPSProcessingMethod = 27
GPSAreaInformation = 28
GPSDateStamp = 29
GPSDifferential = 30
GPSHPositioningError = 31
"""Maps EXIF GPS tags to tag names."""
GPSTAGS = {i.value: i.name for i in GPS}
class Interop(IntEnum):
InteropIndex = 1
InteropVersion = 2
RelatedImageFileFormat = 4096
RelatedImageWidth = 4097
RleatedImageHeight = 4098
class IFD(IntEnum):
Exif = 34665
GPSInfo = 34853
Makernote = 37500
Interop = 40965
IFD1 = -1
class LightSource(IntEnum):
Unknown = 0
Daylight = 1
Fluorescent = 2
Tungsten = 3
Flash = 4
Fine = 9
Cloudy = 10
Shade = 11
DaylightFluorescent = 12
DayWhiteFluorescent = 13
CoolWhiteFluorescent = 14
WhiteFluorescent = 15
StandardLightA = 17
StandardLightB = 18
StandardLightC = 19
D55 = 20
D65 = 21
D75 = 22
D50 = 23
ISO = 24
Other = 255

@ -1,72 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# FITS file handling
#
# Copyright (c) 1998-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import math
from . import Image, ImageFile
def _accept(prefix):
return prefix[:6] == b"SIMPLE"
class FitsImageFile(ImageFile.ImageFile):
format = "FITS"
format_description = "FITS"
def _open(self):
headers = {}
while True:
header = self.fp.read(80)
if not header:
msg = "Truncated FITS file"
raise OSError(msg)
keyword = header[:8].strip()
if keyword == b"END":
break
value = header[8:].split(b"/")[0].strip()
if value.startswith(b"="):
value = value[1:].strip()
if not headers and (not _accept(keyword) or value != b"T"):
msg = "Not a FITS file"
raise SyntaxError(msg)
headers[keyword] = value
naxis = int(headers[b"NAXIS"])
if naxis == 0:
msg = "No image data"
raise ValueError(msg)
elif naxis == 1:
self._size = 1, int(headers[b"NAXIS1"])
else:
self._size = int(headers[b"NAXIS1"]), int(headers[b"NAXIS2"])
number_of_bits = int(headers[b"BITPIX"])
if number_of_bits == 8:
self._mode = "L"
elif number_of_bits == 16:
self._mode = "I"
elif number_of_bits == 32:
self._mode = "I"
elif number_of_bits in (-32, -64):
self._mode = "F"
offset = math.ceil(self.fp.tell() / 2880) * 2880
self.tile = [("raw", (0, 0) + self.size, offset, (self.mode, 0, -1))]
# --------------------------------------------------------------------
# Registry
Image.register_open(FitsImageFile.format, FitsImageFile, _accept)
Image.register_extensions(FitsImageFile.format, [".fit", ".fits"])

@ -1,173 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# FLI/FLC file handling.
#
# History:
# 95-09-01 fl Created
# 97-01-03 fl Fixed parser, setup decoder tile
# 98-07-15 fl Renamed offset attribute to avoid name clash
#
# Copyright (c) Secret Labs AB 1997-98.
# Copyright (c) Fredrik Lundh 1995-97.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import os
from . import Image, ImageFile, ImagePalette
from ._binary import i16le as i16
from ._binary import i32le as i32
from ._binary import o8
#
# decoder
def _accept(prefix):
return (
len(prefix) >= 6
and i16(prefix, 4) in [0xAF11, 0xAF12]
and i16(prefix, 14) in [0, 3] # flags
)
##
# Image plugin for the FLI/FLC animation format. Use the <b>seek</b>
# method to load individual frames.
class FliImageFile(ImageFile.ImageFile):
format = "FLI"
format_description = "Autodesk FLI/FLC Animation"
_close_exclusive_fp_after_loading = False
def _open(self):
# HEAD
s = self.fp.read(128)
if not (_accept(s) and s[20:22] == b"\x00\x00"):
msg = "not an FLI/FLC file"
raise SyntaxError(msg)
# frames
self.n_frames = i16(s, 6)
self.is_animated = self.n_frames > 1
# image characteristics
self._mode = "P"
self._size = i16(s, 8), i16(s, 10)
# animation speed
duration = i32(s, 16)
magic = i16(s, 4)
if magic == 0xAF11:
duration = (duration * 1000) // 70
self.info["duration"] = duration
# look for palette
palette = [(a, a, a) for a in range(256)]
s = self.fp.read(16)
self.__offset = 128
if i16(s, 4) == 0xF100:
# prefix chunk; ignore it
self.__offset = self.__offset + i32(s)
s = self.fp.read(16)
if i16(s, 4) == 0xF1FA:
# look for palette chunk
number_of_subchunks = i16(s, 6)
chunk_size = None
for _ in range(number_of_subchunks):
if chunk_size is not None:
self.fp.seek(chunk_size - 6, os.SEEK_CUR)
s = self.fp.read(6)
chunk_type = i16(s, 4)
if chunk_type in (4, 11):
self._palette(palette, 2 if chunk_type == 11 else 0)
break
chunk_size = i32(s)
if not chunk_size:
break
palette = [o8(r) + o8(g) + o8(b) for (r, g, b) in palette]
self.palette = ImagePalette.raw("RGB", b"".join(palette))
# set things up to decode first frame
self.__frame = -1
self._fp = self.fp
self.__rewind = self.fp.tell()
self.seek(0)
def _palette(self, palette, shift):
# load palette
i = 0
for e in range(i16(self.fp.read(2))):
s = self.fp.read(2)
i = i + s[0]
n = s[1]
if n == 0:
n = 256
s = self.fp.read(n * 3)
for n in range(0, len(s), 3):
r = s[n] << shift
g = s[n + 1] << shift
b = s[n + 2] << shift
palette[i] = (r, g, b)
i += 1
def seek(self, frame):
if not self._seek_check(frame):
return
if frame < self.__frame:
self._seek(0)
for f in range(self.__frame + 1, frame + 1):
self._seek(f)
def _seek(self, frame):
if frame == 0:
self.__frame = -1
self._fp.seek(self.__rewind)
self.__offset = 128
else:
# ensure that the previous frame was loaded
self.load()
if frame != self.__frame + 1:
msg = f"cannot seek to frame {frame}"
raise ValueError(msg)
self.__frame = frame
# move to next frame
self.fp = self._fp
self.fp.seek(self.__offset)
s = self.fp.read(4)
if not s:
msg = "missing frame size"
raise EOFError(msg)
framesize = i32(s)
self.decodermaxblock = framesize
self.tile = [("fli", (0, 0) + self.size, self.__offset, None)]
self.__offset += framesize
def tell(self):
return self.__frame
#
# registry
Image.register_open(FliImageFile.format, FliImageFile, _accept)
Image.register_extensions(FliImageFile.format, [".fli", ".flc"])

@ -1,136 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# base class for raster font file parsers
#
# history:
# 1997-06-05 fl created
# 1997-08-19 fl restrict image width
#
# Copyright (c) 1997-1998 by Secret Labs AB
# Copyright (c) 1997-1998 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import os
from typing import BinaryIO
from . import Image, _binary
WIDTH = 800
def puti16(
fp: BinaryIO, values: tuple[int, int, int, int, int, int, int, int, int, int]
) -> None:
"""Write network order (big-endian) 16-bit sequence"""
for v in values:
if v < 0:
v += 65536
fp.write(_binary.o16be(v))
class FontFile:
"""Base class for raster font file handlers."""
bitmap: Image.Image | None = None
def __init__(self) -> None:
self.info: dict[bytes, bytes | int] = {}
self.glyph: list[
tuple[
tuple[int, int],
tuple[int, int, int, int],
tuple[int, int, int, int],
Image.Image,
]
| None
] = [None] * 256
def __getitem__(
self, ix: int
) -> (
tuple[
tuple[int, int],
tuple[int, int, int, int],
tuple[int, int, int, int],
Image.Image,
]
| None
):
return self.glyph[ix]
def compile(self) -> None:
"""Create metrics and bitmap"""
if self.bitmap:
return
# create bitmap large enough to hold all data
h = w = maxwidth = 0
lines = 1
for glyph in self.glyph:
if glyph:
d, dst, src, im = glyph
h = max(h, src[3] - src[1])
w = w + (src[2] - src[0])
if w > WIDTH:
lines += 1
w = src[2] - src[0]
maxwidth = max(maxwidth, w)
xsize = maxwidth
ysize = lines * h
if xsize == 0 and ysize == 0:
return
self.ysize = h
# paste glyphs into bitmap
self.bitmap = Image.new("1", (xsize, ysize))
self.metrics: list[
tuple[tuple[int, int], tuple[int, int, int, int], tuple[int, int, int, int]]
| None
] = [None] * 256
x = y = 0
for i in range(256):
glyph = self[i]
if glyph:
d, dst, src, im = glyph
xx = src[2] - src[0]
x0, y0 = x, y
x = x + xx
if x > WIDTH:
x, y = 0, y + h
x0, y0 = x, y
x = xx
s = src[0] + x0, src[1] + y0, src[2] + x0, src[3] + y0
self.bitmap.paste(im.crop(src), s)
self.metrics[i] = d, dst, s
def save(self, filename: str) -> None:
"""Save font"""
self.compile()
# font data
if not self.bitmap:
msg = "No bitmap created"
raise ValueError(msg)
self.bitmap.save(os.path.splitext(filename)[0] + ".pbm", "PNG")
# font metrics
with open(os.path.splitext(filename)[0] + ".pil", "wb") as fp:
fp.write(b"PILfont\n")
fp.write(f";;;;;;{self.ysize};\n".encode("ascii")) # HACK!!!
fp.write(b"DATA\n")
for id in range(256):
m = self.metrics[id]
if not m:
puti16(fp, (0,) * 10)
else:
puti16(fp, m[0] + m[1] + m[2])

@ -1,255 +0,0 @@
#
# THIS IS WORK IN PROGRESS
#
# The Python Imaging Library.
# $Id$
#
# FlashPix support for PIL
#
# History:
# 97-01-25 fl Created (reads uncompressed RGB images only)
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import olefile
from . import Image, ImageFile
from ._binary import i32le as i32
# we map from colour field tuples to (mode, rawmode) descriptors
MODES = {
# opacity
(0x00007FFE,): ("A", "L"),
# monochrome
(0x00010000,): ("L", "L"),
(0x00018000, 0x00017FFE): ("RGBA", "LA"),
# photo YCC
(0x00020000, 0x00020001, 0x00020002): ("RGB", "YCC;P"),
(0x00028000, 0x00028001, 0x00028002, 0x00027FFE): ("RGBA", "YCCA;P"),
# standard RGB (NIFRGB)
(0x00030000, 0x00030001, 0x00030002): ("RGB", "RGB"),
(0x00038000, 0x00038001, 0x00038002, 0x00037FFE): ("RGBA", "RGBA"),
}
#
# --------------------------------------------------------------------
def _accept(prefix):
return prefix[:8] == olefile.MAGIC
##
# Image plugin for the FlashPix images.
class FpxImageFile(ImageFile.ImageFile):
format = "FPX"
format_description = "FlashPix"
def _open(self):
#
# read the OLE directory and see if this is a likely
# to be a FlashPix file
try:
self.ole = olefile.OleFileIO(self.fp)
except OSError as e:
msg = "not an FPX file; invalid OLE file"
raise SyntaxError(msg) from e
if self.ole.root.clsid != "56616700-C154-11CE-8553-00AA00A1F95B":
msg = "not an FPX file; bad root CLSID"
raise SyntaxError(msg)
self._open_index(1)
def _open_index(self, index=1):
#
# get the Image Contents Property Set
prop = self.ole.getproperties(
[f"Data Object Store {index:06d}", "\005Image Contents"]
)
# size (highest resolution)
self._size = prop[0x1000002], prop[0x1000003]
size = max(self.size)
i = 1
while size > 64:
size = size / 2
i += 1
self.maxid = i - 1
# mode. instead of using a single field for this, flashpix
# requires you to specify the mode for each channel in each
# resolution subimage, and leaves it to the decoder to make
# sure that they all match. for now, we'll cheat and assume
# that this is always the case.
id = self.maxid << 16
s = prop[0x2000002 | id]
bands = i32(s, 4)
if bands > 4:
msg = "Invalid number of bands"
raise OSError(msg)
# note: for now, we ignore the "uncalibrated" flag
colors = tuple(i32(s, 8 + i * 4) & 0x7FFFFFFF for i in range(bands))
self._mode, self.rawmode = MODES[colors]
# load JPEG tables, if any
self.jpeg = {}
for i in range(256):
id = 0x3000001 | (i << 16)
if id in prop:
self.jpeg[i] = prop[id]
self._open_subimage(1, self.maxid)
def _open_subimage(self, index=1, subimage=0):
#
# setup tile descriptors for a given subimage
stream = [
f"Data Object Store {index:06d}",
f"Resolution {subimage:04d}",
"Subimage 0000 Header",
]
fp = self.ole.openstream(stream)
# skip prefix
fp.read(28)
# header stream
s = fp.read(36)
size = i32(s, 4), i32(s, 8)
# tilecount = i32(s, 12)
tilesize = i32(s, 16), i32(s, 20)
# channels = i32(s, 24)
offset = i32(s, 28)
length = i32(s, 32)
if size != self.size:
msg = "subimage mismatch"
raise OSError(msg)
# get tile descriptors
fp.seek(28 + offset)
s = fp.read(i32(s, 12) * length)
x = y = 0
xsize, ysize = size
xtile, ytile = tilesize
self.tile = []
for i in range(0, len(s), length):
x1 = min(xsize, x + xtile)
y1 = min(ysize, y + ytile)
compression = i32(s, i + 8)
if compression == 0:
self.tile.append(
(
"raw",
(x, y, x1, y1),
i32(s, i) + 28,
(self.rawmode,),
)
)
elif compression == 1:
# FIXME: the fill decoder is not implemented
self.tile.append(
(
"fill",
(x, y, x1, y1),
i32(s, i) + 28,
(self.rawmode, s[12:16]),
)
)
elif compression == 2:
internal_color_conversion = s[14]
jpeg_tables = s[15]
rawmode = self.rawmode
if internal_color_conversion:
# The image is stored as usual (usually YCbCr).
if rawmode == "RGBA":
# For "RGBA", data is stored as YCbCrA based on
# negative RGB. The following trick works around
# this problem :
jpegmode, rawmode = "YCbCrK", "CMYK"
else:
jpegmode = None # let the decoder decide
else:
# The image is stored as defined by rawmode
jpegmode = rawmode
self.tile.append(
(
"jpeg",
(x, y, x1, y1),
i32(s, i) + 28,
(rawmode, jpegmode),
)
)
# FIXME: jpeg tables are tile dependent; the prefix
# data must be placed in the tile descriptor itself!
if jpeg_tables:
self.tile_prefix = self.jpeg[jpeg_tables]
else:
msg = "unknown/invalid compression"
raise OSError(msg)
x = x + xtile
if x >= xsize:
x, y = 0, y + ytile
if y >= ysize:
break # isn't really required
self.stream = stream
self._fp = self.fp
self.fp = None
def load(self):
if not self.fp:
self.fp = self.ole.openstream(self.stream[:2] + ["Subimage 0000 Data"])
return ImageFile.ImageFile.load(self)
def close(self):
self.ole.close()
super().close()
def __exit__(self, *args):
self.ole.close()
super().__exit__()
#
# --------------------------------------------------------------------
Image.register_open(FpxImageFile.format, FpxImageFile, _accept)
Image.register_extension(FpxImageFile.format, ".fpx")

@ -1,114 +0,0 @@
"""
A Pillow loader for .ftc and .ftu files (FTEX)
Jerome Leclanche <jerome@leclan.ch>
The contents of this file are hereby released in the public domain (CC0)
Full text of the CC0 license:
https://creativecommons.org/publicdomain/zero/1.0/
Independence War 2: Edge Of Chaos - Texture File Format - 16 October 2001
The textures used for 3D objects in Independence War 2: Edge Of Chaos are in a
packed custom format called FTEX. This file format uses file extensions FTC
and FTU.
* FTC files are compressed textures (using standard texture compression).
* FTU files are not compressed.
Texture File Format
The FTC and FTU texture files both use the same format. This
has the following structure:
{header}
{format_directory}
{data}
Where:
{header} = {
u32:magic,
u32:version,
u32:width,
u32:height,
u32:mipmap_count,
u32:format_count
}
* The "magic" number is "FTEX".
* "width" and "height" are the dimensions of the texture.
* "mipmap_count" is the number of mipmaps in the texture.
* "format_count" is the number of texture formats (different versions of the
same texture) in this file.
{format_directory} = format_count * { u32:format, u32:where }
The format value is 0 for DXT1 compressed textures and 1 for 24-bit RGB
uncompressed textures.
The texture data for a format starts at the position "where" in the file.
Each set of texture data in the file has the following structure:
{data} = format_count * { u32:mipmap_size, mipmap_size * { u8 } }
* "mipmap_size" is the number of bytes in that mip level. For compressed
textures this is the size of the texture data compressed with DXT1. For 24 bit
uncompressed textures, this is 3 * width * height. Following this are the image
bytes for that mipmap level.
Note: All data is stored in little-Endian (Intel) byte order.
"""
from __future__ import annotations
import struct
from enum import IntEnum
from io import BytesIO
from . import Image, ImageFile
MAGIC = b"FTEX"
class Format(IntEnum):
DXT1 = 0
UNCOMPRESSED = 1
class FtexImageFile(ImageFile.ImageFile):
format = "FTEX"
format_description = "Texture File Format (IW2:EOC)"
def _open(self):
if not _accept(self.fp.read(4)):
msg = "not an FTEX file"
raise SyntaxError(msg)
struct.unpack("<i", self.fp.read(4)) # version
self._size = struct.unpack("<2i", self.fp.read(8))
mipmap_count, format_count = struct.unpack("<2i", self.fp.read(8))
self._mode = "RGB"
# Only support single-format files.
# I don't know of any multi-format file.
assert format_count == 1
format, where = struct.unpack("<2i", self.fp.read(8))
self.fp.seek(where)
(mipmap_size,) = struct.unpack("<i", self.fp.read(4))
data = self.fp.read(mipmap_size)
if format == Format.DXT1:
self._mode = "RGBA"
self.tile = [("bcn", (0, 0) + self.size, 0, 1)]
elif format == Format.UNCOMPRESSED:
self.tile = [("raw", (0, 0) + self.size, 0, ("RGB", 0, 1))]
else:
msg = f"Invalid texture compression format: {repr(format)}"
raise ValueError(msg)
self.fp.close()
self.fp = BytesIO(data)
def load_seek(self, pos):
pass
def _accept(prefix):
return prefix[:4] == MAGIC
Image.register_open(FtexImageFile.format, FtexImageFile, _accept)
Image.register_extensions(FtexImageFile.format, [".ftc", ".ftu"])

@ -1,103 +0,0 @@
#
# The Python Imaging Library
#
# load a GIMP brush file
#
# History:
# 96-03-14 fl Created
# 16-01-08 es Version 2
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
# Copyright (c) Eric Soroos 2016.
#
# See the README file for information on usage and redistribution.
#
#
# See https://github.com/GNOME/gimp/blob/mainline/devel-docs/gbr.txt for
# format documentation.
#
# This code Interprets version 1 and 2 .gbr files.
# Version 1 files are obsolete, and should not be used for new
# brushes.
# Version 2 files are saved by GIMP v2.8 (at least)
# Version 3 files have a format specifier of 18 for 16bit floats in
# the color depth field. This is currently unsupported by Pillow.
from __future__ import annotations
from . import Image, ImageFile
from ._binary import i32be as i32
def _accept(prefix):
return len(prefix) >= 8 and i32(prefix, 0) >= 20 and i32(prefix, 4) in (1, 2)
##
# Image plugin for the GIMP brush format.
class GbrImageFile(ImageFile.ImageFile):
format = "GBR"
format_description = "GIMP brush file"
def _open(self):
header_size = i32(self.fp.read(4))
if header_size < 20:
msg = "not a GIMP brush"
raise SyntaxError(msg)
version = i32(self.fp.read(4))
if version not in (1, 2):
msg = f"Unsupported GIMP brush version: {version}"
raise SyntaxError(msg)
width = i32(self.fp.read(4))
height = i32(self.fp.read(4))
color_depth = i32(self.fp.read(4))
if width <= 0 or height <= 0:
msg = "not a GIMP brush"
raise SyntaxError(msg)
if color_depth not in (1, 4):
msg = f"Unsupported GIMP brush color depth: {color_depth}"
raise SyntaxError(msg)
if version == 1:
comment_length = header_size - 20
else:
comment_length = header_size - 28
magic_number = self.fp.read(4)
if magic_number != b"GIMP":
msg = "not a GIMP brush, bad magic number"
raise SyntaxError(msg)
self.info["spacing"] = i32(self.fp.read(4))
comment = self.fp.read(comment_length)[:-1]
if color_depth == 1:
self._mode = "L"
else:
self._mode = "RGBA"
self._size = width, height
self.info["comment"] = comment
# Image might not be small
Image._decompression_bomb_check(self.size)
# Data is an uncompressed block of w * h * bytes/pixel
self._data_size = width * height * color_depth
def load(self):
if not self.im:
self.im = Image.core.new(self.mode, self.size)
self.frombytes(self.fp.read(self._data_size))
return Image.Image.load(self)
#
# registry
Image.register_open(GbrImageFile.format, GbrImageFile, _accept)
Image.register_extension(GbrImageFile.format, ".gbr")

@ -1,97 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# GD file handling
#
# History:
# 1996-04-12 fl Created
#
# Copyright (c) 1997 by Secret Labs AB.
# Copyright (c) 1996 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
"""
.. note::
This format cannot be automatically recognized, so the
class is not registered for use with :py:func:`PIL.Image.open()`. To open a
gd file, use the :py:func:`PIL.GdImageFile.open()` function instead.
.. warning::
THE GD FORMAT IS NOT DESIGNED FOR DATA INTERCHANGE. This
implementation is provided for convenience and demonstrational
purposes only.
"""
from __future__ import annotations
from . import ImageFile, ImagePalette, UnidentifiedImageError
from ._binary import i16be as i16
from ._binary import i32be as i32
class GdImageFile(ImageFile.ImageFile):
"""
Image plugin for the GD uncompressed format. Note that this format
is not supported by the standard :py:func:`PIL.Image.open()` function. To use
this plugin, you have to import the :py:mod:`PIL.GdImageFile` module and
use the :py:func:`PIL.GdImageFile.open()` function.
"""
format = "GD"
format_description = "GD uncompressed images"
def _open(self):
# Header
s = self.fp.read(1037)
if i16(s) not in [65534, 65535]:
msg = "Not a valid GD 2.x .gd file"
raise SyntaxError(msg)
self._mode = "L" # FIXME: "P"
self._size = i16(s, 2), i16(s, 4)
true_color = s[6]
true_color_offset = 2 if true_color else 0
# transparency index
tindex = i32(s, 7 + true_color_offset)
if tindex < 256:
self.info["transparency"] = tindex
self.palette = ImagePalette.raw(
"XBGR", s[7 + true_color_offset + 4 : 7 + true_color_offset + 4 + 256 * 4]
)
self.tile = [
(
"raw",
(0, 0) + self.size,
7 + true_color_offset + 4 + 256 * 4,
("L", 0, 1),
)
]
def open(fp, mode="r"):
"""
Load texture from a GD image file.
:param fp: GD file name, or an opened file handle.
:param mode: Optional mode. In this version, if the mode argument
is given, it must be "r".
:returns: An image instance.
:raises OSError: If the image could not be read.
"""
if mode != "r":
msg = "bad mode"
raise ValueError(msg)
try:
return GdImageFile(fp)
except SyntaxError as e:
msg = "cannot identify this image file"
raise UnidentifiedImageError(msg) from e

@ -1,137 +0,0 @@
#
# Python Imaging Library
# $Id$
#
# stuff to read (and render) GIMP gradient files
#
# History:
# 97-08-23 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
"""
Stuff to translate curve segments to palette values (derived from
the corresponding code in GIMP, written by Federico Mena Quintero.
See the GIMP distribution for more information.)
"""
from __future__ import annotations
from math import log, pi, sin, sqrt
from ._binary import o8
EPSILON = 1e-10
"""""" # Enable auto-doc for data member
def linear(middle, pos):
if pos <= middle:
if middle < EPSILON:
return 0.0
else:
return 0.5 * pos / middle
else:
pos = pos - middle
middle = 1.0 - middle
if middle < EPSILON:
return 1.0
else:
return 0.5 + 0.5 * pos / middle
def curved(middle, pos):
return pos ** (log(0.5) / log(max(middle, EPSILON)))
def sine(middle, pos):
return (sin((-pi / 2.0) + pi * linear(middle, pos)) + 1.0) / 2.0
def sphere_increasing(middle, pos):
return sqrt(1.0 - (linear(middle, pos) - 1.0) ** 2)
def sphere_decreasing(middle, pos):
return 1.0 - sqrt(1.0 - linear(middle, pos) ** 2)
SEGMENTS = [linear, curved, sine, sphere_increasing, sphere_decreasing]
"""""" # Enable auto-doc for data member
class GradientFile:
gradient = None
def getpalette(self, entries=256):
palette = []
ix = 0
x0, x1, xm, rgb0, rgb1, segment = self.gradient[ix]
for i in range(entries):
x = i / (entries - 1)
while x1 < x:
ix += 1
x0, x1, xm, rgb0, rgb1, segment = self.gradient[ix]
w = x1 - x0
if w < EPSILON:
scale = segment(0.5, 0.5)
else:
scale = segment((xm - x0) / w, (x - x0) / w)
# expand to RGBA
r = o8(int(255 * ((rgb1[0] - rgb0[0]) * scale + rgb0[0]) + 0.5))
g = o8(int(255 * ((rgb1[1] - rgb0[1]) * scale + rgb0[1]) + 0.5))
b = o8(int(255 * ((rgb1[2] - rgb0[2]) * scale + rgb0[2]) + 0.5))
a = o8(int(255 * ((rgb1[3] - rgb0[3]) * scale + rgb0[3]) + 0.5))
# add to palette
palette.append(r + g + b + a)
return b"".join(palette), "RGBA"
class GimpGradientFile(GradientFile):
"""File handler for GIMP's gradient format."""
def __init__(self, fp):
if fp.readline()[:13] != b"GIMP Gradient":
msg = "not a GIMP gradient file"
raise SyntaxError(msg)
line = fp.readline()
# GIMP 1.2 gradient files don't contain a name, but GIMP 1.3 files do
if line.startswith(b"Name: "):
line = fp.readline().strip()
count = int(line)
gradient = []
for i in range(count):
s = fp.readline().split()
w = [float(x) for x in s[:11]]
x0, x1 = w[0], w[2]
xm = w[1]
rgb0 = w[3:7]
rgb1 = w[7:11]
segment = SEGMENTS[int(s[11])]
cspace = int(s[12])
if cspace != 0:
msg = "cannot handle HSV colour space"
raise OSError(msg)
gradient.append((x0, x1, xm, rgb0, rgb1, segment))
self.gradient = gradient

@ -1,57 +0,0 @@
#
# Python Imaging Library
# $Id$
#
# stuff to read GIMP palette files
#
# History:
# 1997-08-23 fl Created
# 2004-09-07 fl Support GIMP 2.0 palette files.
#
# Copyright (c) Secret Labs AB 1997-2004. All rights reserved.
# Copyright (c) Fredrik Lundh 1997-2004.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import re
from ._binary import o8
class GimpPaletteFile:
"""File handler for GIMP's palette format."""
rawmode = "RGB"
def __init__(self, fp):
self.palette = [o8(i) * 3 for i in range(256)]
if fp.readline()[:12] != b"GIMP Palette":
msg = "not a GIMP palette file"
raise SyntaxError(msg)
for i in range(256):
s = fp.readline()
if not s:
break
# skip fields and comment lines
if re.match(rb"\w+:|#", s):
continue
if len(s) > 100:
msg = "bad palette file"
raise SyntaxError(msg)
v = tuple(map(int, s.split()[:3]))
if len(v) != 3:
msg = "bad palette entry"
raise ValueError(msg)
self.palette[i] = o8(v[0]) + o8(v[1]) + o8(v[2])
self.palette = b"".join(self.palette)
def getpalette(self):
return self.palette, self.rawmode

@ -1,74 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# GRIB stub adapter
#
# Copyright (c) 1996-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
_handler = None
def register_handler(handler):
"""
Install application-specific GRIB image handler.
:param handler: Handler object.
"""
global _handler
_handler = handler
# --------------------------------------------------------------------
# Image adapter
def _accept(prefix):
return prefix[:4] == b"GRIB" and prefix[7] == 1
class GribStubImageFile(ImageFile.StubImageFile):
format = "GRIB"
format_description = "GRIB"
def _open(self):
offset = self.fp.tell()
if not _accept(self.fp.read(8)):
msg = "Not a GRIB file"
raise SyntaxError(msg)
self.fp.seek(offset)
# make something up
self._mode = "F"
self._size = 1, 1
loader = self._load()
if loader:
loader.open(self)
def _load(self):
return _handler
def _save(im, fp, filename):
if _handler is None or not hasattr(_handler, "save"):
msg = "GRIB save handler not installed"
raise OSError(msg)
_handler.save(im, fp, filename)
# --------------------------------------------------------------------
# Registry
Image.register_open(GribStubImageFile.format, GribStubImageFile, _accept)
Image.register_save(GribStubImageFile.format, _save)
Image.register_extension(GribStubImageFile.format, ".grib")

@ -1,74 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# HDF5 stub adapter
#
# Copyright (c) 2000-2003 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
_handler = None
def register_handler(handler):
"""
Install application-specific HDF5 image handler.
:param handler: Handler object.
"""
global _handler
_handler = handler
# --------------------------------------------------------------------
# Image adapter
def _accept(prefix):
return prefix[:8] == b"\x89HDF\r\n\x1a\n"
class HDF5StubImageFile(ImageFile.StubImageFile):
format = "HDF5"
format_description = "HDF5"
def _open(self):
offset = self.fp.tell()
if not _accept(self.fp.read(8)):
msg = "Not an HDF file"
raise SyntaxError(msg)
self.fp.seek(offset)
# make something up
self._mode = "F"
self._size = 1, 1
loader = self._load()
if loader:
loader.open(self)
def _load(self):
return _handler
def _save(im, fp, filename):
if _handler is None or not hasattr(_handler, "save"):
msg = "HDF5 save handler not installed"
raise OSError(msg)
_handler.save(im, fp, filename)
# --------------------------------------------------------------------
# Registry
Image.register_open(HDF5StubImageFile.format, HDF5StubImageFile, _accept)
Image.register_save(HDF5StubImageFile.format, _save)
Image.register_extensions(HDF5StubImageFile.format, [".h5", ".hdf"])

@ -1,400 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# macOS icns file decoder, based on icns.py by Bob Ippolito.
#
# history:
# 2004-10-09 fl Turned into a PIL plugin; removed 2.3 dependencies.
# 2020-04-04 Allow saving on all operating systems.
#
# Copyright (c) 2004 by Bob Ippolito.
# Copyright (c) 2004 by Secret Labs.
# Copyright (c) 2004 by Fredrik Lundh.
# Copyright (c) 2014 by Alastair Houghton.
# Copyright (c) 2020 by Pan Jing.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import os
import struct
import sys
from . import Image, ImageFile, PngImagePlugin, features
enable_jpeg2k = features.check_codec("jpg_2000")
if enable_jpeg2k:
from . import Jpeg2KImagePlugin
MAGIC = b"icns"
HEADERSIZE = 8
def nextheader(fobj):
return struct.unpack(">4sI", fobj.read(HEADERSIZE))
def read_32t(fobj, start_length, size):
# The 128x128 icon seems to have an extra header for some reason.
(start, length) = start_length
fobj.seek(start)
sig = fobj.read(4)
if sig != b"\x00\x00\x00\x00":
msg = "Unknown signature, expecting 0x00000000"
raise SyntaxError(msg)
return read_32(fobj, (start + 4, length - 4), size)
def read_32(fobj, start_length, size):
"""
Read a 32bit RGB icon resource. Seems to be either uncompressed or
an RLE packbits-like scheme.
"""
(start, length) = start_length
fobj.seek(start)
pixel_size = (size[0] * size[2], size[1] * size[2])
sizesq = pixel_size[0] * pixel_size[1]
if length == sizesq * 3:
# uncompressed ("RGBRGBGB")
indata = fobj.read(length)
im = Image.frombuffer("RGB", pixel_size, indata, "raw", "RGB", 0, 1)
else:
# decode image
im = Image.new("RGB", pixel_size, None)
for band_ix in range(3):
data = []
bytesleft = sizesq
while bytesleft > 0:
byte = fobj.read(1)
if not byte:
break
byte = byte[0]
if byte & 0x80:
blocksize = byte - 125
byte = fobj.read(1)
for i in range(blocksize):
data.append(byte)
else:
blocksize = byte + 1
data.append(fobj.read(blocksize))
bytesleft -= blocksize
if bytesleft <= 0:
break
if bytesleft != 0:
msg = f"Error reading channel [{repr(bytesleft)} left]"
raise SyntaxError(msg)
band = Image.frombuffer("L", pixel_size, b"".join(data), "raw", "L", 0, 1)
im.im.putband(band.im, band_ix)
return {"RGB": im}
def read_mk(fobj, start_length, size):
# Alpha masks seem to be uncompressed
start = start_length[0]
fobj.seek(start)
pixel_size = (size[0] * size[2], size[1] * size[2])
sizesq = pixel_size[0] * pixel_size[1]
band = Image.frombuffer("L", pixel_size, fobj.read(sizesq), "raw", "L", 0, 1)
return {"A": band}
def read_png_or_jpeg2000(fobj, start_length, size):
(start, length) = start_length
fobj.seek(start)
sig = fobj.read(12)
if sig[:8] == b"\x89PNG\x0d\x0a\x1a\x0a":
fobj.seek(start)
im = PngImagePlugin.PngImageFile(fobj)
Image._decompression_bomb_check(im.size)
return {"RGBA": im}
elif (
sig[:4] == b"\xff\x4f\xff\x51"
or sig[:4] == b"\x0d\x0a\x87\x0a"
or sig == b"\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a"
):
if not enable_jpeg2k:
msg = (
"Unsupported icon subimage format (rebuild PIL "
"with JPEG 2000 support to fix this)"
)
raise ValueError(msg)
# j2k, jpc or j2c
fobj.seek(start)
jp2kstream = fobj.read(length)
f = io.BytesIO(jp2kstream)
im = Jpeg2KImagePlugin.Jpeg2KImageFile(f)
Image._decompression_bomb_check(im.size)
if im.mode != "RGBA":
im = im.convert("RGBA")
return {"RGBA": im}
else:
msg = "Unsupported icon subimage format"
raise ValueError(msg)
class IcnsFile:
SIZES = {
(512, 512, 2): [(b"ic10", read_png_or_jpeg2000)],
(512, 512, 1): [(b"ic09", read_png_or_jpeg2000)],
(256, 256, 2): [(b"ic14", read_png_or_jpeg2000)],
(256, 256, 1): [(b"ic08", read_png_or_jpeg2000)],
(128, 128, 2): [(b"ic13", read_png_or_jpeg2000)],
(128, 128, 1): [
(b"ic07", read_png_or_jpeg2000),
(b"it32", read_32t),
(b"t8mk", read_mk),
],
(64, 64, 1): [(b"icp6", read_png_or_jpeg2000)],
(32, 32, 2): [(b"ic12", read_png_or_jpeg2000)],
(48, 48, 1): [(b"ih32", read_32), (b"h8mk", read_mk)],
(32, 32, 1): [
(b"icp5", read_png_or_jpeg2000),
(b"il32", read_32),
(b"l8mk", read_mk),
],
(16, 16, 2): [(b"ic11", read_png_or_jpeg2000)],
(16, 16, 1): [
(b"icp4", read_png_or_jpeg2000),
(b"is32", read_32),
(b"s8mk", read_mk),
],
}
def __init__(self, fobj):
"""
fobj is a file-like object as an icns resource
"""
# signature : (start, length)
self.dct = dct = {}
self.fobj = fobj
sig, filesize = nextheader(fobj)
if not _accept(sig):
msg = "not an icns file"
raise SyntaxError(msg)
i = HEADERSIZE
while i < filesize:
sig, blocksize = nextheader(fobj)
if blocksize <= 0:
msg = "invalid block header"
raise SyntaxError(msg)
i += HEADERSIZE
blocksize -= HEADERSIZE
dct[sig] = (i, blocksize)
fobj.seek(blocksize, io.SEEK_CUR)
i += blocksize
def itersizes(self):
sizes = []
for size, fmts in self.SIZES.items():
for fmt, reader in fmts:
if fmt in self.dct:
sizes.append(size)
break
return sizes
def bestsize(self):
sizes = self.itersizes()
if not sizes:
msg = "No 32bit icon resources found"
raise SyntaxError(msg)
return max(sizes)
def dataforsize(self, size):
"""
Get an icon resource as {channel: array}. Note that
the arrays are bottom-up like windows bitmaps and will likely
need to be flipped or transposed in some way.
"""
dct = {}
for code, reader in self.SIZES[size]:
desc = self.dct.get(code)
if desc is not None:
dct.update(reader(self.fobj, desc, size))
return dct
def getimage(self, size=None):
if size is None:
size = self.bestsize()
if len(size) == 2:
size = (size[0], size[1], 1)
channels = self.dataforsize(size)
im = channels.get("RGBA", None)
if im:
return im
im = channels.get("RGB").copy()
try:
im.putalpha(channels["A"])
except KeyError:
pass
return im
##
# Image plugin for Mac OS icons.
class IcnsImageFile(ImageFile.ImageFile):
"""
PIL image support for Mac OS .icns files.
Chooses the best resolution, but will possibly load
a different size image if you mutate the size attribute
before calling 'load'.
The info dictionary has a key 'sizes' that is a list
of sizes that the icns file has.
"""
format = "ICNS"
format_description = "Mac OS icns resource"
def _open(self):
self.icns = IcnsFile(self.fp)
self._mode = "RGBA"
self.info["sizes"] = self.icns.itersizes()
self.best_size = self.icns.bestsize()
self.size = (
self.best_size[0] * self.best_size[2],
self.best_size[1] * self.best_size[2],
)
@property
def size(self):
return self._size
@size.setter
def size(self, value):
info_size = value
if info_size not in self.info["sizes"] and len(info_size) == 2:
info_size = (info_size[0], info_size[1], 1)
if (
info_size not in self.info["sizes"]
and len(info_size) == 3
and info_size[2] == 1
):
simple_sizes = [
(size[0] * size[2], size[1] * size[2]) for size in self.info["sizes"]
]
if value in simple_sizes:
info_size = self.info["sizes"][simple_sizes.index(value)]
if info_size not in self.info["sizes"]:
msg = "This is not one of the allowed sizes of this image"
raise ValueError(msg)
self._size = value
def load(self):
if len(self.size) == 3:
self.best_size = self.size
self.size = (
self.best_size[0] * self.best_size[2],
self.best_size[1] * self.best_size[2],
)
px = Image.Image.load(self)
if self.im is not None and self.im.size == self.size:
# Already loaded
return px
self.load_prepare()
# This is likely NOT the best way to do it, but whatever.
im = self.icns.getimage(self.best_size)
# If this is a PNG or JPEG 2000, it won't be loaded yet
px = im.load()
self.im = im.im
self._mode = im.mode
self.size = im.size
return px
def _save(im, fp, filename):
"""
Saves the image as a series of PNG files,
that are then combined into a .icns file.
"""
if hasattr(fp, "flush"):
fp.flush()
sizes = {
b"ic07": 128,
b"ic08": 256,
b"ic09": 512,
b"ic10": 1024,
b"ic11": 32,
b"ic12": 64,
b"ic13": 256,
b"ic14": 512,
}
provided_images = {im.width: im for im in im.encoderinfo.get("append_images", [])}
size_streams = {}
for size in set(sizes.values()):
image = (
provided_images[size]
if size in provided_images
else im.resize((size, size))
)
temp = io.BytesIO()
image.save(temp, "png")
size_streams[size] = temp.getvalue()
entries = []
for type, size in sizes.items():
stream = size_streams[size]
entries.append(
{"type": type, "size": HEADERSIZE + len(stream), "stream": stream}
)
# Header
fp.write(MAGIC)
file_length = HEADERSIZE # Header
file_length += HEADERSIZE + 8 * len(entries) # TOC
file_length += sum(entry["size"] for entry in entries)
fp.write(struct.pack(">i", file_length))
# TOC
fp.write(b"TOC ")
fp.write(struct.pack(">i", HEADERSIZE + len(entries) * HEADERSIZE))
for entry in entries:
fp.write(entry["type"])
fp.write(struct.pack(">i", entry["size"]))
# Data
for entry in entries:
fp.write(entry["type"])
fp.write(struct.pack(">i", entry["size"]))
fp.write(entry["stream"])
if hasattr(fp, "flush"):
fp.flush()
def _accept(prefix):
return prefix[:4] == MAGIC
Image.register_open(IcnsImageFile.format, IcnsImageFile, _accept)
Image.register_extension(IcnsImageFile.format, ".icns")
Image.register_save(IcnsImageFile.format, _save)
Image.register_mime(IcnsImageFile.format, "image/icns")
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Syntax: python3 IcnsImagePlugin.py [file]")
sys.exit()
with open(sys.argv[1], "rb") as fp:
imf = IcnsImageFile(fp)
for size in imf.info["sizes"]:
width, height, scale = imf.size = size
imf.save(f"out-{width}-{height}-{scale}.png")
with Image.open(sys.argv[1]) as im:
im.save("out.png")
if sys.platform == "windows":
os.startfile("out.png")

@ -1,356 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# Windows Icon support for PIL
#
# History:
# 96-05-27 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
# This plugin is a refactored version of Win32IconImagePlugin by Bryan Davis
# <casadebender@gmail.com>.
# https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki
#
# Icon format references:
# * https://en.wikipedia.org/wiki/ICO_(file_format)
# * https://msdn.microsoft.com/en-us/library/ms997538.aspx
from __future__ import annotations
import warnings
from io import BytesIO
from math import ceil, log
from . import BmpImagePlugin, Image, ImageFile, PngImagePlugin
from ._binary import i16le as i16
from ._binary import i32le as i32
from ._binary import o8
from ._binary import o16le as o16
from ._binary import o32le as o32
#
# --------------------------------------------------------------------
_MAGIC = b"\0\0\1\0"
def _save(im, fp, filename):
fp.write(_MAGIC) # (2+2)
bmp = im.encoderinfo.get("bitmap_format") == "bmp"
sizes = im.encoderinfo.get(
"sizes",
[(16, 16), (24, 24), (32, 32), (48, 48), (64, 64), (128, 128), (256, 256)],
)
frames = []
provided_ims = [im] + im.encoderinfo.get("append_images", [])
width, height = im.size
for size in sorted(set(sizes)):
if size[0] > width or size[1] > height or size[0] > 256 or size[1] > 256:
continue
for provided_im in provided_ims:
if provided_im.size != size:
continue
frames.append(provided_im)
if bmp:
bits = BmpImagePlugin.SAVE[provided_im.mode][1]
bits_used = [bits]
for other_im in provided_ims:
if other_im.size != size:
continue
bits = BmpImagePlugin.SAVE[other_im.mode][1]
if bits not in bits_used:
# Another image has been supplied for this size
# with a different bit depth
frames.append(other_im)
bits_used.append(bits)
break
else:
# TODO: invent a more convenient method for proportional scalings
frame = provided_im.copy()
frame.thumbnail(size, Image.Resampling.LANCZOS, reducing_gap=None)
frames.append(frame)
fp.write(o16(len(frames))) # idCount(2)
offset = fp.tell() + len(frames) * 16
for frame in frames:
width, height = frame.size
# 0 means 256
fp.write(o8(width if width < 256 else 0)) # bWidth(1)
fp.write(o8(height if height < 256 else 0)) # bHeight(1)
bits, colors = BmpImagePlugin.SAVE[frame.mode][1:] if bmp else (32, 0)
fp.write(o8(colors)) # bColorCount(1)
fp.write(b"\0") # bReserved(1)
fp.write(b"\0\0") # wPlanes(2)
fp.write(o16(bits)) # wBitCount(2)
image_io = BytesIO()
if bmp:
frame.save(image_io, "dib")
if bits != 32:
and_mask = Image.new("1", size)
ImageFile._save(
and_mask, image_io, [("raw", (0, 0) + size, 0, ("1", 0, -1))]
)
else:
frame.save(image_io, "png")
image_io.seek(0)
image_bytes = image_io.read()
if bmp:
image_bytes = image_bytes[:8] + o32(height * 2) + image_bytes[12:]
bytes_len = len(image_bytes)
fp.write(o32(bytes_len)) # dwBytesInRes(4)
fp.write(o32(offset)) # dwImageOffset(4)
current = fp.tell()
fp.seek(offset)
fp.write(image_bytes)
offset = offset + bytes_len
fp.seek(current)
def _accept(prefix):
return prefix[:4] == _MAGIC
class IcoFile:
def __init__(self, buf):
"""
Parse image from file-like object containing ico file data
"""
# check magic
s = buf.read(6)
if not _accept(s):
msg = "not an ICO file"
raise SyntaxError(msg)
self.buf = buf
self.entry = []
# Number of items in file
self.nb_items = i16(s, 4)
# Get headers for each item
for i in range(self.nb_items):
s = buf.read(16)
icon_header = {
"width": s[0],
"height": s[1],
"nb_color": s[2], # No. of colors in image (0 if >=8bpp)
"reserved": s[3],
"planes": i16(s, 4),
"bpp": i16(s, 6),
"size": i32(s, 8),
"offset": i32(s, 12),
}
# See Wikipedia
for j in ("width", "height"):
if not icon_header[j]:
icon_header[j] = 256
# See Wikipedia notes about color depth.
# We need this just to differ images with equal sizes
icon_header["color_depth"] = (
icon_header["bpp"]
or (
icon_header["nb_color"] != 0
and ceil(log(icon_header["nb_color"], 2))
)
or 256
)
icon_header["dim"] = (icon_header["width"], icon_header["height"])
icon_header["square"] = icon_header["width"] * icon_header["height"]
self.entry.append(icon_header)
self.entry = sorted(self.entry, key=lambda x: x["color_depth"])
# ICO images are usually squares
self.entry = sorted(self.entry, key=lambda x: x["square"], reverse=True)
def sizes(self):
"""
Get a list of all available icon sizes and color depths.
"""
return {(h["width"], h["height"]) for h in self.entry}
def getentryindex(self, size, bpp=False):
for i, h in enumerate(self.entry):
if size == h["dim"] and (bpp is False or bpp == h["color_depth"]):
return i
return 0
def getimage(self, size, bpp=False):
"""
Get an image from the icon
"""
return self.frame(self.getentryindex(size, bpp))
def frame(self, idx):
"""
Get an image from frame idx
"""
header = self.entry[idx]
self.buf.seek(header["offset"])
data = self.buf.read(8)
self.buf.seek(header["offset"])
if data[:8] == PngImagePlugin._MAGIC:
# png frame
im = PngImagePlugin.PngImageFile(self.buf)
Image._decompression_bomb_check(im.size)
else:
# XOR + AND mask bmp frame
im = BmpImagePlugin.DibImageFile(self.buf)
Image._decompression_bomb_check(im.size)
# change tile dimension to only encompass XOR image
im._size = (im.size[0], int(im.size[1] / 2))
d, e, o, a = im.tile[0]
im.tile[0] = d, (0, 0) + im.size, o, a
# figure out where AND mask image starts
bpp = header["bpp"]
if 32 == bpp:
# 32-bit color depth icon image allows semitransparent areas
# PIL's DIB format ignores transparency bits, recover them.
# The DIB is packed in BGRX byte order where X is the alpha
# channel.
# Back up to start of bmp data
self.buf.seek(o)
# extract every 4th byte (eg. 3,7,11,15,...)
alpha_bytes = self.buf.read(im.size[0] * im.size[1] * 4)[3::4]
# convert to an 8bpp grayscale image
mask = Image.frombuffer(
"L", # 8bpp
im.size, # (w, h)
alpha_bytes, # source chars
"raw", # raw decoder
("L", 0, -1), # 8bpp inverted, unpadded, reversed
)
else:
# get AND image from end of bitmap
w = im.size[0]
if (w % 32) > 0:
# bitmap row data is aligned to word boundaries
w += 32 - (im.size[0] % 32)
# the total mask data is
# padded row size * height / bits per char
total_bytes = int((w * im.size[1]) / 8)
and_mask_offset = header["offset"] + header["size"] - total_bytes
self.buf.seek(and_mask_offset)
mask_data = self.buf.read(total_bytes)
# convert raw data to image
mask = Image.frombuffer(
"1", # 1 bpp
im.size, # (w, h)
mask_data, # source chars
"raw", # raw decoder
("1;I", int(w / 8), -1), # 1bpp inverted, padded, reversed
)
# now we have two images, im is XOR image and mask is AND image
# apply mask image as alpha channel
im = im.convert("RGBA")
im.putalpha(mask)
return im
##
# Image plugin for Windows Icon files.
class IcoImageFile(ImageFile.ImageFile):
"""
PIL read-only image support for Microsoft Windows .ico files.
By default the largest resolution image in the file will be loaded. This
can be changed by altering the 'size' attribute before calling 'load'.
The info dictionary has a key 'sizes' that is a list of the sizes available
in the icon file.
Handles classic, XP and Vista icon formats.
When saving, PNG compression is used. Support for this was only added in
Windows Vista. If you are unable to view the icon in Windows, convert the
image to "RGBA" mode before saving.
This plugin is a refactored version of Win32IconImagePlugin by Bryan Davis
<casadebender@gmail.com>.
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki
"""
format = "ICO"
format_description = "Windows Icon"
def _open(self):
self.ico = IcoFile(self.fp)
self.info["sizes"] = self.ico.sizes()
self.size = self.ico.entry[0]["dim"]
self.load()
@property
def size(self):
return self._size
@size.setter
def size(self, value):
if value not in self.info["sizes"]:
msg = "This is not one of the allowed sizes of this image"
raise ValueError(msg)
self._size = value
def load(self):
if self.im is not None and self.im.size == self.size:
# Already loaded
return Image.Image.load(self)
im = self.ico.getimage(self.size)
# if tile is PNG, it won't really be loaded yet
im.load()
self.im = im.im
self.pyaccess = None
self._mode = im.mode
if im.size != self.size:
warnings.warn("Image was not the expected size")
index = self.ico.getentryindex(self.size)
sizes = list(self.info["sizes"])
sizes[index] = im.size
self.info["sizes"] = set(sizes)
self.size = im.size
def load_seek(self):
# Flag the ImageFile.Parser so that it
# just does all the decode at the end.
pass
#
# --------------------------------------------------------------------
Image.register_open(IcoImageFile.format, IcoImageFile, _accept)
Image.register_save(IcoImageFile.format, _save)
Image.register_extension(IcoImageFile.format, ".ico")
Image.register_mime(IcoImageFile.format, "image/x-icon")

@ -1,371 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# IFUNC IM file handling for PIL
#
# history:
# 1995-09-01 fl Created.
# 1997-01-03 fl Save palette images
# 1997-01-08 fl Added sequence support
# 1997-01-23 fl Added P and RGB save support
# 1997-05-31 fl Read floating point images
# 1997-06-22 fl Save floating point images
# 1997-08-27 fl Read and save 1-bit images
# 1998-06-25 fl Added support for RGB+LUT images
# 1998-07-02 fl Added support for YCC images
# 1998-07-15 fl Renamed offset attribute to avoid name clash
# 1998-12-29 fl Added I;16 support
# 2001-02-17 fl Use 're' instead of 'regex' (Python 2.1) (0.7)
# 2003-09-26 fl Added LA/PA support
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-2001 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import os
import re
from . import Image, ImageFile, ImagePalette
# --------------------------------------------------------------------
# Standard tags
COMMENT = "Comment"
DATE = "Date"
EQUIPMENT = "Digitalization equipment"
FRAMES = "File size (no of images)"
LUT = "Lut"
NAME = "Name"
SCALE = "Scale (x,y)"
SIZE = "Image size (x*y)"
MODE = "Image type"
TAGS = {
COMMENT: 0,
DATE: 0,
EQUIPMENT: 0,
FRAMES: 0,
LUT: 0,
NAME: 0,
SCALE: 0,
SIZE: 0,
MODE: 0,
}
OPEN = {
# ifunc93/p3cfunc formats
"0 1 image": ("1", "1"),
"L 1 image": ("1", "1"),
"Greyscale image": ("L", "L"),
"Grayscale image": ("L", "L"),
"RGB image": ("RGB", "RGB;L"),
"RLB image": ("RGB", "RLB"),
"RYB image": ("RGB", "RLB"),
"B1 image": ("1", "1"),
"B2 image": ("P", "P;2"),
"B4 image": ("P", "P;4"),
"X 24 image": ("RGB", "RGB"),
"L 32 S image": ("I", "I;32"),
"L 32 F image": ("F", "F;32"),
# old p3cfunc formats
"RGB3 image": ("RGB", "RGB;T"),
"RYB3 image": ("RGB", "RYB;T"),
# extensions
"LA image": ("LA", "LA;L"),
"PA image": ("LA", "PA;L"),
"RGBA image": ("RGBA", "RGBA;L"),
"RGBX image": ("RGBX", "RGBX;L"),
"CMYK image": ("CMYK", "CMYK;L"),
"YCC image": ("YCbCr", "YCbCr;L"),
}
# ifunc95 extensions
for i in ["8", "8S", "16", "16S", "32", "32F"]:
OPEN[f"L {i} image"] = ("F", f"F;{i}")
OPEN[f"L*{i} image"] = ("F", f"F;{i}")
for i in ["16", "16L", "16B"]:
OPEN[f"L {i} image"] = (f"I;{i}", f"I;{i}")
OPEN[f"L*{i} image"] = (f"I;{i}", f"I;{i}")
for i in ["32S"]:
OPEN[f"L {i} image"] = ("I", f"I;{i}")
OPEN[f"L*{i} image"] = ("I", f"I;{i}")
for i in range(2, 33):
OPEN[f"L*{i} image"] = ("F", f"F;{i}")
# --------------------------------------------------------------------
# Read IM directory
split = re.compile(rb"^([A-Za-z][^:]*):[ \t]*(.*)[ \t]*$")
def number(s):
try:
return int(s)
except ValueError:
return float(s)
##
# Image plugin for the IFUNC IM file format.
class ImImageFile(ImageFile.ImageFile):
format = "IM"
format_description = "IFUNC Image Memory"
_close_exclusive_fp_after_loading = False
def _open(self):
# Quick rejection: if there's not an LF among the first
# 100 bytes, this is (probably) not a text header.
if b"\n" not in self.fp.read(100):
msg = "not an IM file"
raise SyntaxError(msg)
self.fp.seek(0)
n = 0
# Default values
self.info[MODE] = "L"
self.info[SIZE] = (512, 512)
self.info[FRAMES] = 1
self.rawmode = "L"
while True:
s = self.fp.read(1)
# Some versions of IFUNC uses \n\r instead of \r\n...
if s == b"\r":
continue
if not s or s == b"\0" or s == b"\x1A":
break
# FIXME: this may read whole file if not a text file
s = s + self.fp.readline()
if len(s) > 100:
msg = "not an IM file"
raise SyntaxError(msg)
if s[-2:] == b"\r\n":
s = s[:-2]
elif s[-1:] == b"\n":
s = s[:-1]
try:
m = split.match(s)
except re.error as e:
msg = "not an IM file"
raise SyntaxError(msg) from e
if m:
k, v = m.group(1, 2)
# Don't know if this is the correct encoding,
# but a decent guess (I guess)
k = k.decode("latin-1", "replace")
v = v.decode("latin-1", "replace")
# Convert value as appropriate
if k in [FRAMES, SCALE, SIZE]:
v = v.replace("*", ",")
v = tuple(map(number, v.split(",")))
if len(v) == 1:
v = v[0]
elif k == MODE and v in OPEN:
v, self.rawmode = OPEN[v]
# Add to dictionary. Note that COMMENT tags are
# combined into a list of strings.
if k == COMMENT:
if k in self.info:
self.info[k].append(v)
else:
self.info[k] = [v]
else:
self.info[k] = v
if k in TAGS:
n += 1
else:
msg = "Syntax error in IM header: " + s.decode("ascii", "replace")
raise SyntaxError(msg)
if not n:
msg = "Not an IM file"
raise SyntaxError(msg)
# Basic attributes
self._size = self.info[SIZE]
self._mode = self.info[MODE]
# Skip forward to start of image data
while s and s[:1] != b"\x1A":
s = self.fp.read(1)
if not s:
msg = "File truncated"
raise SyntaxError(msg)
if LUT in self.info:
# convert lookup table to palette or lut attribute
palette = self.fp.read(768)
greyscale = 1 # greyscale palette
linear = 1 # linear greyscale palette
for i in range(256):
if palette[i] == palette[i + 256] == palette[i + 512]:
if palette[i] != i:
linear = 0
else:
greyscale = 0
if self.mode in ["L", "LA", "P", "PA"]:
if greyscale:
if not linear:
self.lut = list(palette[:256])
else:
if self.mode in ["L", "P"]:
self._mode = self.rawmode = "P"
elif self.mode in ["LA", "PA"]:
self._mode = "PA"
self.rawmode = "PA;L"
self.palette = ImagePalette.raw("RGB;L", palette)
elif self.mode == "RGB":
if not greyscale or not linear:
self.lut = list(palette)
self.frame = 0
self.__offset = offs = self.fp.tell()
self._fp = self.fp # FIXME: hack
if self.rawmode[:2] == "F;":
# ifunc95 formats
try:
# use bit decoder (if necessary)
bits = int(self.rawmode[2:])
if bits not in [8, 16, 32]:
self.tile = [("bit", (0, 0) + self.size, offs, (bits, 8, 3, 0, -1))]
return
except ValueError:
pass
if self.rawmode in ["RGB;T", "RYB;T"]:
# Old LabEye/3PC files. Would be very surprised if anyone
# ever stumbled upon such a file ;-)
size = self.size[0] * self.size[1]
self.tile = [
("raw", (0, 0) + self.size, offs, ("G", 0, -1)),
("raw", (0, 0) + self.size, offs + size, ("R", 0, -1)),
("raw", (0, 0) + self.size, offs + 2 * size, ("B", 0, -1)),
]
else:
# LabEye/IFUNC files
self.tile = [("raw", (0, 0) + self.size, offs, (self.rawmode, 0, -1))]
@property
def n_frames(self):
return self.info[FRAMES]
@property
def is_animated(self):
return self.info[FRAMES] > 1
def seek(self, frame):
if not self._seek_check(frame):
return
self.frame = frame
if self.mode == "1":
bits = 1
else:
bits = 8 * len(self.mode)
size = ((self.size[0] * bits + 7) // 8) * self.size[1]
offs = self.__offset + frame * size
self.fp = self._fp
self.tile = [("raw", (0, 0) + self.size, offs, (self.rawmode, 0, -1))]
def tell(self):
return self.frame
#
# --------------------------------------------------------------------
# Save IM files
SAVE = {
# mode: (im type, raw mode)
"1": ("0 1", "1"),
"L": ("Greyscale", "L"),
"LA": ("LA", "LA;L"),
"P": ("Greyscale", "P"),
"PA": ("LA", "PA;L"),
"I": ("L 32S", "I;32S"),
"I;16": ("L 16", "I;16"),
"I;16L": ("L 16L", "I;16L"),
"I;16B": ("L 16B", "I;16B"),
"F": ("L 32F", "F;32F"),
"RGB": ("RGB", "RGB;L"),
"RGBA": ("RGBA", "RGBA;L"),
"RGBX": ("RGBX", "RGBX;L"),
"CMYK": ("CMYK", "CMYK;L"),
"YCbCr": ("YCC", "YCbCr;L"),
}
def _save(im, fp, filename):
try:
image_type, rawmode = SAVE[im.mode]
except KeyError as e:
msg = f"Cannot save {im.mode} images as IM"
raise ValueError(msg) from e
frames = im.encoderinfo.get("frames", 1)
fp.write(f"Image type: {image_type} image\r\n".encode("ascii"))
if filename:
# Each line must be 100 characters or less,
# or: SyntaxError("not an IM file")
# 8 characters are used for "Name: " and "\r\n"
# Keep just the filename, ditch the potentially overlong path
name, ext = os.path.splitext(os.path.basename(filename))
name = "".join([name[: 92 - len(ext)], ext])
fp.write(f"Name: {name}\r\n".encode("ascii"))
fp.write(("Image size (x*y): %d*%d\r\n" % im.size).encode("ascii"))
fp.write(f"File size (no of images): {frames}\r\n".encode("ascii"))
if im.mode in ["P", "PA"]:
fp.write(b"Lut: 1\r\n")
fp.write(b"\000" * (511 - fp.tell()) + b"\032")
if im.mode in ["P", "PA"]:
im_palette = im.im.getpalette("RGB", "RGB;L")
colors = len(im_palette) // 3
palette = b""
for i in range(3):
palette += im_palette[colors * i : colors * (i + 1)]
palette += b"\x00" * (256 - colors)
fp.write(palette) # 768 bytes
ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 0, (rawmode, 0, -1))])
#
# --------------------------------------------------------------------
# Registry
Image.register_open(ImImageFile.format, ImImageFile)
Image.register_save(ImImageFile.format, _save)
Image.register_extension(ImImageFile.format, ".im")

@ -1,311 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# standard channel operations
#
# History:
# 1996-03-24 fl Created
# 1996-08-13 fl Added logical operations (for "1" images)
# 2000-10-12 fl Added offset method (from Image.py)
#
# Copyright (c) 1997-2000 by Secret Labs AB
# Copyright (c) 1996-2000 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image
def constant(image: Image.Image, value: int) -> Image.Image:
"""Fill a channel with a given gray level.
:rtype: :py:class:`~PIL.Image.Image`
"""
return Image.new("L", image.size, value)
def duplicate(image: Image.Image) -> Image.Image:
"""Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`.
:rtype: :py:class:`~PIL.Image.Image`
"""
return image.copy()
def invert(image: Image.Image) -> Image.Image:
"""
Invert an image (channel). ::
out = MAX - image
:rtype: :py:class:`~PIL.Image.Image`
"""
image.load()
return image._new(image.im.chop_invert())
def lighter(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Compares the two images, pixel by pixel, and returns a new image containing
the lighter values. ::
out = max(image1, image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_lighter(image2.im))
def darker(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Compares the two images, pixel by pixel, and returns a new image containing
the darker values. ::
out = min(image1, image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_darker(image2.im))
def difference(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Returns the absolute value of the pixel-by-pixel difference between the two
images. ::
out = abs(image1 - image2)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_difference(image2.im))
def multiply(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Superimposes two images on top of each other.
If you multiply an image with a solid black image, the result is black. If
you multiply with a solid white image, the image is unaffected. ::
out = image1 * image2 / MAX
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_multiply(image2.im))
def screen(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Superimposes two inverted images on top of each other. ::
out = MAX - ((MAX - image1) * (MAX - image2) / MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_screen(image2.im))
def soft_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Superimposes two images on top of each other using the Soft Light algorithm
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_soft_light(image2.im))
def hard_light(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Superimposes two images on top of each other using the Hard Light algorithm
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_hard_light(image2.im))
def overlay(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""
Superimposes two images on top of each other using the Overlay algorithm
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_overlay(image2.im))
def add(
image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
) -> Image.Image:
"""
Adds two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0. ::
out = ((image1 + image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_add(image2.im, scale, offset))
def subtract(
image1: Image.Image, image2: Image.Image, scale: float = 1.0, offset: float = 0
) -> Image.Image:
"""
Subtracts two images, dividing the result by scale and adding the offset.
If omitted, scale defaults to 1.0, and offset to 0.0. ::
out = ((image1 - image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
def add_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""Add two images, without clipping the result. ::
out = ((image1 + image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_add_modulo(image2.im))
def subtract_modulo(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""Subtract two images, without clipping the result. ::
out = ((image1 - image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_subtract_modulo(image2.im))
def logical_and(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""Logical AND between two images.
Both of the images must have mode "1". If you would like to perform a
logical AND on an image with a mode other than "1", try
:py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask
as the second image. ::
out = ((image1 and image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_and(image2.im))
def logical_or(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""Logical OR between two images.
Both of the images must have mode "1". ::
out = ((image1 or image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_or(image2.im))
def logical_xor(image1: Image.Image, image2: Image.Image) -> Image.Image:
"""Logical XOR between two images.
Both of the images must have mode "1". ::
out = ((bool(image1) != bool(image2)) % MAX)
:rtype: :py:class:`~PIL.Image.Image`
"""
image1.load()
image2.load()
return image1._new(image1.im.chop_xor(image2.im))
def blend(image1: Image.Image, image2: Image.Image, alpha: float) -> Image.Image:
"""Blend images using constant transparency weight. Alias for
:py:func:`PIL.Image.blend`.
:rtype: :py:class:`~PIL.Image.Image`
"""
return Image.blend(image1, image2, alpha)
def composite(
image1: Image.Image, image2: Image.Image, mask: Image.Image
) -> Image.Image:
"""Create composite using transparency mask. Alias for
:py:func:`PIL.Image.composite`.
:rtype: :py:class:`~PIL.Image.Image`
"""
return Image.composite(image1, image2, mask)
def offset(image: Image.Image, xoffset: int, yoffset: int | None = None) -> Image.Image:
"""Returns a copy of the image where data has been offset by the given
distances. Data wraps around the edges. If ``yoffset`` is omitted, it
is assumed to be equal to ``xoffset``.
:param image: Input image.
:param xoffset: The horizontal distance.
:param yoffset: The vertical distance. If omitted, both
distances are set to the same value.
:rtype: :py:class:`~PIL.Image.Image`
"""
if yoffset is None:
yoffset = xoffset
image.load()
return image._new(image.im.offset(xoffset, yoffset))

@ -1,317 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# map CSS3-style colour description strings to RGB
#
# History:
# 2002-10-24 fl Added support for CSS-style color strings
# 2002-12-15 fl Added RGBA support
# 2004-03-27 fl Fixed remaining int() problems for Python 1.5.2
# 2004-07-19 fl Fixed gray/grey spelling issues
# 2009-03-05 fl Fixed rounding error in grayscale calculation
#
# Copyright (c) 2002-2004 by Secret Labs AB
# Copyright (c) 2002-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import re
from functools import lru_cache
from . import Image
@lru_cache
def getrgb(color):
"""
Convert a color string to an RGB or RGBA tuple. If the string cannot be
parsed, this function raises a :py:exc:`ValueError` exception.
.. versionadded:: 1.1.4
:param color: A color string
:return: ``(red, green, blue[, alpha])``
"""
if len(color) > 100:
msg = "color specifier is too long"
raise ValueError(msg)
color = color.lower()
rgb = colormap.get(color, None)
if rgb:
if isinstance(rgb, tuple):
return rgb
colormap[color] = rgb = getrgb(rgb)
return rgb
# check for known string formats
if re.match("#[a-f0-9]{3}$", color):
return int(color[1] * 2, 16), int(color[2] * 2, 16), int(color[3] * 2, 16)
if re.match("#[a-f0-9]{4}$", color):
return (
int(color[1] * 2, 16),
int(color[2] * 2, 16),
int(color[3] * 2, 16),
int(color[4] * 2, 16),
)
if re.match("#[a-f0-9]{6}$", color):
return int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
if re.match("#[a-f0-9]{8}$", color):
return (
int(color[1:3], 16),
int(color[3:5], 16),
int(color[5:7], 16),
int(color[7:9], 16),
)
m = re.match(r"rgb\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)$", color)
if m:
return int(m.group(1)), int(m.group(2)), int(m.group(3))
m = re.match(r"rgb\(\s*(\d+)%\s*,\s*(\d+)%\s*,\s*(\d+)%\s*\)$", color)
if m:
return (
int((int(m.group(1)) * 255) / 100.0 + 0.5),
int((int(m.group(2)) * 255) / 100.0 + 0.5),
int((int(m.group(3)) * 255) / 100.0 + 0.5),
)
m = re.match(
r"hsl\(\s*(\d+\.?\d*)\s*,\s*(\d+\.?\d*)%\s*,\s*(\d+\.?\d*)%\s*\)$", color
)
if m:
from colorsys import hls_to_rgb
rgb = hls_to_rgb(
float(m.group(1)) / 360.0,
float(m.group(3)) / 100.0,
float(m.group(2)) / 100.0,
)
return (
int(rgb[0] * 255 + 0.5),
int(rgb[1] * 255 + 0.5),
int(rgb[2] * 255 + 0.5),
)
m = re.match(
r"hs[bv]\(\s*(\d+\.?\d*)\s*,\s*(\d+\.?\d*)%\s*,\s*(\d+\.?\d*)%\s*\)$", color
)
if m:
from colorsys import hsv_to_rgb
rgb = hsv_to_rgb(
float(m.group(1)) / 360.0,
float(m.group(2)) / 100.0,
float(m.group(3)) / 100.0,
)
return (
int(rgb[0] * 255 + 0.5),
int(rgb[1] * 255 + 0.5),
int(rgb[2] * 255 + 0.5),
)
m = re.match(r"rgba\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)$", color)
if m:
return int(m.group(1)), int(m.group(2)), int(m.group(3)), int(m.group(4))
msg = f"unknown color specifier: {repr(color)}"
raise ValueError(msg)
@lru_cache
def getcolor(color, mode):
"""
Same as :py:func:`~PIL.ImageColor.getrgb` for most modes. However, if
``mode`` is HSV, converts the RGB value to a HSV value, or if ``mode`` is
not color or a palette image, converts the RGB value to a grayscale value.
If the string cannot be parsed, this function raises a :py:exc:`ValueError`
exception.
.. versionadded:: 1.1.4
:param color: A color string
:param mode: Convert result to this mode
:return: ``(graylevel[, alpha]) or (red, green, blue[, alpha])``
"""
# same as getrgb, but converts the result to the given mode
color, alpha = getrgb(color), 255
if len(color) == 4:
color, alpha = color[:3], color[3]
if mode == "HSV":
from colorsys import rgb_to_hsv
r, g, b = color
h, s, v = rgb_to_hsv(r / 255, g / 255, b / 255)
return int(h * 255), int(s * 255), int(v * 255)
elif Image.getmodebase(mode) == "L":
r, g, b = color
# ITU-R Recommendation 601-2 for nonlinear RGB
# scaled to 24 bits to match the convert's implementation.
color = (r * 19595 + g * 38470 + b * 7471 + 0x8000) >> 16
if mode[-1] == "A":
return color, alpha
else:
if mode[-1] == "A":
return color + (alpha,)
return color
colormap = {
# X11 colour table from https://drafts.csswg.org/css-color-4/, with
# gray/grey spelling issues fixed. This is a superset of HTML 4.0
# colour names used in CSS 1.
"aliceblue": "#f0f8ff",
"antiquewhite": "#faebd7",
"aqua": "#00ffff",
"aquamarine": "#7fffd4",
"azure": "#f0ffff",
"beige": "#f5f5dc",
"bisque": "#ffe4c4",
"black": "#000000",
"blanchedalmond": "#ffebcd",
"blue": "#0000ff",
"blueviolet": "#8a2be2",
"brown": "#a52a2a",
"burlywood": "#deb887",
"cadetblue": "#5f9ea0",
"chartreuse": "#7fff00",
"chocolate": "#d2691e",
"coral": "#ff7f50",
"cornflowerblue": "#6495ed",
"cornsilk": "#fff8dc",
"crimson": "#dc143c",
"cyan": "#00ffff",
"darkblue": "#00008b",
"darkcyan": "#008b8b",
"darkgoldenrod": "#b8860b",
"darkgray": "#a9a9a9",
"darkgrey": "#a9a9a9",
"darkgreen": "#006400",
"darkkhaki": "#bdb76b",
"darkmagenta": "#8b008b",
"darkolivegreen": "#556b2f",
"darkorange": "#ff8c00",
"darkorchid": "#9932cc",
"darkred": "#8b0000",
"darksalmon": "#e9967a",
"darkseagreen": "#8fbc8f",
"darkslateblue": "#483d8b",
"darkslategray": "#2f4f4f",
"darkslategrey": "#2f4f4f",
"darkturquoise": "#00ced1",
"darkviolet": "#9400d3",
"deeppink": "#ff1493",
"deepskyblue": "#00bfff",
"dimgray": "#696969",
"dimgrey": "#696969",
"dodgerblue": "#1e90ff",
"firebrick": "#b22222",
"floralwhite": "#fffaf0",
"forestgreen": "#228b22",
"fuchsia": "#ff00ff",
"gainsboro": "#dcdcdc",
"ghostwhite": "#f8f8ff",
"gold": "#ffd700",
"goldenrod": "#daa520",
"gray": "#808080",
"grey": "#808080",
"green": "#008000",
"greenyellow": "#adff2f",
"honeydew": "#f0fff0",
"hotpink": "#ff69b4",
"indianred": "#cd5c5c",
"indigo": "#4b0082",
"ivory": "#fffff0",
"khaki": "#f0e68c",
"lavender": "#e6e6fa",
"lavenderblush": "#fff0f5",
"lawngreen": "#7cfc00",
"lemonchiffon": "#fffacd",
"lightblue": "#add8e6",
"lightcoral": "#f08080",
"lightcyan": "#e0ffff",
"lightgoldenrodyellow": "#fafad2",
"lightgreen": "#90ee90",
"lightgray": "#d3d3d3",
"lightgrey": "#d3d3d3",
"lightpink": "#ffb6c1",
"lightsalmon": "#ffa07a",
"lightseagreen": "#20b2aa",
"lightskyblue": "#87cefa",
"lightslategray": "#778899",
"lightslategrey": "#778899",
"lightsteelblue": "#b0c4de",
"lightyellow": "#ffffe0",
"lime": "#00ff00",
"limegreen": "#32cd32",
"linen": "#faf0e6",
"magenta": "#ff00ff",
"maroon": "#800000",
"mediumaquamarine": "#66cdaa",
"mediumblue": "#0000cd",
"mediumorchid": "#ba55d3",
"mediumpurple": "#9370db",
"mediumseagreen": "#3cb371",
"mediumslateblue": "#7b68ee",
"mediumspringgreen": "#00fa9a",
"mediumturquoise": "#48d1cc",
"mediumvioletred": "#c71585",
"midnightblue": "#191970",
"mintcream": "#f5fffa",
"mistyrose": "#ffe4e1",
"moccasin": "#ffe4b5",
"navajowhite": "#ffdead",
"navy": "#000080",
"oldlace": "#fdf5e6",
"olive": "#808000",
"olivedrab": "#6b8e23",
"orange": "#ffa500",
"orangered": "#ff4500",
"orchid": "#da70d6",
"palegoldenrod": "#eee8aa",
"palegreen": "#98fb98",
"paleturquoise": "#afeeee",
"palevioletred": "#db7093",
"papayawhip": "#ffefd5",
"peachpuff": "#ffdab9",
"peru": "#cd853f",
"pink": "#ffc0cb",
"plum": "#dda0dd",
"powderblue": "#b0e0e6",
"purple": "#800080",
"rebeccapurple": "#663399",
"red": "#ff0000",
"rosybrown": "#bc8f8f",
"royalblue": "#4169e1",
"saddlebrown": "#8b4513",
"salmon": "#fa8072",
"sandybrown": "#f4a460",
"seagreen": "#2e8b57",
"seashell": "#fff5ee",
"sienna": "#a0522d",
"silver": "#c0c0c0",
"skyblue": "#87ceeb",
"slateblue": "#6a5acd",
"slategray": "#708090",
"slategrey": "#708090",
"snow": "#fffafa",
"springgreen": "#00ff7f",
"steelblue": "#4682b4",
"tan": "#d2b48c",
"teal": "#008080",
"thistle": "#d8bfd8",
"tomato": "#ff6347",
"turquoise": "#40e0d0",
"violet": "#ee82ee",
"wheat": "#f5deb3",
"white": "#ffffff",
"whitesmoke": "#f5f5f5",
"yellow": "#ffff00",
"yellowgreen": "#9acd32",
}

@ -1,193 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# WCK-style drawing interface operations
#
# History:
# 2003-12-07 fl created
# 2005-05-15 fl updated; added to PIL as ImageDraw2
# 2005-05-15 fl added text support
# 2005-05-20 fl added arc/chord/pieslice support
#
# Copyright (c) 2003-2005 by Secret Labs AB
# Copyright (c) 2003-2005 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
"""
(Experimental) WCK-style drawing interface operations
.. seealso:: :py:mod:`PIL.ImageDraw`
"""
from __future__ import annotations
from . import Image, ImageColor, ImageDraw, ImageFont, ImagePath
class Pen:
"""Stores an outline color and width."""
def __init__(self, color, width=1, opacity=255):
self.color = ImageColor.getrgb(color)
self.width = width
class Brush:
"""Stores a fill color"""
def __init__(self, color, opacity=255):
self.color = ImageColor.getrgb(color)
class Font:
"""Stores a TrueType font and color"""
def __init__(self, color, file, size=12):
# FIXME: add support for bitmap fonts
self.color = ImageColor.getrgb(color)
self.font = ImageFont.truetype(file, size)
class Draw:
"""
(Experimental) WCK-style drawing interface
"""
def __init__(self, image, size=None, color=None):
if not hasattr(image, "im"):
image = Image.new(image, size, color)
self.draw = ImageDraw.Draw(image)
self.image = image
self.transform = None
def flush(self):
return self.image
def render(self, op, xy, pen, brush=None):
# handle color arguments
outline = fill = None
width = 1
if isinstance(pen, Pen):
outline = pen.color
width = pen.width
elif isinstance(brush, Pen):
outline = brush.color
width = brush.width
if isinstance(brush, Brush):
fill = brush.color
elif isinstance(pen, Brush):
fill = pen.color
# handle transformation
if self.transform:
xy = ImagePath.Path(xy)
xy.transform(self.transform)
# render the item
if op == "line":
self.draw.line(xy, fill=outline, width=width)
else:
getattr(self.draw, op)(xy, fill=fill, outline=outline)
def settransform(self, offset):
"""Sets a transformation offset."""
(xoffset, yoffset) = offset
self.transform = (1, 0, xoffset, 0, 1, yoffset)
def arc(self, xy, start, end, *options):
"""
Draws an arc (a portion of a circle outline) between the start and end
angles, inside the given bounding box.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.arc`
"""
self.render("arc", xy, start, end, *options)
def chord(self, xy, start, end, *options):
"""
Same as :py:meth:`~PIL.ImageDraw2.Draw.arc`, but connects the end points
with a straight line.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.chord`
"""
self.render("chord", xy, start, end, *options)
def ellipse(self, xy, *options):
"""
Draws an ellipse inside the given bounding box.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.ellipse`
"""
self.render("ellipse", xy, *options)
def line(self, xy, *options):
"""
Draws a line between the coordinates in the ``xy`` list.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.line`
"""
self.render("line", xy, *options)
def pieslice(self, xy, start, end, *options):
"""
Same as arc, but also draws straight lines between the end points and the
center of the bounding box.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.pieslice`
"""
self.render("pieslice", xy, start, end, *options)
def polygon(self, xy, *options):
"""
Draws a polygon.
The polygon outline consists of straight lines between the given
coordinates, plus a straight line between the last and the first
coordinate.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.polygon`
"""
self.render("polygon", xy, *options)
def rectangle(self, xy, *options):
"""
Draws a rectangle.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.rectangle`
"""
self.render("rectangle", xy, *options)
def text(self, xy, text, font):
"""
Draws the string at the given position.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.text`
"""
if self.transform:
xy = ImagePath.Path(xy)
xy.transform(self.transform)
self.draw.text(xy, text, font=font.font, fill=font.color)
def textbbox(self, xy, text, font):
"""
Returns bounding box (in pixels) of given text.
:return: ``(left, top, right, bottom)`` bounding box
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.textbbox`
"""
if self.transform:
xy = ImagePath.Path(xy)
xy.transform(self.transform)
return self.draw.textbbox(xy, text, font=font.font)
def textlength(self, text, font):
"""
Returns length (in pixels) of given text.
This is the amount by which following text should be offset.
.. seealso:: :py:meth:`PIL.ImageDraw.ImageDraw.textlength`
"""
return self.draw.textlength(text, font=font.font)

@ -1,104 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# image enhancement classes
#
# For a background, see "Image Processing By Interpolation and
# Extrapolation", Paul Haeberli and Douglas Voorhies. Available
# at http://www.graficaobscura.com/interp/index.html
#
# History:
# 1996-03-23 fl Created
# 2009-06-16 fl Fixed mean calculation
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFilter, ImageStat
class _Enhance:
def enhance(self, factor):
"""
Returns an enhanced image.
:param factor: A floating point value controlling the enhancement.
Factor 1.0 always returns a copy of the original image,
lower factors mean less color (brightness, contrast,
etc), and higher values more. There are no restrictions
on this value.
:rtype: :py:class:`~PIL.Image.Image`
"""
return Image.blend(self.degenerate, self.image, factor)
class Color(_Enhance):
"""Adjust image color balance.
This class can be used to adjust the colour balance of an image, in
a manner similar to the controls on a colour TV set. An enhancement
factor of 0.0 gives a black and white image. A factor of 1.0 gives
the original image.
"""
def __init__(self, image):
self.image = image
self.intermediate_mode = "L"
if "A" in image.getbands():
self.intermediate_mode = "LA"
self.degenerate = image.convert(self.intermediate_mode).convert(image.mode)
class Contrast(_Enhance):
"""Adjust image contrast.
This class can be used to control the contrast of an image, similar
to the contrast control on a TV set. An enhancement factor of 0.0
gives a solid gray image. A factor of 1.0 gives the original image.
"""
def __init__(self, image):
self.image = image
mean = int(ImageStat.Stat(image.convert("L")).mean[0] + 0.5)
self.degenerate = Image.new("L", image.size, mean).convert(image.mode)
if "A" in image.getbands():
self.degenerate.putalpha(image.getchannel("A"))
class Brightness(_Enhance):
"""Adjust image brightness.
This class can be used to control the brightness of an image. An
enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the
original image.
"""
def __init__(self, image):
self.image = image
self.degenerate = Image.new(image.mode, image.size, 0)
if "A" in image.getbands():
self.degenerate.putalpha(image.getchannel("A"))
class Sharpness(_Enhance):
"""Adjust image sharpness.
This class can be used to adjust the sharpness of an image. An
enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the
original image, and a factor of 2.0 gives a sharpened image.
"""
def __init__(self, image):
self.image = image
self.degenerate = image.filter(ImageFilter.SMOOTH)
if "A" in image.getbands():
self.degenerate.putalpha(image.getchannel("A"))

@ -1,795 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# base class for image file handlers
#
# history:
# 1995-09-09 fl Created
# 1996-03-11 fl Fixed load mechanism.
# 1996-04-15 fl Added pcx/xbm decoders.
# 1996-04-30 fl Added encoders.
# 1996-12-14 fl Added load helpers
# 1997-01-11 fl Use encode_to_file where possible
# 1997-08-27 fl Flush output in _save
# 1998-03-05 fl Use memory mapping for some modes
# 1999-02-04 fl Use memory mapping also for "I;16" and "I;16B"
# 1999-05-31 fl Added image parser
# 2000-10-12 fl Set readonly flag on memory-mapped images
# 2002-03-20 fl Use better messages for common decoder errors
# 2003-04-21 fl Fall back on mmap/map_buffer if map is not available
# 2003-10-30 fl Added StubImageFile class
# 2004-02-25 fl Made incremental parser more robust
#
# Copyright (c) 1997-2004 by Secret Labs AB
# Copyright (c) 1995-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import itertools
import struct
import sys
from typing import Any, NamedTuple
from . import Image
from ._deprecate import deprecate
from ._util import is_path
MAXBLOCK = 65536
SAFEBLOCK = 1024 * 1024
LOAD_TRUNCATED_IMAGES = False
"""Whether or not to load truncated image files. User code may change this."""
ERRORS = {
-1: "image buffer overrun error",
-2: "decoding error",
-3: "unknown error",
-8: "bad configuration",
-9: "out of memory error",
}
"""
Dict of known error codes returned from :meth:`.PyDecoder.decode`,
:meth:`.PyEncoder.encode` :meth:`.PyEncoder.encode_to_pyfd` and
:meth:`.PyEncoder.encode_to_file`.
"""
#
# --------------------------------------------------------------------
# Helpers
def _get_oserror(error, *, encoder):
try:
msg = Image.core.getcodecstatus(error)
except AttributeError:
msg = ERRORS.get(error)
if not msg:
msg = f"{'encoder' if encoder else 'decoder'} error {error}"
msg += f" when {'writing' if encoder else 'reading'} image file"
return OSError(msg)
def raise_oserror(error):
deprecate(
"raise_oserror",
12,
action="It is only useful for translating error codes returned by a codec's "
"decode() method, which ImageFile already does automatically.",
)
raise _get_oserror(error, encoder=False)
def _tilesort(t):
# sort on offset
return t[2]
class _Tile(NamedTuple):
encoder_name: str
extents: tuple[int, int, int, int]
offset: int
args: tuple[Any, ...] | str | None
#
# --------------------------------------------------------------------
# ImageFile base class
class ImageFile(Image.Image):
"""Base class for image file format handlers."""
def __init__(self, fp=None, filename=None):
super().__init__()
self._min_frame = 0
self.custom_mimetype = None
self.tile = None
""" A list of tile descriptors, or ``None`` """
self.readonly = 1 # until we know better
self.decoderconfig = ()
self.decodermaxblock = MAXBLOCK
if is_path(fp):
# filename
self.fp = open(fp, "rb")
self.filename = fp
self._exclusive_fp = True
else:
# stream
self.fp = fp
self.filename = filename
# can be overridden
self._exclusive_fp = None
try:
try:
self._open()
except (
IndexError, # end of data
TypeError, # end of data (ord)
KeyError, # unsupported mode
EOFError, # got header but not the first frame
struct.error,
) as v:
raise SyntaxError(v) from v
if not self.mode or self.size[0] <= 0 or self.size[1] <= 0:
msg = "not identified by this driver"
raise SyntaxError(msg)
except BaseException:
# close the file only if we have opened it this constructor
if self._exclusive_fp:
self.fp.close()
raise
def get_format_mimetype(self):
if self.custom_mimetype:
return self.custom_mimetype
if self.format is not None:
return Image.MIME.get(self.format.upper())
def __setstate__(self, state):
self.tile = []
super().__setstate__(state)
def verify(self):
"""Check file integrity"""
# raise exception if something's wrong. must be called
# directly after open, and closes file when finished.
if self._exclusive_fp:
self.fp.close()
self.fp = None
def load(self):
"""Load image data based on tile list"""
if self.tile is None:
msg = "cannot load this image"
raise OSError(msg)
pixel = Image.Image.load(self)
if not self.tile:
return pixel
self.map = None
use_mmap = self.filename and len(self.tile) == 1
# As of pypy 2.1.0, memory mapping was failing here.
use_mmap = use_mmap and not hasattr(sys, "pypy_version_info")
readonly = 0
# look for read/seek overrides
try:
read = self.load_read
# don't use mmap if there are custom read/seek functions
use_mmap = False
except AttributeError:
read = self.fp.read
try:
seek = self.load_seek
use_mmap = False
except AttributeError:
seek = self.fp.seek
if use_mmap:
# try memory mapping
decoder_name, extents, offset, args = self.tile[0]
if isinstance(args, str):
args = (args, 0, 1)
if (
decoder_name == "raw"
and len(args) >= 3
and args[0] == self.mode
and args[0] in Image._MAPMODES
):
try:
# use mmap, if possible
import mmap
with open(self.filename) as fp:
self.map = mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)
if offset + self.size[1] * args[1] > self.map.size():
msg = "buffer is not large enough"
raise OSError(msg)
self.im = Image.core.map_buffer(
self.map, self.size, decoder_name, offset, args
)
readonly = 1
# After trashing self.im,
# we might need to reload the palette data.
if self.palette:
self.palette.dirty = 1
except (AttributeError, OSError, ImportError):
self.map = None
self.load_prepare()
err_code = -3 # initialize to unknown error
if not self.map:
# sort tiles in file order
self.tile.sort(key=_tilesort)
try:
# FIXME: This is a hack to handle TIFF's JpegTables tag.
prefix = self.tile_prefix
except AttributeError:
prefix = b""
# Remove consecutive duplicates that only differ by their offset
self.tile = [
list(tiles)[-1]
for _, tiles in itertools.groupby(
self.tile, lambda tile: (tile[0], tile[1], tile[3])
)
]
for decoder_name, extents, offset, args in self.tile:
seek(offset)
decoder = Image._getdecoder(
self.mode, decoder_name, args, self.decoderconfig
)
try:
decoder.setimage(self.im, extents)
if decoder.pulls_fd:
decoder.setfd(self.fp)
err_code = decoder.decode(b"")[1]
else:
b = prefix
while True:
try:
s = read(self.decodermaxblock)
except (IndexError, struct.error) as e:
# truncated png/gif
if LOAD_TRUNCATED_IMAGES:
break
else:
msg = "image file is truncated"
raise OSError(msg) from e
if not s: # truncated jpeg
if LOAD_TRUNCATED_IMAGES:
break
else:
msg = (
"image file is truncated "
f"({len(b)} bytes not processed)"
)
raise OSError(msg)
b = b + s
n, err_code = decoder.decode(b)
if n < 0:
break
b = b[n:]
finally:
# Need to cleanup here to prevent leaks
decoder.cleanup()
self.tile = []
self.readonly = readonly
self.load_end()
if self._exclusive_fp and self._close_exclusive_fp_after_loading:
self.fp.close()
self.fp = None
if not self.map and not LOAD_TRUNCATED_IMAGES and err_code < 0:
# still raised if decoder fails to return anything
raise _get_oserror(err_code, encoder=False)
return Image.Image.load(self)
def load_prepare(self):
# create image memory if necessary
if not self.im or self.im.mode != self.mode or self.im.size != self.size:
self.im = Image.core.new(self.mode, self.size)
# create palette (optional)
if self.mode == "P":
Image.Image.load(self)
def load_end(self):
# may be overridden
pass
# may be defined for contained formats
# def load_seek(self, pos):
# pass
# may be defined for blocked formats (e.g. PNG)
# def load_read(self, bytes):
# pass
def _seek_check(self, frame):
if (
frame < self._min_frame
# Only check upper limit on frames if additional seek operations
# are not required to do so
or (
not (hasattr(self, "_n_frames") and self._n_frames is None)
and frame >= self.n_frames + self._min_frame
)
):
msg = "attempt to seek outside sequence"
raise EOFError(msg)
return self.tell() != frame
class StubImageFile(ImageFile):
"""
Base class for stub image loaders.
A stub loader is an image loader that can identify files of a
certain format, but relies on external code to load the file.
"""
def _open(self):
msg = "StubImageFile subclass must implement _open"
raise NotImplementedError(msg)
def load(self):
loader = self._load()
if loader is None:
msg = f"cannot find loader for this {self.format} file"
raise OSError(msg)
image = loader.load(self)
assert image is not None
# become the other object (!)
self.__class__ = image.__class__
self.__dict__ = image.__dict__
return image.load()
def _load(self):
"""(Hook) Find actual image loader."""
msg = "StubImageFile subclass must implement _load"
raise NotImplementedError(msg)
class Parser:
"""
Incremental image parser. This class implements the standard
feed/close consumer interface.
"""
incremental = None
image = None
data = None
decoder = None
offset = 0
finished = 0
def reset(self):
"""
(Consumer) Reset the parser. Note that you can only call this
method immediately after you've created a parser; parser
instances cannot be reused.
"""
assert self.data is None, "cannot reuse parsers"
def feed(self, data):
"""
(Consumer) Feed data to the parser.
:param data: A string buffer.
:exception OSError: If the parser failed to parse the image file.
"""
# collect data
if self.finished:
return
if self.data is None:
self.data = data
else:
self.data = self.data + data
# parse what we have
if self.decoder:
if self.offset > 0:
# skip header
skip = min(len(self.data), self.offset)
self.data = self.data[skip:]
self.offset = self.offset - skip
if self.offset > 0 or not self.data:
return
n, e = self.decoder.decode(self.data)
if n < 0:
# end of stream
self.data = None
self.finished = 1
if e < 0:
# decoding error
self.image = None
raise _get_oserror(e, encoder=False)
else:
# end of image
return
self.data = self.data[n:]
elif self.image:
# if we end up here with no decoder, this file cannot
# be incrementally parsed. wait until we've gotten all
# available data
pass
else:
# attempt to open this file
try:
with io.BytesIO(self.data) as fp:
im = Image.open(fp)
except OSError:
pass # not enough data
else:
flag = hasattr(im, "load_seek") or hasattr(im, "load_read")
if flag or len(im.tile) != 1:
# custom load code, or multiple tiles
self.decode = None
else:
# initialize decoder
im.load_prepare()
d, e, o, a = im.tile[0]
im.tile = []
self.decoder = Image._getdecoder(im.mode, d, a, im.decoderconfig)
self.decoder.setimage(im.im, e)
# calculate decoder offset
self.offset = o
if self.offset <= len(self.data):
self.data = self.data[self.offset :]
self.offset = 0
self.image = im
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
def close(self):
"""
(Consumer) Close the stream.
:returns: An image object.
:exception OSError: If the parser failed to parse the image file either
because it cannot be identified or cannot be
decoded.
"""
# finish decoding
if self.decoder:
# get rid of what's left in the buffers
self.feed(b"")
self.data = self.decoder = None
if not self.finished:
msg = "image was incomplete"
raise OSError(msg)
if not self.image:
msg = "cannot parse this image"
raise OSError(msg)
if self.data:
# incremental parsing not possible; reopen the file
# not that we have all data
with io.BytesIO(self.data) as fp:
try:
self.image = Image.open(fp)
finally:
self.image.load()
return self.image
# --------------------------------------------------------------------
def _save(im, fp, tile, bufsize=0):
"""Helper to save image based on tile list
:param im: Image object.
:param fp: File object.
:param tile: Tile list.
:param bufsize: Optional buffer size
"""
im.load()
if not hasattr(im, "encoderconfig"):
im.encoderconfig = ()
tile.sort(key=_tilesort)
# FIXME: make MAXBLOCK a configuration parameter
# It would be great if we could have the encoder specify what it needs
# But, it would need at least the image size in most cases. RawEncode is
# a tricky case.
bufsize = max(MAXBLOCK, bufsize, im.size[0] * 4) # see RawEncode.c
try:
fh = fp.fileno()
fp.flush()
_encode_tile(im, fp, tile, bufsize, fh)
except (AttributeError, io.UnsupportedOperation) as exc:
_encode_tile(im, fp, tile, bufsize, None, exc)
if hasattr(fp, "flush"):
fp.flush()
def _encode_tile(im, fp, tile: list[_Tile], bufsize, fh, exc=None):
for encoder_name, extents, offset, args in tile:
if offset > 0:
fp.seek(offset)
encoder = Image._getencoder(im.mode, encoder_name, args, im.encoderconfig)
try:
encoder.setimage(im.im, extents)
if encoder.pushes_fd:
encoder.setfd(fp)
errcode = encoder.encode_to_pyfd()[1]
else:
if exc:
# compress to Python file-compatible object
while True:
errcode, data = encoder.encode(bufsize)[1:]
fp.write(data)
if errcode:
break
else:
# slight speedup: compress to real file object
errcode = encoder.encode_to_file(fh, bufsize)
if errcode < 0:
raise _get_oserror(errcode, encoder=True) from exc
finally:
encoder.cleanup()
def _safe_read(fp, size):
"""
Reads large blocks in a safe way. Unlike fp.read(n), this function
doesn't trust the user. If the requested size is larger than
SAFEBLOCK, the file is read block by block.
:param fp: File handle. Must implement a <b>read</b> method.
:param size: Number of bytes to read.
:returns: A string containing <i>size</i> bytes of data.
Raises an OSError if the file is truncated and the read cannot be completed
"""
if size <= 0:
return b""
if size <= SAFEBLOCK:
data = fp.read(size)
if len(data) < size:
msg = "Truncated File Read"
raise OSError(msg)
return data
data = []
remaining_size = size
while remaining_size > 0:
block = fp.read(min(remaining_size, SAFEBLOCK))
if not block:
break
data.append(block)
remaining_size -= len(block)
if sum(len(d) for d in data) < size:
msg = "Truncated File Read"
raise OSError(msg)
return b"".join(data)
class PyCodecState:
def __init__(self):
self.xsize = 0
self.ysize = 0
self.xoff = 0
self.yoff = 0
def extents(self):
return self.xoff, self.yoff, self.xoff + self.xsize, self.yoff + self.ysize
class PyCodec:
def __init__(self, mode, *args):
self.im = None
self.state = PyCodecState()
self.fd = None
self.mode = mode
self.init(args)
def init(self, args):
"""
Override to perform codec specific initialization
:param args: Array of args items from the tile entry
:returns: None
"""
self.args = args
def cleanup(self):
"""
Override to perform codec specific cleanup
:returns: None
"""
pass
def setfd(self, fd):
"""
Called from ImageFile to set the Python file-like object
:param fd: A Python file-like object
:returns: None
"""
self.fd = fd
def setimage(self, im, extents=None):
"""
Called from ImageFile to set the core output image for the codec
:param im: A core image object
:param extents: a 4 tuple of (x0, y0, x1, y1) defining the rectangle
for this tile
:returns: None
"""
# following c code
self.im = im
if extents:
(x0, y0, x1, y1) = extents
else:
(x0, y0, x1, y1) = (0, 0, 0, 0)
if x0 == 0 and x1 == 0:
self.state.xsize, self.state.ysize = self.im.size
else:
self.state.xoff = x0
self.state.yoff = y0
self.state.xsize = x1 - x0
self.state.ysize = y1 - y0
if self.state.xsize <= 0 or self.state.ysize <= 0:
msg = "Size cannot be negative"
raise ValueError(msg)
if (
self.state.xsize + self.state.xoff > self.im.size[0]
or self.state.ysize + self.state.yoff > self.im.size[1]
):
msg = "Tile cannot extend outside image"
raise ValueError(msg)
class PyDecoder(PyCodec):
"""
Python implementation of a format decoder. Override this class and
add the decoding logic in the :meth:`decode` method.
See :ref:`Writing Your Own File Codec in Python<file-codecs-py>`
"""
_pulls_fd = False
@property
def pulls_fd(self):
return self._pulls_fd
def decode(self, buffer):
"""
Override to perform the decoding process.
:param buffer: A bytes object with the data to be decoded.
:returns: A tuple of ``(bytes consumed, errcode)``.
If finished with decoding return -1 for the bytes consumed.
Err codes are from :data:`.ImageFile.ERRORS`.
"""
msg = "unavailable in base decoder"
raise NotImplementedError(msg)
def set_as_raw(self, data, rawmode=None):
"""
Convenience method to set the internal image from a stream of raw data
:param data: Bytes to be set
:param rawmode: The rawmode to be used for the decoder.
If not specified, it will default to the mode of the image
:returns: None
"""
if not rawmode:
rawmode = self.mode
d = Image._getdecoder(self.mode, "raw", rawmode)
d.setimage(self.im, self.state.extents())
s = d.decode(data)
if s[0] >= 0:
msg = "not enough image data"
raise ValueError(msg)
if s[1] != 0:
msg = "cannot decode image data"
raise ValueError(msg)
class PyEncoder(PyCodec):
"""
Python implementation of a format encoder. Override this class and
add the decoding logic in the :meth:`encode` method.
See :ref:`Writing Your Own File Codec in Python<file-codecs-py>`
"""
_pushes_fd = False
@property
def pushes_fd(self):
return self._pushes_fd
def encode(self, bufsize):
"""
Override to perform the encoding process.
:param bufsize: Buffer size.
:returns: A tuple of ``(bytes encoded, errcode, bytes)``.
If finished with encoding return 1 for the error code.
Err codes are from :data:`.ImageFile.ERRORS`.
"""
msg = "unavailable in base encoder"
raise NotImplementedError(msg)
def encode_to_pyfd(self):
"""
If ``pushes_fd`` is ``True``, then this method will be used,
and ``encode()`` will only be called once.
:returns: A tuple of ``(bytes consumed, errcode)``.
Err codes are from :data:`.ImageFile.ERRORS`.
"""
if not self.pushes_fd:
return 0, -8 # bad configuration
bytes_consumed, errcode, data = self.encode(0)
if data:
self.fd.write(data)
return bytes_consumed, errcode
def encode_to_file(self, fh, bufsize):
"""
:param fh: File handle.
:param bufsize: Buffer size.
:returns: If finished successfully, return 0.
Otherwise, return an error code. Err codes are from
:data:`.ImageFile.ERRORS`.
"""
errcode = 0
while errcode == 0:
status, errcode, buf = self.encode(bufsize)
if status > 0:
fh.write(buf[status:])
return errcode

@ -1,568 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# standard filters
#
# History:
# 1995-11-27 fl Created
# 2002-06-08 fl Added rank and mode filters
# 2003-09-15 fl Fixed rank calculation in rank filter; added expand call
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-2002 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import functools
class Filter:
pass
class MultibandFilter(Filter):
pass
class BuiltinFilter(MultibandFilter):
def filter(self, image):
if image.mode == "P":
msg = "cannot filter palette images"
raise ValueError(msg)
return image.filter(*self.filterargs)
class Kernel(BuiltinFilter):
"""
Create a convolution kernel. The current version only
supports 3x3 and 5x5 integer and floating point kernels.
In the current version, kernels can only be applied to
"L" and "RGB" images.
:param size: Kernel size, given as (width, height). In the current
version, this must be (3,3) or (5,5).
:param kernel: A sequence containing kernel weights. The kernel will
be flipped vertically before being applied to the image.
:param scale: Scale factor. If given, the result for each pixel is
divided by this value. The default is the sum of the
kernel weights.
:param offset: Offset. If given, this value is added to the result,
after it has been divided by the scale factor.
"""
name = "Kernel"
def __init__(self, size, kernel, scale=None, offset=0):
if scale is None:
# default scale is sum of kernel
scale = functools.reduce(lambda a, b: a + b, kernel)
if size[0] * size[1] != len(kernel):
msg = "not enough coefficients in kernel"
raise ValueError(msg)
self.filterargs = size, scale, offset, kernel
class RankFilter(Filter):
"""
Create a rank filter. The rank filter sorts all pixels in
a window of the given size, and returns the ``rank``'th value.
:param size: The kernel size, in pixels.
:param rank: What pixel value to pick. Use 0 for a min filter,
``size * size / 2`` for a median filter, ``size * size - 1``
for a max filter, etc.
"""
name = "Rank"
def __init__(self, size, rank):
self.size = size
self.rank = rank
def filter(self, image):
if image.mode == "P":
msg = "cannot filter palette images"
raise ValueError(msg)
image = image.expand(self.size // 2, self.size // 2)
return image.rankfilter(self.size, self.rank)
class MedianFilter(RankFilter):
"""
Create a median filter. Picks the median pixel value in a window with the
given size.
:param size: The kernel size, in pixels.
"""
name = "Median"
def __init__(self, size=3):
self.size = size
self.rank = size * size // 2
class MinFilter(RankFilter):
"""
Create a min filter. Picks the lowest pixel value in a window with the
given size.
:param size: The kernel size, in pixels.
"""
name = "Min"
def __init__(self, size=3):
self.size = size
self.rank = 0
class MaxFilter(RankFilter):
"""
Create a max filter. Picks the largest pixel value in a window with the
given size.
:param size: The kernel size, in pixels.
"""
name = "Max"
def __init__(self, size=3):
self.size = size
self.rank = size * size - 1
class ModeFilter(Filter):
"""
Create a mode filter. Picks the most frequent pixel value in a box with the
given size. Pixel values that occur only once or twice are ignored; if no
pixel value occurs more than twice, the original pixel value is preserved.
:param size: The kernel size, in pixels.
"""
name = "Mode"
def __init__(self, size=3):
self.size = size
def filter(self, image):
return image.modefilter(self.size)
class GaussianBlur(MultibandFilter):
"""Blurs the image with a sequence of extended box filters, which
approximates a Gaussian kernel. For details on accuracy see
<https://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf>
:param radius: Standard deviation of the Gaussian kernel. Either a sequence of two
numbers for x and y, or a single number for both.
"""
name = "GaussianBlur"
def __init__(self, radius=2):
self.radius = radius
def filter(self, image):
xy = self.radius
if not isinstance(xy, (tuple, list)):
xy = (xy, xy)
if xy == (0, 0):
return image.copy()
return image.gaussian_blur(xy)
class BoxBlur(MultibandFilter):
"""Blurs the image by setting each pixel to the average value of the pixels
in a square box extending radius pixels in each direction.
Supports float radius of arbitrary size. Uses an optimized implementation
which runs in linear time relative to the size of the image
for any radius value.
:param radius: Size of the box in a direction. Either a sequence of two numbers for
x and y, or a single number for both.
Radius 0 does not blur, returns an identical image.
Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total.
"""
name = "BoxBlur"
def __init__(self, radius):
xy = radius
if not isinstance(xy, (tuple, list)):
xy = (xy, xy)
if xy[0] < 0 or xy[1] < 0:
msg = "radius must be >= 0"
raise ValueError(msg)
self.radius = radius
def filter(self, image):
xy = self.radius
if not isinstance(xy, (tuple, list)):
xy = (xy, xy)
if xy == (0, 0):
return image.copy()
return image.box_blur(xy)
class UnsharpMask(MultibandFilter):
"""Unsharp mask filter.
See Wikipedia's entry on `digital unsharp masking`_ for an explanation of
the parameters.
:param radius: Blur Radius
:param percent: Unsharp strength, in percent
:param threshold: Threshold controls the minimum brightness change that
will be sharpened
.. _digital unsharp masking: https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking
"""
name = "UnsharpMask"
def __init__(self, radius=2, percent=150, threshold=3):
self.radius = radius
self.percent = percent
self.threshold = threshold
def filter(self, image):
return image.unsharp_mask(self.radius, self.percent, self.threshold)
class BLUR(BuiltinFilter):
name = "Blur"
# fmt: off
filterargs = (5, 5), 16, 0, (
1, 1, 1, 1, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 1, 1, 1, 1,
)
# fmt: on
class CONTOUR(BuiltinFilter):
name = "Contour"
# fmt: off
filterargs = (3, 3), 1, 255, (
-1, -1, -1,
-1, 8, -1,
-1, -1, -1,
)
# fmt: on
class DETAIL(BuiltinFilter):
name = "Detail"
# fmt: off
filterargs = (3, 3), 6, 0, (
0, -1, 0,
-1, 10, -1,
0, -1, 0,
)
# fmt: on
class EDGE_ENHANCE(BuiltinFilter):
name = "Edge-enhance"
# fmt: off
filterargs = (3, 3), 2, 0, (
-1, -1, -1,
-1, 10, -1,
-1, -1, -1,
)
# fmt: on
class EDGE_ENHANCE_MORE(BuiltinFilter):
name = "Edge-enhance More"
# fmt: off
filterargs = (3, 3), 1, 0, (
-1, -1, -1,
-1, 9, -1,
-1, -1, -1,
)
# fmt: on
class EMBOSS(BuiltinFilter):
name = "Emboss"
# fmt: off
filterargs = (3, 3), 1, 128, (
-1, 0, 0,
0, 1, 0,
0, 0, 0,
)
# fmt: on
class FIND_EDGES(BuiltinFilter):
name = "Find Edges"
# fmt: off
filterargs = (3, 3), 1, 0, (
-1, -1, -1,
-1, 8, -1,
-1, -1, -1,
)
# fmt: on
class SHARPEN(BuiltinFilter):
name = "Sharpen"
# fmt: off
filterargs = (3, 3), 16, 0, (
-2, -2, -2,
-2, 32, -2,
-2, -2, -2,
)
# fmt: on
class SMOOTH(BuiltinFilter):
name = "Smooth"
# fmt: off
filterargs = (3, 3), 13, 0, (
1, 1, 1,
1, 5, 1,
1, 1, 1,
)
# fmt: on
class SMOOTH_MORE(BuiltinFilter):
name = "Smooth More"
# fmt: off
filterargs = (5, 5), 100, 0, (
1, 1, 1, 1, 1,
1, 5, 5, 5, 1,
1, 5, 44, 5, 1,
1, 5, 5, 5, 1,
1, 1, 1, 1, 1,
)
# fmt: on
class Color3DLUT(MultibandFilter):
"""Three-dimensional color lookup table.
Transforms 3-channel pixels using the values of the channels as coordinates
in the 3D lookup table and interpolating the nearest elements.
This method allows you to apply almost any color transformation
in constant time by using pre-calculated decimated tables.
.. versionadded:: 5.2.0
:param size: Size of the table. One int or tuple of (int, int, int).
Minimal size in any dimension is 2, maximum is 65.
:param table: Flat lookup table. A list of ``channels * size**3``
float elements or a list of ``size**3`` channels-sized
tuples with floats. Channels are changed first,
then first dimension, then second, then third.
Value 0.0 corresponds lowest value of output, 1.0 highest.
:param channels: Number of channels in the table. Could be 3 or 4.
Default is 3.
:param target_mode: A mode for the result image. Should have not less
than ``channels`` channels. Default is ``None``,
which means that mode wouldn't be changed.
"""
name = "Color 3D LUT"
def __init__(self, size, table, channels=3, target_mode=None, **kwargs):
if channels not in (3, 4):
msg = "Only 3 or 4 output channels are supported"
raise ValueError(msg)
self.size = size = self._check_size(size)
self.channels = channels
self.mode = target_mode
# Hidden flag `_copy_table=False` could be used to avoid extra copying
# of the table if the table is specially made for the constructor.
copy_table = kwargs.get("_copy_table", True)
items = size[0] * size[1] * size[2]
wrong_size = False
numpy = None
if hasattr(table, "shape"):
try:
import numpy
except ImportError:
pass
if numpy and isinstance(table, numpy.ndarray):
if copy_table:
table = table.copy()
if table.shape in [
(items * channels,),
(items, channels),
(size[2], size[1], size[0], channels),
]:
table = table.reshape(items * channels)
else:
wrong_size = True
else:
if copy_table:
table = list(table)
# Convert to a flat list
if table and isinstance(table[0], (list, tuple)):
table, raw_table = [], table
for pixel in raw_table:
if len(pixel) != channels:
msg = (
"The elements of the table should "
f"have a length of {channels}."
)
raise ValueError(msg)
table.extend(pixel)
if wrong_size or len(table) != items * channels:
msg = (
"The table should have either channels * size**3 float items "
"or size**3 items of channels-sized tuples with floats. "
f"Table should be: {channels}x{size[0]}x{size[1]}x{size[2]}. "
f"Actual length: {len(table)}"
)
raise ValueError(msg)
self.table = table
@staticmethod
def _check_size(size):
try:
_, _, _ = size
except ValueError as e:
msg = "Size should be either an integer or a tuple of three integers."
raise ValueError(msg) from e
except TypeError:
size = (size, size, size)
size = [int(x) for x in size]
for size_1d in size:
if not 2 <= size_1d <= 65:
msg = "Size should be in [2, 65] range."
raise ValueError(msg)
return size
@classmethod
def generate(cls, size, callback, channels=3, target_mode=None):
"""Generates new LUT using provided callback.
:param size: Size of the table. Passed to the constructor.
:param callback: Function with three parameters which correspond
three color channels. Will be called ``size**3``
times with values from 0.0 to 1.0 and should return
a tuple with ``channels`` elements.
:param channels: The number of channels which should return callback.
:param target_mode: Passed to the constructor of the resulting
lookup table.
"""
size_1d, size_2d, size_3d = cls._check_size(size)
if channels not in (3, 4):
msg = "Only 3 or 4 output channels are supported"
raise ValueError(msg)
table = [0] * (size_1d * size_2d * size_3d * channels)
idx_out = 0
for b in range(size_3d):
for g in range(size_2d):
for r in range(size_1d):
table[idx_out : idx_out + channels] = callback(
r / (size_1d - 1), g / (size_2d - 1), b / (size_3d - 1)
)
idx_out += channels
return cls(
(size_1d, size_2d, size_3d),
table,
channels=channels,
target_mode=target_mode,
_copy_table=False,
)
def transform(self, callback, with_normals=False, channels=None, target_mode=None):
"""Transforms the table values using provided callback and returns
a new LUT with altered values.
:param callback: A function which takes old lookup table values
and returns a new set of values. The number
of arguments which function should take is
``self.channels`` or ``3 + self.channels``
if ``with_normals`` flag is set.
Should return a tuple of ``self.channels`` or
``channels`` elements if it is set.
:param with_normals: If true, ``callback`` will be called with
coordinates in the color cube as the first
three arguments. Otherwise, ``callback``
will be called only with actual color values.
:param channels: The number of channels in the resulting lookup table.
:param target_mode: Passed to the constructor of the resulting
lookup table.
"""
if channels not in (None, 3, 4):
msg = "Only 3 or 4 output channels are supported"
raise ValueError(msg)
ch_in = self.channels
ch_out = channels or ch_in
size_1d, size_2d, size_3d = self.size
table = [0] * (size_1d * size_2d * size_3d * ch_out)
idx_in = 0
idx_out = 0
for b in range(size_3d):
for g in range(size_2d):
for r in range(size_1d):
values = self.table[idx_in : idx_in + ch_in]
if with_normals:
values = callback(
r / (size_1d - 1),
g / (size_2d - 1),
b / (size_3d - 1),
*values,
)
else:
values = callback(*values)
table[idx_out : idx_out + ch_out] = values
idx_in += ch_in
idx_out += ch_out
return type(self)(
self.size,
table,
channels=ch_out,
target_mode=target_mode or self.mode,
_copy_table=False,
)
def __repr__(self):
r = [
f"{self.__class__.__name__} from {self.table.__class__.__name__}",
"size={:d}x{:d}x{:d}".format(*self.size),
f"channels={self.channels:d}",
]
if self.mode:
r.append(f"target_mode={self.mode}")
return "<{}>".format(" ".join(r))
def filter(self, image):
from . import Image
return image.color_lut_3d(
self.mode or image.mode,
Image.Resampling.BILINEAR,
self.channels,
self.size[0],
self.size[1],
self.size[2],
self.table,
)

@ -1,178 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# screen grabber
#
# History:
# 2001-04-26 fl created
# 2001-09-17 fl use builtin driver, if present
# 2002-11-19 fl added grabclipboard support
#
# Copyright (c) 2001-2002 by Secret Labs AB
# Copyright (c) 2001-2002 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import os
import shutil
import subprocess
import sys
import tempfile
from . import Image
def grab(bbox=None, include_layered_windows=False, all_screens=False, xdisplay=None):
if xdisplay is None:
if sys.platform == "darwin":
fh, filepath = tempfile.mkstemp(".png")
os.close(fh)
args = ["screencapture"]
if bbox:
left, top, right, bottom = bbox
args += ["-R", f"{left},{top},{right-left},{bottom-top}"]
subprocess.call(args + ["-x", filepath])
im = Image.open(filepath)
im.load()
os.unlink(filepath)
if bbox:
im_resized = im.resize((right - left, bottom - top))
im.close()
return im_resized
return im
elif sys.platform == "win32":
offset, size, data = Image.core.grabscreen_win32(
include_layered_windows, all_screens
)
im = Image.frombytes(
"RGB",
size,
data,
# RGB, 32-bit line padding, origin lower left corner
"raw",
"BGR",
(size[0] * 3 + 3) & -4,
-1,
)
if bbox:
x0, y0 = offset
left, top, right, bottom = bbox
im = im.crop((left - x0, top - y0, right - x0, bottom - y0))
return im
try:
if not Image.core.HAVE_XCB:
msg = "Pillow was built without XCB support"
raise OSError(msg)
size, data = Image.core.grabscreen_x11(xdisplay)
except OSError:
if (
xdisplay is None
and sys.platform not in ("darwin", "win32")
and shutil.which("gnome-screenshot")
):
fh, filepath = tempfile.mkstemp(".png")
os.close(fh)
subprocess.call(["gnome-screenshot", "-f", filepath])
im = Image.open(filepath)
im.load()
os.unlink(filepath)
if bbox:
im_cropped = im.crop(bbox)
im.close()
return im_cropped
return im
else:
raise
else:
im = Image.frombytes("RGB", size, data, "raw", "BGRX", size[0] * 4, 1)
if bbox:
im = im.crop(bbox)
return im
def grabclipboard():
if sys.platform == "darwin":
fh, filepath = tempfile.mkstemp(".png")
os.close(fh)
commands = [
'set theFile to (open for access POSIX file "'
+ filepath
+ '" with write permission)',
"try",
" write (the clipboard as «class PNGf») to theFile",
"end try",
"close access theFile",
]
script = ["osascript"]
for command in commands:
script += ["-e", command]
subprocess.call(script)
im = None
if os.stat(filepath).st_size != 0:
im = Image.open(filepath)
im.load()
os.unlink(filepath)
return im
elif sys.platform == "win32":
fmt, data = Image.core.grabclipboard_win32()
if fmt == "file": # CF_HDROP
import struct
o = struct.unpack_from("I", data)[0]
if data[16] != 0:
files = data[o:].decode("utf-16le").split("\0")
else:
files = data[o:].decode("mbcs").split("\0")
return files[: files.index("")]
if isinstance(data, bytes):
data = io.BytesIO(data)
if fmt == "png":
from . import PngImagePlugin
return PngImagePlugin.PngImageFile(data)
elif fmt == "DIB":
from . import BmpImagePlugin
return BmpImagePlugin.DibImageFile(data)
return None
else:
if os.getenv("WAYLAND_DISPLAY"):
session_type = "wayland"
elif os.getenv("DISPLAY"):
session_type = "x11"
else: # Session type check failed
session_type = None
if shutil.which("wl-paste") and session_type in ("wayland", None):
output = subprocess.check_output(["wl-paste", "-l"]).decode()
mimetypes = output.splitlines()
if "image/png" in mimetypes:
mimetype = "image/png"
elif mimetypes:
mimetype = mimetypes[0]
else:
mimetype = None
args = ["wl-paste"]
if mimetype:
args.extend(["-t", mimetype])
elif shutil.which("xclip") and session_type in ("x11", None):
args = ["xclip", "-selection", "clipboard", "-t", "image/png", "-o"]
else:
msg = "wl-paste or xclip is required for ImageGrab.grabclipboard() on Linux"
raise NotImplementedError(msg)
p = subprocess.run(args, capture_output=True)
err = p.stderr
if err:
msg = f"{args[0]} error: {err.strip().decode()}"
raise ChildProcessError(msg)
data = io.BytesIO(p.stdout)
im = Image.open(data)
im.load()
return im

@ -1,265 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# a simple math add-on for the Python Imaging Library
#
# History:
# 1999-02-15 fl Original PIL Plus release
# 2005-05-05 fl Simplified and cleaned up for PIL 1.1.6
# 2005-09-12 fl Fixed int() and float() for Python 2.4.1
#
# Copyright (c) 1999-2005 by Secret Labs AB
# Copyright (c) 2005 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import builtins
from . import Image, _imagingmath
class _Operand:
"""Wraps an image operand, providing standard operators"""
def __init__(self, im):
self.im = im
def __fixup(self, im1):
# convert image to suitable mode
if isinstance(im1, _Operand):
# argument was an image.
if im1.im.mode in ("1", "L"):
return im1.im.convert("I")
elif im1.im.mode in ("I", "F"):
return im1.im
else:
msg = f"unsupported mode: {im1.im.mode}"
raise ValueError(msg)
else:
# argument was a constant
if isinstance(im1, (int, float)) and self.im.mode in ("1", "L", "I"):
return Image.new("I", self.im.size, im1)
else:
return Image.new("F", self.im.size, im1)
def apply(self, op, im1, im2=None, mode=None):
im1 = self.__fixup(im1)
if im2 is None:
# unary operation
out = Image.new(mode or im1.mode, im1.size, None)
im1.load()
try:
op = getattr(_imagingmath, op + "_" + im1.mode)
except AttributeError as e:
msg = f"bad operand type for '{op}'"
raise TypeError(msg) from e
_imagingmath.unop(op, out.im.id, im1.im.id)
else:
# binary operation
im2 = self.__fixup(im2)
if im1.mode != im2.mode:
# convert both arguments to floating point
if im1.mode != "F":
im1 = im1.convert("F")
if im2.mode != "F":
im2 = im2.convert("F")
if im1.size != im2.size:
# crop both arguments to a common size
size = (min(im1.size[0], im2.size[0]), min(im1.size[1], im2.size[1]))
if im1.size != size:
im1 = im1.crop((0, 0) + size)
if im2.size != size:
im2 = im2.crop((0, 0) + size)
out = Image.new(mode or im1.mode, im1.size, None)
im1.load()
im2.load()
try:
op = getattr(_imagingmath, op + "_" + im1.mode)
except AttributeError as e:
msg = f"bad operand type for '{op}'"
raise TypeError(msg) from e
_imagingmath.binop(op, out.im.id, im1.im.id, im2.im.id)
return _Operand(out)
# unary operators
def __bool__(self):
# an image is "true" if it contains at least one non-zero pixel
return self.im.getbbox() is not None
def __abs__(self):
return self.apply("abs", self)
def __pos__(self):
return self
def __neg__(self):
return self.apply("neg", self)
# binary operators
def __add__(self, other):
return self.apply("add", self, other)
def __radd__(self, other):
return self.apply("add", other, self)
def __sub__(self, other):
return self.apply("sub", self, other)
def __rsub__(self, other):
return self.apply("sub", other, self)
def __mul__(self, other):
return self.apply("mul", self, other)
def __rmul__(self, other):
return self.apply("mul", other, self)
def __truediv__(self, other):
return self.apply("div", self, other)
def __rtruediv__(self, other):
return self.apply("div", other, self)
def __mod__(self, other):
return self.apply("mod", self, other)
def __rmod__(self, other):
return self.apply("mod", other, self)
def __pow__(self, other):
return self.apply("pow", self, other)
def __rpow__(self, other):
return self.apply("pow", other, self)
# bitwise
def __invert__(self):
return self.apply("invert", self)
def __and__(self, other):
return self.apply("and", self, other)
def __rand__(self, other):
return self.apply("and", other, self)
def __or__(self, other):
return self.apply("or", self, other)
def __ror__(self, other):
return self.apply("or", other, self)
def __xor__(self, other):
return self.apply("xor", self, other)
def __rxor__(self, other):
return self.apply("xor", other, self)
def __lshift__(self, other):
return self.apply("lshift", self, other)
def __rshift__(self, other):
return self.apply("rshift", self, other)
# logical
def __eq__(self, other):
return self.apply("eq", self, other)
def __ne__(self, other):
return self.apply("ne", self, other)
def __lt__(self, other):
return self.apply("lt", self, other)
def __le__(self, other):
return self.apply("le", self, other)
def __gt__(self, other):
return self.apply("gt", self, other)
def __ge__(self, other):
return self.apply("ge", self, other)
# conversions
def imagemath_int(self):
return _Operand(self.im.convert("I"))
def imagemath_float(self):
return _Operand(self.im.convert("F"))
# logical
def imagemath_equal(self, other):
return self.apply("eq", self, other, mode="I")
def imagemath_notequal(self, other):
return self.apply("ne", self, other, mode="I")
def imagemath_min(self, other):
return self.apply("min", self, other)
def imagemath_max(self, other):
return self.apply("max", self, other)
def imagemath_convert(self, mode):
return _Operand(self.im.convert(mode))
ops = {}
for k, v in list(globals().items()):
if k[:10] == "imagemath_":
ops[k[10:]] = v
def eval(expression, _dict={}, **kw):
"""
Evaluates an image expression.
:param expression: A string containing a Python-style expression.
:param options: Values to add to the evaluation context. You
can either use a dictionary, or one or more keyword
arguments.
:return: The evaluated expression. This is usually an image object, but can
also be an integer, a floating point value, or a pixel tuple,
depending on the expression.
"""
# build execution namespace
args = ops.copy()
for k in list(_dict.keys()) + list(kw.keys()):
if "__" in k or hasattr(builtins, k):
msg = f"'{k}' not allowed"
raise ValueError(msg)
args.update(_dict)
args.update(kw)
for k, v in args.items():
if hasattr(v, "im"):
args[k] = _Operand(v)
compiled_code = compile(expression, "<string>", "eval")
def scan(code):
for const in code.co_consts:
if type(const) is type(compiled_code):
scan(const)
for name in code.co_names:
if name not in args and name != "abs":
msg = f"'{name}' not allowed"
raise ValueError(msg)
scan(compiled_code)
out = builtins.eval(expression, {"__builtins": {"abs": abs}}, args)
try:
return out.im
except AttributeError:
return out

@ -1,96 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# standard mode descriptors
#
# History:
# 2006-03-20 fl Added
#
# Copyright (c) 2006 by Secret Labs AB.
# Copyright (c) 2006 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import sys
from functools import lru_cache
class ModeDescriptor:
"""Wrapper for mode strings."""
def __init__(
self,
mode: str,
bands: tuple[str, ...],
basemode: str,
basetype: str,
typestr: str,
) -> None:
self.mode = mode
self.bands = bands
self.basemode = basemode
self.basetype = basetype
self.typestr = typestr
def __str__(self) -> str:
return self.mode
@lru_cache
def getmode(mode: str) -> ModeDescriptor:
"""Gets a mode descriptor for the given mode."""
# initialize mode cache
endian = "<" if sys.byteorder == "little" else ">"
modes = {
# core modes
# Bits need to be extended to bytes
"1": ("L", "L", ("1",), "|b1"),
"L": ("L", "L", ("L",), "|u1"),
"I": ("L", "I", ("I",), endian + "i4"),
"F": ("L", "F", ("F",), endian + "f4"),
"P": ("P", "L", ("P",), "|u1"),
"RGB": ("RGB", "L", ("R", "G", "B"), "|u1"),
"RGBX": ("RGB", "L", ("R", "G", "B", "X"), "|u1"),
"RGBA": ("RGB", "L", ("R", "G", "B", "A"), "|u1"),
"CMYK": ("RGB", "L", ("C", "M", "Y", "K"), "|u1"),
"YCbCr": ("RGB", "L", ("Y", "Cb", "Cr"), "|u1"),
# UNDONE - unsigned |u1i1i1
"LAB": ("RGB", "L", ("L", "A", "B"), "|u1"),
"HSV": ("RGB", "L", ("H", "S", "V"), "|u1"),
# extra experimental modes
"RGBa": ("RGB", "L", ("R", "G", "B", "a"), "|u1"),
"BGR;15": ("RGB", "L", ("B", "G", "R"), "|u1"),
"BGR;16": ("RGB", "L", ("B", "G", "R"), "|u1"),
"BGR;24": ("RGB", "L", ("B", "G", "R"), "|u1"),
"LA": ("L", "L", ("L", "A"), "|u1"),
"La": ("L", "L", ("L", "a"), "|u1"),
"PA": ("RGB", "L", ("P", "A"), "|u1"),
}
if mode in modes:
base_mode, base_type, bands, type_str = modes[mode]
return ModeDescriptor(mode, bands, base_mode, base_type, type_str)
mapping_modes = {
# I;16 == I;16L, and I;32 == I;32L
"I;16": "<u2",
"I;16S": "<i2",
"I;16L": "<u2",
"I;16LS": "<i2",
"I;16B": ">u2",
"I;16BS": ">i2",
"I;16N": endian + "u2",
"I;16NS": endian + "i2",
"I;32": "<u4",
"I;32B": ">u4",
"I;32L": "<u4",
"I;32S": "<i4",
"I;32BS": ">i4",
"I;32LS": "<i4",
}
type_str = mapping_modes[mode]
return ModeDescriptor(mode, ("I",), "L", "L", type_str)

@ -1,255 +0,0 @@
# A binary morphology add-on for the Python Imaging Library
#
# History:
# 2014-06-04 Initial version.
#
# Copyright (c) 2014 Dov Grobgeld <dov.grobgeld@gmail.com>
from __future__ import annotations
import re
from . import Image, _imagingmorph
LUT_SIZE = 1 << 9
# fmt: off
ROTATION_MATRIX = [
6, 3, 0,
7, 4, 1,
8, 5, 2,
]
MIRROR_MATRIX = [
2, 1, 0,
5, 4, 3,
8, 7, 6,
]
# fmt: on
class LutBuilder:
"""A class for building a MorphLut from a descriptive language
The input patterns is a list of a strings sequences like these::
4:(...
.1.
111)->1
(whitespaces including linebreaks are ignored). The option 4
describes a series of symmetry operations (in this case a
4-rotation), the pattern is described by:
- . or X - Ignore
- 1 - Pixel is on
- 0 - Pixel is off
The result of the operation is described after "->" string.
The default is to return the current pixel value, which is
returned if no other match is found.
Operations:
- 4 - 4 way rotation
- N - Negate
- 1 - Dummy op for no other operation (an op must always be given)
- M - Mirroring
Example::
lb = LutBuilder(patterns = ["4:(... .1. 111)->1"])
lut = lb.build_lut()
"""
def __init__(self, patterns=None, op_name=None):
if patterns is not None:
self.patterns = patterns
else:
self.patterns = []
self.lut = None
if op_name is not None:
known_patterns = {
"corner": ["1:(... ... ...)->0", "4:(00. 01. ...)->1"],
"dilation4": ["4:(... .0. .1.)->1"],
"dilation8": ["4:(... .0. .1.)->1", "4:(... .0. ..1)->1"],
"erosion4": ["4:(... .1. .0.)->0"],
"erosion8": ["4:(... .1. .0.)->0", "4:(... .1. ..0)->0"],
"edge": [
"1:(... ... ...)->0",
"4:(.0. .1. ...)->1",
"4:(01. .1. ...)->1",
],
}
if op_name not in known_patterns:
msg = "Unknown pattern " + op_name + "!"
raise Exception(msg)
self.patterns = known_patterns[op_name]
def add_patterns(self, patterns):
self.patterns += patterns
def build_default_lut(self):
symbols = [0, 1]
m = 1 << 4 # pos of current pixel
self.lut = bytearray(symbols[(i & m) > 0] for i in range(LUT_SIZE))
def get_lut(self):
return self.lut
def _string_permute(self, pattern, permutation):
"""string_permute takes a pattern and a permutation and returns the
string permuted according to the permutation list.
"""
assert len(permutation) == 9
return "".join(pattern[p] for p in permutation)
def _pattern_permute(self, basic_pattern, options, basic_result):
"""pattern_permute takes a basic pattern and its result and clones
the pattern according to the modifications described in the $options
parameter. It returns a list of all cloned patterns."""
patterns = [(basic_pattern, basic_result)]
# rotations
if "4" in options:
res = patterns[-1][1]
for i in range(4):
patterns.append(
(self._string_permute(patterns[-1][0], ROTATION_MATRIX), res)
)
# mirror
if "M" in options:
n = len(patterns)
for pattern, res in patterns[:n]:
patterns.append((self._string_permute(pattern, MIRROR_MATRIX), res))
# negate
if "N" in options:
n = len(patterns)
for pattern, res in patterns[:n]:
# Swap 0 and 1
pattern = pattern.replace("0", "Z").replace("1", "0").replace("Z", "1")
res = 1 - int(res)
patterns.append((pattern, res))
return patterns
def build_lut(self):
"""Compile all patterns into a morphology lut.
TBD :Build based on (file) morphlut:modify_lut
"""
self.build_default_lut()
patterns = []
# Parse and create symmetries of the patterns strings
for p in self.patterns:
m = re.search(r"(\w*):?\s*\((.+?)\)\s*->\s*(\d)", p.replace("\n", ""))
if not m:
msg = 'Syntax error in pattern "' + p + '"'
raise Exception(msg)
options = m.group(1)
pattern = m.group(2)
result = int(m.group(3))
# Get rid of spaces
pattern = pattern.replace(" ", "").replace("\n", "")
patterns += self._pattern_permute(pattern, options, result)
# compile the patterns into regular expressions for speed
for i, pattern in enumerate(patterns):
p = pattern[0].replace(".", "X").replace("X", "[01]")
p = re.compile(p)
patterns[i] = (p, pattern[1])
# Step through table and find patterns that match.
# Note that all the patterns are searched. The last one
# caught overrides
for i in range(LUT_SIZE):
# Build the bit pattern
bitpattern = bin(i)[2:]
bitpattern = ("0" * (9 - len(bitpattern)) + bitpattern)[::-1]
for p, r in patterns:
if p.match(bitpattern):
self.lut[i] = [0, 1][r]
return self.lut
class MorphOp:
"""A class for binary morphological operators"""
def __init__(self, lut=None, op_name=None, patterns=None):
"""Create a binary morphological operator"""
self.lut = lut
if op_name is not None:
self.lut = LutBuilder(op_name=op_name).build_lut()
elif patterns is not None:
self.lut = LutBuilder(patterns=patterns).build_lut()
def apply(self, image):
"""Run a single morphological operation on an image
Returns a tuple of the number of changed pixels and the
morphed image"""
if self.lut is None:
msg = "No operator loaded"
raise Exception(msg)
if image.mode != "L":
msg = "Image mode must be L"
raise ValueError(msg)
outimage = Image.new(image.mode, image.size, None)
count = _imagingmorph.apply(bytes(self.lut), image.im.id, outimage.im.id)
return count, outimage
def match(self, image):
"""Get a list of coordinates matching the morphological operation on
an image.
Returns a list of tuples of (x,y) coordinates
of all matching pixels. See :ref:`coordinate-system`."""
if self.lut is None:
msg = "No operator loaded"
raise Exception(msg)
if image.mode != "L":
msg = "Image mode must be L"
raise ValueError(msg)
return _imagingmorph.match(bytes(self.lut), image.im.id)
def get_on_pixels(self, image):
"""Get a list of all turned on pixels in a binary image
Returns a list of tuples of (x,y) coordinates
of all matching pixels. See :ref:`coordinate-system`."""
if image.mode != "L":
msg = "Image mode must be L"
raise ValueError(msg)
return _imagingmorph.get_on_pixels(image.im.id)
def load_lut(self, filename):
"""Load an operator from an mrl file"""
with open(filename, "rb") as f:
self.lut = bytearray(f.read())
if len(self.lut) != LUT_SIZE:
self.lut = None
msg = "Wrong size operator file!"
raise Exception(msg)
def save_lut(self, filename):
"""Save an operator to an mrl file"""
if self.lut is None:
msg = "No operator loaded"
raise Exception(msg)
with open(filename, "wb") as f:
f.write(self.lut)
def set_lut(self, lut):
"""Set the lut from an external source"""
self.lut = lut

@ -1,655 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# standard image operations
#
# History:
# 2001-10-20 fl Created
# 2001-10-23 fl Added autocontrast operator
# 2001-12-18 fl Added Kevin's fit operator
# 2004-03-14 fl Fixed potential division by zero in equalize
# 2005-05-05 fl Fixed equalize for low number of values
#
# Copyright (c) 2001-2004 by Secret Labs AB
# Copyright (c) 2001-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import functools
import operator
import re
from . import ExifTags, Image, ImagePalette
#
# helpers
def _border(border):
if isinstance(border, tuple):
if len(border) == 2:
left, top = right, bottom = border
elif len(border) == 4:
left, top, right, bottom = border
else:
left = top = right = bottom = border
return left, top, right, bottom
def _color(color, mode):
if isinstance(color, str):
from . import ImageColor
color = ImageColor.getcolor(color, mode)
return color
def _lut(image, lut):
if image.mode == "P":
# FIXME: apply to lookup table, not image data
msg = "mode P support coming soon"
raise NotImplementedError(msg)
elif image.mode in ("L", "RGB"):
if image.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return image.point(lut)
else:
msg = f"not supported for mode {image.mode}"
raise OSError(msg)
#
# actions
def autocontrast(image, cutoff=0, ignore=None, mask=None, preserve_tone=False):
"""
Maximize (normalize) image contrast. This function calculates a
histogram of the input image (or mask region), removes ``cutoff`` percent of the
lightest and darkest pixels from the histogram, and remaps the image
so that the darkest pixel becomes black (0), and the lightest
becomes white (255).
:param image: The image to process.
:param cutoff: The percent to cut off from the histogram on the low and
high ends. Either a tuple of (low, high), or a single
number for both.
:param ignore: The background pixel value (use None for no background).
:param mask: Histogram used in contrast operation is computed using pixels
within the mask. If no mask is given the entire image is used
for histogram computation.
:param preserve_tone: Preserve image tone in Photoshop-like style autocontrast.
.. versionadded:: 8.2.0
:return: An image.
"""
if preserve_tone:
histogram = image.convert("L").histogram(mask)
else:
histogram = image.histogram(mask)
lut = []
for layer in range(0, len(histogram), 256):
h = histogram[layer : layer + 256]
if ignore is not None:
# get rid of outliers
try:
h[ignore] = 0
except TypeError:
# assume sequence
for ix in ignore:
h[ix] = 0
if cutoff:
# cut off pixels from both ends of the histogram
if not isinstance(cutoff, tuple):
cutoff = (cutoff, cutoff)
# get number of pixels
n = 0
for ix in range(256):
n = n + h[ix]
# remove cutoff% pixels from the low end
cut = n * cutoff[0] // 100
for lo in range(256):
if cut > h[lo]:
cut = cut - h[lo]
h[lo] = 0
else:
h[lo] -= cut
cut = 0
if cut <= 0:
break
# remove cutoff% samples from the high end
cut = n * cutoff[1] // 100
for hi in range(255, -1, -1):
if cut > h[hi]:
cut = cut - h[hi]
h[hi] = 0
else:
h[hi] -= cut
cut = 0
if cut <= 0:
break
# find lowest/highest samples after preprocessing
for lo in range(256):
if h[lo]:
break
for hi in range(255, -1, -1):
if h[hi]:
break
if hi <= lo:
# don't bother
lut.extend(list(range(256)))
else:
scale = 255.0 / (hi - lo)
offset = -lo * scale
for ix in range(256):
ix = int(ix * scale + offset)
if ix < 0:
ix = 0
elif ix > 255:
ix = 255
lut.append(ix)
return _lut(image, lut)
def colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoint=127):
"""
Colorize grayscale image.
This function calculates a color wedge which maps all black pixels in
the source image to the first color and all white pixels to the
second color. If ``mid`` is specified, it uses three-color mapping.
The ``black`` and ``white`` arguments should be RGB tuples or color names;
optionally you can use three-color mapping by also specifying ``mid``.
Mapping positions for any of the colors can be specified
(e.g. ``blackpoint``), where these parameters are the integer
value corresponding to where the corresponding color should be mapped.
These parameters must have logical order, such that
``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified).
:param image: The image to colorize.
:param black: The color to use for black input pixels.
:param white: The color to use for white input pixels.
:param mid: The color to use for midtone input pixels.
:param blackpoint: an int value [0, 255] for the black mapping.
:param whitepoint: an int value [0, 255] for the white mapping.
:param midpoint: an int value [0, 255] for the midtone mapping.
:return: An image.
"""
# Initial asserts
assert image.mode == "L"
if mid is None:
assert 0 <= blackpoint <= whitepoint <= 255
else:
assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
# Define colors from arguments
black = _color(black, "RGB")
white = _color(white, "RGB")
if mid is not None:
mid = _color(mid, "RGB")
# Empty lists for the mapping
red = []
green = []
blue = []
# Create the low-end values
for i in range(0, blackpoint):
red.append(black[0])
green.append(black[1])
blue.append(black[2])
# Create the mapping (2-color)
if mid is None:
range_map = range(0, whitepoint - blackpoint)
for i in range_map:
red.append(black[0] + i * (white[0] - black[0]) // len(range_map))
green.append(black[1] + i * (white[1] - black[1]) // len(range_map))
blue.append(black[2] + i * (white[2] - black[2]) // len(range_map))
# Create the mapping (3-color)
else:
range_map1 = range(0, midpoint - blackpoint)
range_map2 = range(0, whitepoint - midpoint)
for i in range_map1:
red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1))
green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1))
blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1))
for i in range_map2:
red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2))
green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2))
blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2))
# Create the high-end values
for i in range(0, 256 - whitepoint):
red.append(white[0])
green.append(white[1])
blue.append(white[2])
# Return converted image
image = image.convert("RGB")
return _lut(image, red + green + blue)
def contain(image, size, method=Image.Resampling.BICUBIC):
"""
Returns a resized version of the image, set to the maximum width and height
within the requested size, while maintaining the original aspect ratio.
:param image: The image to resize.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:return: An image.
"""
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio > dest_ratio:
new_height = round(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = round(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
def cover(image, size, method=Image.Resampling.BICUBIC):
"""
Returns a resized version of the image, so that the requested size is
covered, while maintaining the original aspect ratio.
:param image: The image to resize.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:return: An image.
"""
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio < dest_ratio:
new_height = round(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = round(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
def pad(image, size, method=Image.Resampling.BICUBIC, color=None, centering=(0.5, 0.5)):
"""
Returns a resized and padded version of the image, expanded to fill the
requested aspect ratio and size.
:param image: The image to resize and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:param color: The background color of the padded image.
:param centering: Control the position of the original image within the
padded version.
(0.5, 0.5) will keep the image centered
(0, 0) will keep the image aligned to the top left
(1, 1) will keep the image aligned to the bottom
right
:return: An image.
"""
resized = contain(image, size, method)
if resized.size == size:
out = resized
else:
out = Image.new(image.mode, size, color)
if resized.palette:
out.putpalette(resized.getpalette())
if resized.width != size[0]:
x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
out.paste(resized, (x, 0))
else:
y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
out.paste(resized, (0, y))
return out
def crop(image, border=0):
"""
Remove border from image. The same amount of pixels are removed
from all four sides. This function works on all image modes.
.. seealso:: :py:meth:`~PIL.Image.Image.crop`
:param image: The image to crop.
:param border: The number of pixels to remove.
:return: An image.
"""
left, top, right, bottom = _border(border)
return image.crop((left, top, image.size[0] - right, image.size[1] - bottom))
def scale(image, factor, resample=Image.Resampling.BICUBIC):
"""
Returns a rescaled image by a specific factor given in parameter.
A factor greater than 1 expands the image, between 0 and 1 contracts the
image.
:param image: The image to rescale.
:param factor: The expansion factor, as a float.
:param resample: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if factor == 1:
return image.copy()
elif factor <= 0:
msg = "the factor must be greater than 0"
raise ValueError(msg)
else:
size = (round(factor * image.width), round(factor * image.height))
return image.resize(size, resample)
def deform(image, deformer, resample=Image.Resampling.BILINEAR):
"""
Deform the image.
:param image: The image to deform.
:param deformer: A deformer object. Any object that implements a
``getmesh`` method can be used.
:param resample: An optional resampling filter. Same values possible as
in the PIL.Image.transform function.
:return: An image.
"""
return image.transform(
image.size, Image.Transform.MESH, deformer.getmesh(image), resample
)
def equalize(image, mask=None):
"""
Equalize the image histogram. This function applies a non-linear
mapping to the input image, in order to create a uniform
distribution of grayscale values in the output image.
:param image: The image to equalize.
:param mask: An optional mask. If given, only the pixels selected by
the mask are included in the analysis.
:return: An image.
"""
if image.mode == "P":
image = image.convert("RGB")
h = image.histogram(mask)
lut = []
for b in range(0, len(h), 256):
histo = [_f for _f in h[b : b + 256] if _f]
if len(histo) <= 1:
lut.extend(list(range(256)))
else:
step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
if not step:
lut.extend(list(range(256)))
else:
n = step // 2
for i in range(256):
lut.append(n // step)
n = n + h[i + b]
return _lut(image, lut)
def expand(image, border=0, fill=0):
"""
Add border to the image
:param image: The image to expand.
:param border: Border width, in pixels.
:param fill: Pixel fill value (a color value). Default is 0 (black).
:return: An image.
"""
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
color = _color(fill, image.mode)
if image.palette:
palette = ImagePalette.ImagePalette(palette=image.getpalette())
if isinstance(color, tuple):
color = palette.getcolor(color)
else:
palette = None
out = Image.new(image.mode, (width, height), color)
if palette:
out.putpalette(palette.palette)
out.paste(image, (left, top))
return out
def fit(image, size, method=Image.Resampling.BICUBIC, bleed=0.0, centering=(0.5, 0.5)):
"""
Returns a resized and cropped version of the image, cropped to the
requested aspect ratio and size.
This function was contributed by Kevin Cazabon.
:param image: The image to resize and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:param bleed: Remove a border around the outside of the image from all
four edges. The value is a decimal percentage (use 0.01 for
one percent). The default value is 0 (no border).
Cannot be greater than or equal to 0.5.
:param centering: Control the cropping position. Use (0.5, 0.5) for
center cropping (e.g. if cropping the width, take 50% off
of the left side, and therefore 50% off the right side).
(0.0, 0.0) will crop from the top left corner (i.e. if
cropping the width, take all of the crop off of the right
side, and if cropping the height, take all of it off the
bottom). (1.0, 0.0) will crop from the bottom left
corner, etc. (i.e. if cropping the width, take all of the
crop off the left side, and if cropping the height take
none from the top, and therefore all off the bottom).
:return: An image.
"""
# by Kevin Cazabon, Feb 17/2000
# kevin@cazabon.com
# https://www.cazabon.com
# ensure centering is mutable
centering = list(centering)
if not 0.0 <= centering[0] <= 1.0:
centering[0] = 0.5
if not 0.0 <= centering[1] <= 1.0:
centering[1] = 0.5
if not 0.0 <= bleed < 0.5:
bleed = 0.0
# calculate the area to use for resizing and cropping, subtracting
# the 'bleed' around the edges
# number of pixels to trim off on Top and Bottom, Left and Right
bleed_pixels = (bleed * image.size[0], bleed * image.size[1])
live_size = (
image.size[0] - bleed_pixels[0] * 2,
image.size[1] - bleed_pixels[1] * 2,
)
# calculate the aspect ratio of the live_size
live_size_ratio = live_size[0] / live_size[1]
# calculate the aspect ratio of the output image
output_ratio = size[0] / size[1]
# figure out if the sides or top/bottom will be cropped off
if live_size_ratio == output_ratio:
# live_size is already the needed ratio
crop_width = live_size[0]
crop_height = live_size[1]
elif live_size_ratio >= output_ratio:
# live_size is wider than what's needed, crop the sides
crop_width = output_ratio * live_size[1]
crop_height = live_size[1]
else:
# live_size is taller than what's needed, crop the top and bottom
crop_width = live_size[0]
crop_height = live_size[0] / output_ratio
# make the crop
crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering[0]
crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering[1]
crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height)
# resize the image and return it
return image.resize(size, method, box=crop)
def flip(image):
"""
Flip the image vertically (top to bottom).
:param image: The image to flip.
:return: An image.
"""
return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
def grayscale(image):
"""
Convert the image to grayscale.
:param image: The image to convert.
:return: An image.
"""
return image.convert("L")
def invert(image):
"""
Invert (negate) the image.
:param image: The image to invert.
:return: An image.
"""
lut = list(range(255, -1, -1))
return image.point(lut) if image.mode == "1" else _lut(image, lut)
def mirror(image):
"""
Flip image horizontally (left to right).
:param image: The image to mirror.
:return: An image.
"""
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
def posterize(image, bits):
"""
Reduce the number of bits for each color channel.
:param image: The image to posterize.
:param bits: The number of bits to keep for each channel (1-8).
:return: An image.
"""
mask = ~(2 ** (8 - bits) - 1)
lut = [i & mask for i in range(256)]
return _lut(image, lut)
def solarize(image, threshold=128):
"""
Invert all pixel values above a threshold.
:param image: The image to solarize.
:param threshold: All pixels above this grayscale level are inverted.
:return: An image.
"""
lut = []
for i in range(256):
if i < threshold:
lut.append(i)
else:
lut.append(255 - i)
return _lut(image, lut)
def exif_transpose(image, *, in_place=False):
"""
If an image has an EXIF Orientation tag, other than 1, transpose the image
accordingly, and remove the orientation data.
:param image: The image to transpose.
:param in_place: Boolean. Keyword-only argument.
If ``True``, the original image is modified in-place, and ``None`` is returned.
If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned
with the transposition applied. If there is no transposition, a copy of the
image will be returned.
"""
image.load()
image_exif = image.getexif()
orientation = image_exif.get(ExifTags.Base.Orientation)
method = {
2: Image.Transpose.FLIP_LEFT_RIGHT,
3: Image.Transpose.ROTATE_180,
4: Image.Transpose.FLIP_TOP_BOTTOM,
5: Image.Transpose.TRANSPOSE,
6: Image.Transpose.ROTATE_270,
7: Image.Transpose.TRANSVERSE,
8: Image.Transpose.ROTATE_90,
}.get(orientation)
if method is not None:
transposed_image = image.transpose(method)
if in_place:
image.im = transposed_image.im
image.pyaccess = None
image._size = transposed_image._size
exif_image = image if in_place else transposed_image
exif = exif_image.getexif()
if ExifTags.Base.Orientation in exif:
del exif[ExifTags.Base.Orientation]
if "exif" in exif_image.info:
exif_image.info["exif"] = exif.tobytes()
elif "Raw profile type exif" in exif_image.info:
exif_image.info["Raw profile type exif"] = exif.tobytes().hex()
elif "XML:com.adobe.xmp" in exif_image.info:
for pattern in (
r'tiff:Orientation="([0-9])"',
r"<tiff:Orientation>([0-9])</tiff:Orientation>",
):
exif_image.info["XML:com.adobe.xmp"] = re.sub(
pattern, "", exif_image.info["XML:com.adobe.xmp"]
)
if not in_place:
return transposed_image
elif not in_place:
return image.copy()

@ -1,262 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# image palette object
#
# History:
# 1996-03-11 fl Rewritten.
# 1997-01-03 fl Up and running.
# 1997-08-23 fl Added load hack
# 2001-04-16 fl Fixed randint shadow bug in random()
#
# Copyright (c) 1997-2001 by Secret Labs AB
# Copyright (c) 1996-1997 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import array
from . import GimpGradientFile, GimpPaletteFile, ImageColor, PaletteFile
class ImagePalette:
"""
Color palette for palette mapped images
:param mode: The mode to use for the palette. See:
:ref:`concept-modes`. Defaults to "RGB"
:param palette: An optional palette. If given, it must be a bytearray,
an array or a list of ints between 0-255. The list must consist of
all channels for one color followed by the next color (e.g. RGBRGBRGB).
Defaults to an empty palette.
"""
def __init__(self, mode="RGB", palette=None):
self.mode = mode
self.rawmode = None # if set, palette contains raw data
self.palette = palette or bytearray()
self.dirty = None
@property
def palette(self):
return self._palette
@palette.setter
def palette(self, palette):
self._colors = None
self._palette = palette
@property
def colors(self):
if self._colors is None:
mode_len = len(self.mode)
self._colors = {}
for i in range(0, len(self.palette), mode_len):
color = tuple(self.palette[i : i + mode_len])
if color in self._colors:
continue
self._colors[color] = i // mode_len
return self._colors
@colors.setter
def colors(self, colors):
self._colors = colors
def copy(self):
new = ImagePalette()
new.mode = self.mode
new.rawmode = self.rawmode
if self.palette is not None:
new.palette = self.palette[:]
new.dirty = self.dirty
return new
def getdata(self):
"""
Get palette contents in format suitable for the low-level
``im.putpalette`` primitive.
.. warning:: This method is experimental.
"""
if self.rawmode:
return self.rawmode, self.palette
return self.mode, self.tobytes()
def tobytes(self):
"""Convert palette to bytes.
.. warning:: This method is experimental.
"""
if self.rawmode:
msg = "palette contains raw palette data"
raise ValueError(msg)
if isinstance(self.palette, bytes):
return self.palette
arr = array.array("B", self.palette)
return arr.tobytes()
# Declare tostring as an alias for tobytes
tostring = tobytes
def _new_color_index(self, image=None, e=None):
if not isinstance(self.palette, bytearray):
self._palette = bytearray(self.palette)
index = len(self.palette) // 3
special_colors = ()
if image:
special_colors = (
image.info.get("background"),
image.info.get("transparency"),
)
while index in special_colors:
index += 1
if index >= 256:
if image:
# Search for an unused index
for i, count in reversed(list(enumerate(image.histogram()))):
if count == 0 and i not in special_colors:
index = i
break
if index >= 256:
msg = "cannot allocate more than 256 colors"
raise ValueError(msg) from e
return index
def getcolor(self, color, image=None):
"""Given an rgb tuple, allocate palette entry.
.. warning:: This method is experimental.
"""
if self.rawmode:
msg = "palette contains raw palette data"
raise ValueError(msg)
if isinstance(color, tuple):
if self.mode == "RGB":
if len(color) == 4:
if color[3] != 255:
msg = "cannot add non-opaque RGBA color to RGB palette"
raise ValueError(msg)
color = color[:3]
elif self.mode == "RGBA":
if len(color) == 3:
color += (255,)
try:
return self.colors[color]
except KeyError as e:
# allocate new color slot
index = self._new_color_index(image, e)
self.colors[color] = index
if index * 3 < len(self.palette):
self._palette = (
self.palette[: index * 3]
+ bytes(color)
+ self.palette[index * 3 + 3 :]
)
else:
self._palette += bytes(color)
self.dirty = 1
return index
else:
msg = f"unknown color specifier: {repr(color)}"
raise ValueError(msg)
def save(self, fp):
"""Save palette to text file.
.. warning:: This method is experimental.
"""
if self.rawmode:
msg = "palette contains raw palette data"
raise ValueError(msg)
if isinstance(fp, str):
fp = open(fp, "w")
fp.write("# Palette\n")
fp.write(f"# Mode: {self.mode}\n")
for i in range(256):
fp.write(f"{i}")
for j in range(i * len(self.mode), (i + 1) * len(self.mode)):
try:
fp.write(f" {self.palette[j]}")
except IndexError:
fp.write(" 0")
fp.write("\n")
fp.close()
# --------------------------------------------------------------------
# Internal
def raw(rawmode, data):
palette = ImagePalette()
palette.rawmode = rawmode
palette.palette = data
palette.dirty = 1
return palette
# --------------------------------------------------------------------
# Factories
def make_linear_lut(black, white):
if black == 0:
return [white * i // 255 for i in range(256)]
msg = "unavailable when black is non-zero"
raise NotImplementedError(msg) # FIXME
def make_gamma_lut(exp):
return [int(((i / 255.0) ** exp) * 255.0 + 0.5) for i in range(256)]
def negative(mode="RGB"):
palette = list(range(256 * len(mode)))
palette.reverse()
return ImagePalette(mode, [i // len(mode) for i in palette])
def random(mode="RGB"):
from random import randint
palette = [randint(0, 255) for _ in range(256 * len(mode))]
return ImagePalette(mode, palette)
def sepia(white="#fff0c0"):
bands = [make_linear_lut(0, band) for band in ImageColor.getrgb(white)]
return ImagePalette("RGB", [bands[i % 3][i // 3] for i in range(256 * 3)])
def wedge(mode="RGB"):
palette = list(range(256 * len(mode)))
return ImagePalette(mode, [i // len(mode) for i in palette])
def load(filename):
# FIXME: supports GIMP gradients only
with open(filename, "rb") as fp:
for paletteHandler in [
GimpPaletteFile.GimpPaletteFile,
GimpGradientFile.GimpGradientFile,
PaletteFile.PaletteFile,
]:
try:
fp.seek(0)
lut = paletteHandler(fp).getpalette()
if lut:
break
except (SyntaxError, ValueError):
pass
else:
msg = "cannot load palette"
raise OSError(msg)
return lut # data, rawmode

@ -1,20 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# path interface
#
# History:
# 1996-11-04 fl Created
# 2002-04-14 fl Added documentation stub class
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image
Path = Image.core.path

@ -1,197 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# a simple Qt image interface.
#
# history:
# 2006-06-03 fl: created
# 2006-06-04 fl: inherit from QImage instead of wrapping it
# 2006-06-05 fl: removed toimage helper; move string support to ImageQt
# 2013-11-13 fl: add support for Qt5 (aurelien.ballier@cyclonit.com)
#
# Copyright (c) 2006 by Secret Labs AB
# Copyright (c) 2006 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import sys
from io import BytesIO
from . import Image
from ._util import is_path
qt_versions = [
["6", "PyQt6"],
["side6", "PySide6"],
]
# If a version has already been imported, attempt it first
qt_versions.sort(key=lambda qt_version: qt_version[1] in sys.modules, reverse=True)
for qt_version, qt_module in qt_versions:
try:
if qt_module == "PyQt6":
from PyQt6.QtCore import QBuffer, QIODevice
from PyQt6.QtGui import QImage, QPixmap, qRgba
elif qt_module == "PySide6":
from PySide6.QtCore import QBuffer, QIODevice
from PySide6.QtGui import QImage, QPixmap, qRgba
except (ImportError, RuntimeError):
continue
qt_is_installed = True
break
else:
qt_is_installed = False
qt_version = None
def rgb(r, g, b, a=255):
"""(Internal) Turns an RGB color into a Qt compatible color integer."""
# use qRgb to pack the colors, and then turn the resulting long
# into a negative integer with the same bitpattern.
return qRgba(r, g, b, a) & 0xFFFFFFFF
def fromqimage(im):
"""
:param im: QImage or PIL ImageQt object
"""
buffer = QBuffer()
if qt_version == "6":
try:
qt_openmode = QIODevice.OpenModeFlag
except AttributeError:
qt_openmode = QIODevice.OpenMode
else:
qt_openmode = QIODevice
buffer.open(qt_openmode.ReadWrite)
# preserve alpha channel with png
# otherwise ppm is more friendly with Image.open
if im.hasAlphaChannel():
im.save(buffer, "png")
else:
im.save(buffer, "ppm")
b = BytesIO()
b.write(buffer.data())
buffer.close()
b.seek(0)
return Image.open(b)
def fromqpixmap(im):
return fromqimage(im)
def align8to32(bytes, width, mode):
"""
converts each scanline of data from 8 bit to 32 bit aligned
"""
bits_per_pixel = {"1": 1, "L": 8, "P": 8, "I;16": 16}[mode]
# calculate bytes per line and the extra padding if needed
bits_per_line = bits_per_pixel * width
full_bytes_per_line, remaining_bits_per_line = divmod(bits_per_line, 8)
bytes_per_line = full_bytes_per_line + (1 if remaining_bits_per_line else 0)
extra_padding = -bytes_per_line % 4
# already 32 bit aligned by luck
if not extra_padding:
return bytes
new_data = [
bytes[i * bytes_per_line : (i + 1) * bytes_per_line] + b"\x00" * extra_padding
for i in range(len(bytes) // bytes_per_line)
]
return b"".join(new_data)
def _toqclass_helper(im):
data = None
colortable = None
exclusive_fp = False
# handle filename, if given instead of image name
if hasattr(im, "toUtf8"):
# FIXME - is this really the best way to do this?
im = str(im.toUtf8(), "utf-8")
if is_path(im):
im = Image.open(im)
exclusive_fp = True
qt_format = QImage.Format if qt_version == "6" else QImage
if im.mode == "1":
format = qt_format.Format_Mono
elif im.mode == "L":
format = qt_format.Format_Indexed8
colortable = [rgb(i, i, i) for i in range(256)]
elif im.mode == "P":
format = qt_format.Format_Indexed8
palette = im.getpalette()
colortable = [rgb(*palette[i : i + 3]) for i in range(0, len(palette), 3)]
elif im.mode == "RGB":
# Populate the 4th channel with 255
im = im.convert("RGBA")
data = im.tobytes("raw", "BGRA")
format = qt_format.Format_RGB32
elif im.mode == "RGBA":
data = im.tobytes("raw", "BGRA")
format = qt_format.Format_ARGB32
elif im.mode == "I;16" and hasattr(qt_format, "Format_Grayscale16"): # Qt 5.13+
im = im.point(lambda i: i * 256)
format = qt_format.Format_Grayscale16
else:
if exclusive_fp:
im.close()
msg = f"unsupported image mode {repr(im.mode)}"
raise ValueError(msg)
size = im.size
__data = data or align8to32(im.tobytes(), size[0], im.mode)
if exclusive_fp:
im.close()
return {"data": __data, "size": size, "format": format, "colortable": colortable}
if qt_is_installed:
class ImageQt(QImage):
def __init__(self, im):
"""
An PIL image wrapper for Qt. This is a subclass of PyQt's QImage
class.
:param im: A PIL Image object, or a file name (given either as
Python string or a PyQt string object).
"""
im_data = _toqclass_helper(im)
# must keep a reference, or Qt will crash!
# All QImage constructors that take data operate on an existing
# buffer, so this buffer has to hang on for the life of the image.
# Fixes https://github.com/python-pillow/Pillow/issues/1370
self.__data = im_data["data"]
super().__init__(
self.__data,
im_data["size"][0],
im_data["size"][1],
im_data["format"],
)
if im_data["colortable"]:
self.setColorTable(im_data["colortable"])
def toqimage(im):
return ImageQt(im)
def toqpixmap(im):
qimage = toqimage(im)
return QPixmap.fromImage(qimage)

@ -1,86 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# sequence support classes
#
# history:
# 1997-02-20 fl Created
#
# Copyright (c) 1997 by Secret Labs AB.
# Copyright (c) 1997 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
##
from __future__ import annotations
from typing import Callable
from . import Image
class Iterator:
"""
This class implements an iterator object that can be used to loop
over an image sequence.
You can use the ``[]`` operator to access elements by index. This operator
will raise an :py:exc:`IndexError` if you try to access a nonexistent
frame.
:param im: An image object.
"""
def __init__(self, im: Image.Image):
if not hasattr(im, "seek"):
msg = "im must have seek method"
raise AttributeError(msg)
self.im = im
self.position = getattr(self.im, "_min_frame", 0)
def __getitem__(self, ix: int) -> Image.Image:
try:
self.im.seek(ix)
return self.im
except EOFError as e:
msg = "end of sequence"
raise IndexError(msg) from e
def __iter__(self) -> Iterator:
return self
def __next__(self) -> Image.Image:
try:
self.im.seek(self.position)
self.position += 1
return self.im
except EOFError as e:
msg = "end of sequence"
raise StopIteration(msg) from e
def all_frames(
im: Image.Image | list[Image.Image],
func: Callable[[Image.Image], Image.Image] | None = None,
) -> list[Image.Image]:
"""
Applies a given function to all frames in an image or a list of images.
The frames are returned as a list of separate images.
:param im: An image, or a list of images.
:param func: The function to apply to all of the image frames.
:returns: A list of images.
"""
if not isinstance(im, list):
im = [im]
ims = []
for imSequence in im:
current = imSequence.tell()
ims += [im_frame.copy() for im_frame in Iterator(imSequence)]
imSequence.seek(current)
return [func(im) for im in ims] if func else ims

@ -1,326 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# im.show() drivers
#
# History:
# 2008-04-06 fl Created
#
# Copyright (c) Secret Labs AB 2008.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import os
import shutil
import subprocess
import sys
from shlex import quote
from . import Image
_viewers = []
def register(viewer, order=1):
"""
The :py:func:`register` function is used to register additional viewers::
from PIL import ImageShow
ImageShow.register(MyViewer()) # MyViewer will be used as a last resort
ImageShow.register(MySecondViewer(), 0) # MySecondViewer will be prioritised
ImageShow.register(ImageShow.XVViewer(), 0) # XVViewer will be prioritised
:param viewer: The viewer to be registered.
:param order:
Zero or a negative integer to prepend this viewer to the list,
a positive integer to append it.
"""
try:
if issubclass(viewer, Viewer):
viewer = viewer()
except TypeError:
pass # raised if viewer wasn't a class
if order > 0:
_viewers.append(viewer)
else:
_viewers.insert(0, viewer)
def show(image, title=None, **options):
r"""
Display a given image.
:param image: An image object.
:param title: Optional title. Not all viewers can display the title.
:param \**options: Additional viewer options.
:returns: ``True`` if a suitable viewer was found, ``False`` otherwise.
"""
for viewer in _viewers:
if viewer.show(image, title=title, **options):
return True
return False
class Viewer:
"""Base class for viewers."""
# main api
def show(self, image, **options):
"""
The main function for displaying an image.
Converts the given image to the target format and displays it.
"""
if not (
image.mode in ("1", "RGBA")
or (self.format == "PNG" and image.mode in ("I;16", "LA"))
):
base = Image.getmodebase(image.mode)
if image.mode != base:
image = image.convert(base)
return self.show_image(image, **options)
# hook methods
format = None
"""The format to convert the image into."""
options = {}
"""Additional options used to convert the image."""
def get_format(self, image):
"""Return format name, or ``None`` to save as PGM/PPM."""
return self.format
def get_command(self, file, **options):
"""
Returns the command used to display the file.
Not implemented in the base class.
"""
msg = "unavailable in base viewer"
raise NotImplementedError(msg)
def save_image(self, image):
"""Save to temporary file and return filename."""
return image._dump(format=self.get_format(image), **self.options)
def show_image(self, image, **options):
"""Display the given image."""
return self.show_file(self.save_image(image), **options)
def show_file(self, path, **options):
"""
Display given file.
"""
os.system(self.get_command(path, **options)) # nosec
return 1
# --------------------------------------------------------------------
class WindowsViewer(Viewer):
"""The default viewer on Windows is the default system application for PNG files."""
format = "PNG"
options = {"compress_level": 1, "save_all": True}
def get_command(self, file, **options):
return (
f'start "Pillow" /WAIT "{file}" '
"&& ping -n 4 127.0.0.1 >NUL "
f'&& del /f "{file}"'
)
if sys.platform == "win32":
register(WindowsViewer)
class MacViewer(Viewer):
"""The default viewer on macOS using ``Preview.app``."""
format = "PNG"
options = {"compress_level": 1, "save_all": True}
def get_command(self, file, **options):
# on darwin open returns immediately resulting in the temp
# file removal while app is opening
command = "open -a Preview.app"
command = f"({command} {quote(file)}; sleep 20; rm -f {quote(file)})&"
return command
def show_file(self, path, **options):
"""
Display given file.
"""
subprocess.call(["open", "-a", "Preview.app", path])
executable = sys.executable or shutil.which("python3")
if executable:
subprocess.Popen(
[
executable,
"-c",
"import os, sys, time; time.sleep(20); os.remove(sys.argv[1])",
path,
]
)
return 1
if sys.platform == "darwin":
register(MacViewer)
class UnixViewer(Viewer):
format = "PNG"
options = {"compress_level": 1, "save_all": True}
def get_command(self, file, **options):
command = self.get_command_ex(file, **options)[0]
return f"({command} {quote(file)}"
class XDGViewer(UnixViewer):
"""
The freedesktop.org ``xdg-open`` command.
"""
def get_command_ex(self, file, **options):
command = executable = "xdg-open"
return command, executable
def show_file(self, path, **options):
"""
Display given file.
"""
subprocess.Popen(["xdg-open", path])
return 1
class DisplayViewer(UnixViewer):
"""
The ImageMagick ``display`` command.
This viewer supports the ``title`` parameter.
"""
def get_command_ex(self, file, title=None, **options):
command = executable = "display"
if title:
command += f" -title {quote(title)}"
return command, executable
def show_file(self, path, **options):
"""
Display given file.
"""
args = ["display"]
title = options.get("title")
if title:
args += ["-title", title]
args.append(path)
subprocess.Popen(args)
return 1
class GmDisplayViewer(UnixViewer):
"""The GraphicsMagick ``gm display`` command."""
def get_command_ex(self, file, **options):
executable = "gm"
command = "gm display"
return command, executable
def show_file(self, path, **options):
"""
Display given file.
"""
subprocess.Popen(["gm", "display", path])
return 1
class EogViewer(UnixViewer):
"""The GNOME Image Viewer ``eog`` command."""
def get_command_ex(self, file, **options):
executable = "eog"
command = "eog -n"
return command, executable
def show_file(self, path, **options):
"""
Display given file.
"""
subprocess.Popen(["eog", "-n", path])
return 1
class XVViewer(UnixViewer):
"""
The X Viewer ``xv`` command.
This viewer supports the ``title`` parameter.
"""
def get_command_ex(self, file, title=None, **options):
# note: xv is pretty outdated. most modern systems have
# imagemagick's display command instead.
command = executable = "xv"
if title:
command += f" -name {quote(title)}"
return command, executable
def show_file(self, path, **options):
"""
Display given file.
"""
args = ["xv"]
title = options.get("title")
if title:
args += ["-name", title]
args.append(path)
subprocess.Popen(args)
return 1
if sys.platform not in ("win32", "darwin"): # unixoids
if shutil.which("xdg-open"):
register(XDGViewer)
if shutil.which("display"):
register(DisplayViewer)
if shutil.which("gm"):
register(GmDisplayViewer)
if shutil.which("eog"):
register(EogViewer)
if shutil.which("xv"):
register(XVViewer)
class IPythonViewer(Viewer):
"""The viewer for IPython frontends."""
def show_image(self, image, **options):
ipython_display(image)
return 1
try:
from IPython.display import display as ipython_display
except ImportError:
pass
else:
register(IPythonViewer)
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Syntax: python3 ImageShow.py imagefile [title]")
sys.exit()
with Image.open(sys.argv[1]) as im:
print(show(im, *sys.argv[2:]))

@ -1,129 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# global image statistics
#
# History:
# 1996-04-05 fl Created
# 1997-05-21 fl Added mask; added rms, var, stddev attributes
# 1997-08-05 fl Added median
# 1998-07-05 hk Fixed integer overflow error
#
# Notes:
# This class shows how to implement delayed evaluation of attributes.
# To get a certain value, simply access the corresponding attribute.
# The __getattr__ dispatcher takes care of the rest.
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996-97.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import math
class Stat:
def __init__(self, image_or_list, mask=None):
try:
if mask:
self.h = image_or_list.histogram(mask)
else:
self.h = image_or_list.histogram()
except AttributeError:
self.h = image_or_list # assume it to be a histogram list
if not isinstance(self.h, list):
msg = "first argument must be image or list"
raise TypeError(msg)
self.bands = list(range(len(self.h) // 256))
def __getattr__(self, id):
"""Calculate missing attribute"""
if id[:4] == "_get":
raise AttributeError(id)
# calculate missing attribute
v = getattr(self, "_get" + id)()
setattr(self, id, v)
return v
def _getextrema(self):
"""Get min/max values for each band in the image"""
def minmax(histogram):
res_min, res_max = 255, 0
for i in range(256):
if histogram[i]:
res_min = i
break
for i in range(255, -1, -1):
if histogram[i]:
res_max = i
break
return res_min, res_max
return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
def _getcount(self):
"""Get total number of pixels in each layer"""
return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
def _getsum(self):
"""Get sum of all pixels in each layer"""
v = []
for i in range(0, len(self.h), 256):
layer_sum = 0.0
for j in range(256):
layer_sum += j * self.h[i + j]
v.append(layer_sum)
return v
def _getsum2(self):
"""Get squared sum of all pixels in each layer"""
v = []
for i in range(0, len(self.h), 256):
sum2 = 0.0
for j in range(256):
sum2 += (j**2) * float(self.h[i + j])
v.append(sum2)
return v
def _getmean(self):
"""Get average pixel level for each layer"""
return [self.sum[i] / self.count[i] for i in self.bands]
def _getmedian(self):
"""Get median pixel level for each layer"""
v = []
for i in self.bands:
s = 0
half = self.count[i] // 2
b = i * 256
for j in range(256):
s = s + self.h[b + j]
if s > half:
break
v.append(j)
return v
def _getrms(self):
"""Get RMS for each layer"""
return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
def _getvar(self):
"""Get variance for each layer"""
return [
(self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
for i in self.bands
]
def _getstddev(self):
"""Get standard deviation for each layer"""
return [math.sqrt(self.var[i]) for i in self.bands]
Global = Stat # compatibility

@ -1,284 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# a Tk display interface
#
# History:
# 96-04-08 fl Created
# 96-09-06 fl Added getimage method
# 96-11-01 fl Rewritten, removed image attribute and crop method
# 97-05-09 fl Use PyImagingPaste method instead of image type
# 97-05-12 fl Minor tweaks to match the IFUNC95 interface
# 97-05-17 fl Support the "pilbitmap" booster patch
# 97-06-05 fl Added file= and data= argument to image constructors
# 98-03-09 fl Added width and height methods to Image classes
# 98-07-02 fl Use default mode for "P" images without palette attribute
# 98-07-02 fl Explicitly destroy Tkinter image objects
# 99-07-24 fl Support multiple Tk interpreters (from Greg Couch)
# 99-07-26 fl Automatically hook into Tkinter (if possible)
# 99-08-15 fl Hook uses _imagingtk instead of _imaging
#
# Copyright (c) 1997-1999 by Secret Labs AB
# Copyright (c) 1996-1997 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import tkinter
from io import BytesIO
from . import Image
# --------------------------------------------------------------------
# Check for Tkinter interface hooks
_pilbitmap_ok = None
def _pilbitmap_check():
global _pilbitmap_ok
if _pilbitmap_ok is None:
try:
im = Image.new("1", (1, 1))
tkinter.BitmapImage(data=f"PIL:{im.im.id}")
_pilbitmap_ok = 1
except tkinter.TclError:
_pilbitmap_ok = 0
return _pilbitmap_ok
def _get_image_from_kw(kw):
source = None
if "file" in kw:
source = kw.pop("file")
elif "data" in kw:
source = BytesIO(kw.pop("data"))
if source:
return Image.open(source)
def _pyimagingtkcall(command, photo, id):
tk = photo.tk
try:
tk.call(command, photo, id)
except tkinter.TclError:
# activate Tkinter hook
# may raise an error if it cannot attach to Tkinter
from . import _imagingtk
_imagingtk.tkinit(tk.interpaddr())
tk.call(command, photo, id)
# --------------------------------------------------------------------
# PhotoImage
class PhotoImage:
"""
A Tkinter-compatible photo image. This can be used
everywhere Tkinter expects an image object. If the image is an RGBA
image, pixels having alpha 0 are treated as transparent.
The constructor takes either a PIL image, or a mode and a size.
Alternatively, you can use the ``file`` or ``data`` options to initialize
the photo image object.
:param image: Either a PIL image, or a mode string. If a mode string is
used, a size must also be given.
:param size: If the first argument is a mode string, this defines the size
of the image.
:keyword file: A filename to load the image from (using
``Image.open(file)``).
:keyword data: An 8-bit string containing image data (as loaded from an
image file).
"""
def __init__(self, image=None, size=None, **kw):
# Tk compatibility: file or data
if image is None:
image = _get_image_from_kw(kw)
if hasattr(image, "mode") and hasattr(image, "size"):
# got an image instead of a mode
mode = image.mode
if mode == "P":
# palette mapped data
image.apply_transparency()
image.load()
try:
mode = image.palette.mode
except AttributeError:
mode = "RGB" # default
size = image.size
kw["width"], kw["height"] = size
else:
mode = image
image = None
if mode not in ["1", "L", "RGB", "RGBA"]:
mode = Image.getmodebase(mode)
self.__mode = mode
self.__size = size
self.__photo = tkinter.PhotoImage(**kw)
self.tk = self.__photo.tk
if image:
self.paste(image)
def __del__(self):
name = self.__photo.name
self.__photo.name = None
try:
self.__photo.tk.call("image", "delete", name)
except Exception:
pass # ignore internal errors
def __str__(self):
"""
Get the Tkinter photo image identifier. This method is automatically
called by Tkinter whenever a PhotoImage object is passed to a Tkinter
method.
:return: A Tkinter photo image identifier (a string).
"""
return str(self.__photo)
def width(self):
"""
Get the width of the image.
:return: The width, in pixels.
"""
return self.__size[0]
def height(self):
"""
Get the height of the image.
:return: The height, in pixels.
"""
return self.__size[1]
def paste(self, im):
"""
Paste a PIL image into the photo image. Note that this can
be very slow if the photo image is displayed.
:param im: A PIL image. The size must match the target region. If the
mode does not match, the image is converted to the mode of
the bitmap image.
"""
# convert to blittable
im.load()
image = im.im
if image.isblock() and im.mode == self.__mode:
block = image
else:
block = image.new_block(self.__mode, im.size)
image.convert2(block, image) # convert directly between buffers
_pyimagingtkcall("PyImagingPhoto", self.__photo, block.id)
# --------------------------------------------------------------------
# BitmapImage
class BitmapImage:
"""
A Tkinter-compatible bitmap image. This can be used everywhere Tkinter
expects an image object.
The given image must have mode "1". Pixels having value 0 are treated as
transparent. Options, if any, are passed on to Tkinter. The most commonly
used option is ``foreground``, which is used to specify the color for the
non-transparent parts. See the Tkinter documentation for information on
how to specify colours.
:param image: A PIL image.
"""
def __init__(self, image=None, **kw):
# Tk compatibility: file or data
if image is None:
image = _get_image_from_kw(kw)
self.__mode = image.mode
self.__size = image.size
if _pilbitmap_check():
# fast way (requires the pilbitmap booster patch)
image.load()
kw["data"] = f"PIL:{image.im.id}"
self.__im = image # must keep a reference
else:
# slow but safe way
kw["data"] = image.tobitmap()
self.__photo = tkinter.BitmapImage(**kw)
def __del__(self):
name = self.__photo.name
self.__photo.name = None
try:
self.__photo.tk.call("image", "delete", name)
except Exception:
pass # ignore internal errors
def width(self):
"""
Get the width of the image.
:return: The width, in pixels.
"""
return self.__size[0]
def height(self):
"""
Get the height of the image.
:return: The height, in pixels.
"""
return self.__size[1]
def __str__(self):
"""
Get the Tkinter bitmap image identifier. This method is automatically
called by Tkinter whenever a BitmapImage object is passed to a Tkinter
method.
:return: A Tkinter bitmap image identifier (a string).
"""
return str(self.__photo)
def getimage(photo):
"""Copies the contents of a PhotoImage to a PIL image memory."""
im = Image.new("RGBA", (photo.width(), photo.height()))
block = im.im
_pyimagingtkcall("PyImagingPhotoGet", photo, block.id)
return im
def _show(image, title):
"""Helper for the Image.show method."""
class UI(tkinter.Label):
def __init__(self, master, im):
if im.mode == "1":
self.image = BitmapImage(im, foreground="white", master=master)
else:
self.image = PhotoImage(im, master=master)
super().__init__(master, image=self.image, bg="black", bd=0)
if not tkinter._default_root:
msg = "tkinter not initialized"
raise OSError(msg)
top = tkinter.Toplevel()
if title:
top.title(title)
UI(top, image).pack()

@ -1,112 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# transform wrappers
#
# History:
# 2002-04-08 fl Created
#
# Copyright (c) 2002 by Secret Labs AB
# Copyright (c) 2002 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from typing import Sequence
from . import Image
class Transform(Image.ImageTransformHandler):
method: Image.Transform
def __init__(self, data: Sequence[int]) -> None:
self.data = data
def getdata(self) -> tuple[int, Sequence[int]]:
return self.method, self.data
def transform(
self,
size: tuple[int, int],
image: Image.Image,
**options: dict[str, str | int | tuple[int, ...] | list[int]],
) -> Image.Image:
# can be overridden
method, data = self.getdata()
return image.transform(size, method, data, **options)
class AffineTransform(Transform):
"""
Define an affine image transform.
This function takes a 6-tuple (a, b, c, d, e, f) which contain the first
two rows from an affine transform matrix. For each pixel (x, y) in the
output image, the new value is taken from a position (a x + b y + c,
d x + e y + f) in the input image, rounded to nearest pixel.
This function can be used to scale, translate, rotate, and shear the
original image.
See :py:meth:`~PIL.Image.Image.transform`
:param matrix: A 6-tuple (a, b, c, d, e, f) containing the first two rows
from an affine transform matrix.
"""
method = Image.Transform.AFFINE
class ExtentTransform(Transform):
"""
Define a transform to extract a subregion from an image.
Maps a rectangle (defined by two corners) from the image to a rectangle of
the given size. The resulting image will contain data sampled from between
the corners, such that (x0, y0) in the input image will end up at (0,0) in
the output image, and (x1, y1) at size.
This method can be used to crop, stretch, shrink, or mirror an arbitrary
rectangle in the current image. It is slightly slower than crop, but about
as fast as a corresponding resize operation.
See :py:meth:`~PIL.Image.Image.transform`
:param bbox: A 4-tuple (x0, y0, x1, y1) which specifies two points in the
input image's coordinate system. See :ref:`coordinate-system`.
"""
method = Image.Transform.EXTENT
class QuadTransform(Transform):
"""
Define a quad image transform.
Maps a quadrilateral (a region defined by four corners) from the image to a
rectangle of the given size.
See :py:meth:`~PIL.Image.Image.transform`
:param xy: An 8-tuple (x0, y0, x1, y1, x2, y2, x3, y3) which contain the
upper left, lower left, lower right, and upper right corner of the
source quadrilateral.
"""
method = Image.Transform.QUAD
class MeshTransform(Transform):
"""
Define a mesh image transform. A mesh transform consists of one or more
individual quad transforms.
See :py:meth:`~PIL.Image.Image.transform`
:param data: A list of (bbox, quad) tuples.
"""
method = Image.Transform.MESH

@ -1,231 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# a Windows DIB display interface
#
# History:
# 1996-05-20 fl Created
# 1996-09-20 fl Fixed subregion exposure
# 1997-09-21 fl Added draw primitive (for tzPrint)
# 2003-05-21 fl Added experimental Window/ImageWindow classes
# 2003-09-05 fl Added fromstring/tostring methods
#
# Copyright (c) Secret Labs AB 1997-2003.
# Copyright (c) Fredrik Lundh 1996-2003.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image
class HDC:
"""
Wraps an HDC integer. The resulting object can be passed to the
:py:meth:`~PIL.ImageWin.Dib.draw` and :py:meth:`~PIL.ImageWin.Dib.expose`
methods.
"""
def __init__(self, dc):
self.dc = dc
def __int__(self):
return self.dc
class HWND:
"""
Wraps an HWND integer. The resulting object can be passed to the
:py:meth:`~PIL.ImageWin.Dib.draw` and :py:meth:`~PIL.ImageWin.Dib.expose`
methods, instead of a DC.
"""
def __init__(self, wnd):
self.wnd = wnd
def __int__(self):
return self.wnd
class Dib:
"""
A Windows bitmap with the given mode and size. The mode can be one of "1",
"L", "P", or "RGB".
If the display requires a palette, this constructor creates a suitable
palette and associates it with the image. For an "L" image, 128 graylevels
are allocated. For an "RGB" image, a 6x6x6 colour cube is used, together
with 20 graylevels.
To make sure that palettes work properly under Windows, you must call the
``palette`` method upon certain events from Windows.
:param image: Either a PIL image, or a mode string. If a mode string is
used, a size must also be given. The mode can be one of "1",
"L", "P", or "RGB".
:param size: If the first argument is a mode string, this
defines the size of the image.
"""
def __init__(self, image, size=None):
if hasattr(image, "mode") and hasattr(image, "size"):
mode = image.mode
size = image.size
else:
mode = image
image = None
if mode not in ["1", "L", "P", "RGB"]:
mode = Image.getmodebase(mode)
self.image = Image.core.display(mode, size)
self.mode = mode
self.size = size
if image:
self.paste(image)
def expose(self, handle):
"""
Copy the bitmap contents to a device context.
:param handle: Device context (HDC), cast to a Python integer, or an
HDC or HWND instance. In PythonWin, you can use
``CDC.GetHandleAttrib()`` to get a suitable handle.
"""
if isinstance(handle, HWND):
dc = self.image.getdc(handle)
try:
result = self.image.expose(dc)
finally:
self.image.releasedc(handle, dc)
else:
result = self.image.expose(handle)
return result
def draw(self, handle, dst, src=None):
"""
Same as expose, but allows you to specify where to draw the image, and
what part of it to draw.
The destination and source areas are given as 4-tuple rectangles. If
the source is omitted, the entire image is copied. If the source and
the destination have different sizes, the image is resized as
necessary.
"""
if not src:
src = (0, 0) + self.size
if isinstance(handle, HWND):
dc = self.image.getdc(handle)
try:
result = self.image.draw(dc, dst, src)
finally:
self.image.releasedc(handle, dc)
else:
result = self.image.draw(handle, dst, src)
return result
def query_palette(self, handle):
"""
Installs the palette associated with the image in the given device
context.
This method should be called upon **QUERYNEWPALETTE** and
**PALETTECHANGED** events from Windows. If this method returns a
non-zero value, one or more display palette entries were changed, and
the image should be redrawn.
:param handle: Device context (HDC), cast to a Python integer, or an
HDC or HWND instance.
:return: A true value if one or more entries were changed (this
indicates that the image should be redrawn).
"""
if isinstance(handle, HWND):
handle = self.image.getdc(handle)
try:
result = self.image.query_palette(handle)
finally:
self.image.releasedc(handle, handle)
else:
result = self.image.query_palette(handle)
return result
def paste(self, im, box=None):
"""
Paste a PIL image into the bitmap image.
:param im: A PIL image. The size must match the target region.
If the mode does not match, the image is converted to the
mode of the bitmap image.
:param box: A 4-tuple defining the left, upper, right, and
lower pixel coordinate. See :ref:`coordinate-system`. If
None is given instead of a tuple, all of the image is
assumed.
"""
im.load()
if self.mode != im.mode:
im = im.convert(self.mode)
if box:
self.image.paste(im.im, box)
else:
self.image.paste(im.im)
def frombytes(self, buffer):
"""
Load display memory contents from byte data.
:param buffer: A buffer containing display data (usually
data returned from :py:func:`~PIL.ImageWin.Dib.tobytes`)
"""
return self.image.frombytes(buffer)
def tobytes(self):
"""
Copy display memory contents to bytes object.
:return: A bytes object containing display data.
"""
return self.image.tobytes()
class Window:
"""Create a Window with the given title size."""
def __init__(self, title="PIL", width=None, height=None):
self.hwnd = Image.core.createwindow(
title, self.__dispatcher, width or 0, height or 0
)
def __dispatcher(self, action, *args):
return getattr(self, "ui_handle_" + action)(*args)
def ui_handle_clear(self, dc, x0, y0, x1, y1):
pass
def ui_handle_damage(self, x0, y0, x1, y1):
pass
def ui_handle_destroy(self):
pass
def ui_handle_repair(self, dc, x0, y0, x1, y1):
pass
def ui_handle_resize(self, width, height):
pass
def mainloop(self):
Image.core.eventloop()
class ImageWindow(Window):
"""Create an image window which displays the given image."""
def __init__(self, image, title="PIL"):
if not isinstance(image, Dib):
image = Dib(image)
self.image = image
width, height = image.size
super().__init__(title, width=width, height=height)
def ui_handle_repair(self, dc, x0, y0, x1, y1):
self.image.draw(dc, (x0, y0, x1, y1))

@ -1,101 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# IM Tools support for PIL
#
# history:
# 1996-05-27 fl Created (read 8-bit images only)
# 2001-02-17 fl Use 're' instead of 'regex' (Python 2.1) (0.2)
#
# Copyright (c) Secret Labs AB 1997-2001.
# Copyright (c) Fredrik Lundh 1996-2001.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import re
from . import Image, ImageFile
#
# --------------------------------------------------------------------
field = re.compile(rb"([a-z]*) ([^ \r\n]*)")
##
# Image plugin for IM Tools images.
class ImtImageFile(ImageFile.ImageFile):
format = "IMT"
format_description = "IM Tools"
def _open(self):
# Quick rejection: if there's not a LF among the first
# 100 bytes, this is (probably) not a text header.
buffer = self.fp.read(100)
if b"\n" not in buffer:
msg = "not an IM file"
raise SyntaxError(msg)
xsize = ysize = 0
while True:
if buffer:
s = buffer[:1]
buffer = buffer[1:]
else:
s = self.fp.read(1)
if not s:
break
if s == b"\x0C":
# image data begins
self.tile = [
(
"raw",
(0, 0) + self.size,
self.fp.tell() - len(buffer),
(self.mode, 0, 1),
)
]
break
else:
# read key/value pair
if b"\n" not in buffer:
buffer += self.fp.read(100)
lines = buffer.split(b"\n")
s += lines.pop(0)
buffer = b"\n".join(lines)
if len(s) == 1 or len(s) > 100:
break
if s[0] == ord(b"*"):
continue # comment
m = field.match(s)
if not m:
break
k, v = m.group(1, 2)
if k == b"width":
xsize = int(v)
self._size = xsize, ysize
elif k == b"height":
ysize = int(v)
self._size = xsize, ysize
elif k == b"pixel" and v == b"n8":
self._mode = "L"
#
# --------------------------------------------------------------------
Image.register_open(ImtImageFile.format, ImtImageFile)
#
# no extension registered (".im" is simply too common)

@ -1,235 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# IPTC/NAA file handling
#
# history:
# 1995-10-01 fl Created
# 1998-03-09 fl Cleaned up and added to PIL
# 2002-06-18 fl Added getiptcinfo helper
#
# Copyright (c) Secret Labs AB 1997-2002.
# Copyright (c) Fredrik Lundh 1995.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from io import BytesIO
from typing import Sequence
from . import Image, ImageFile
from ._binary import i16be as i16
from ._binary import i32be as i32
from ._deprecate import deprecate
COMPRESSION = {1: "raw", 5: "jpeg"}
def __getattr__(name: str) -> bytes:
if name == "PAD":
deprecate("IptcImagePlugin.PAD", 12)
return b"\0\0\0\0"
msg = f"module '{__name__}' has no attribute '{name}'"
raise AttributeError(msg)
#
# Helpers
def _i(c: bytes) -> int:
return i32((b"\0\0\0\0" + c)[-4:])
def _i8(c: int | bytes) -> int:
return c if isinstance(c, int) else c[0]
def i(c: bytes) -> int:
""".. deprecated:: 10.2.0"""
deprecate("IptcImagePlugin.i", 12)
return _i(c)
def dump(c: Sequence[int | bytes]) -> None:
""".. deprecated:: 10.2.0"""
deprecate("IptcImagePlugin.dump", 12)
for i in c:
print("%02x" % _i8(i), end=" ")
print()
##
# Image plugin for IPTC/NAA datastreams. To read IPTC/NAA fields
# from TIFF and JPEG files, use the <b>getiptcinfo</b> function.
class IptcImageFile(ImageFile.ImageFile):
format = "IPTC"
format_description = "IPTC/NAA"
def getint(self, key: tuple[int, int]) -> int:
return _i(self.info[key])
def field(self) -> tuple[tuple[int, int] | None, int]:
#
# get a IPTC field header
s = self.fp.read(5)
if not s.strip(b"\x00"):
return None, 0
tag = s[1], s[2]
# syntax
if s[0] != 0x1C or tag[0] not in [1, 2, 3, 4, 5, 6, 7, 8, 9, 240]:
msg = "invalid IPTC/NAA file"
raise SyntaxError(msg)
# field size
size = s[3]
if size > 132:
msg = "illegal field length in IPTC/NAA file"
raise OSError(msg)
elif size == 128:
size = 0
elif size > 128:
size = _i(self.fp.read(size - 128))
else:
size = i16(s, 3)
return tag, size
def _open(self) -> None:
# load descriptive fields
while True:
offset = self.fp.tell()
tag, size = self.field()
if not tag or tag == (8, 10):
break
if size:
tagdata = self.fp.read(size)
else:
tagdata = None
if tag in self.info:
if isinstance(self.info[tag], list):
self.info[tag].append(tagdata)
else:
self.info[tag] = [self.info[tag], tagdata]
else:
self.info[tag] = tagdata
# mode
layers = self.info[(3, 60)][0]
component = self.info[(3, 60)][1]
if (3, 65) in self.info:
id = self.info[(3, 65)][0] - 1
else:
id = 0
if layers == 1 and not component:
self._mode = "L"
elif layers == 3 and component:
self._mode = "RGB"[id]
elif layers == 4 and component:
self._mode = "CMYK"[id]
# size
self._size = self.getint((3, 20)), self.getint((3, 30))
# compression
try:
compression = COMPRESSION[self.getint((3, 120))]
except KeyError as e:
msg = "Unknown IPTC image compression"
raise OSError(msg) from e
# tile
if tag == (8, 10):
self.tile = [("iptc", (0, 0) + self.size, offset, compression)]
def load(self):
if len(self.tile) != 1 or self.tile[0][0] != "iptc":
return ImageFile.ImageFile.load(self)
offset, compression = self.tile[0][2:]
self.fp.seek(offset)
# Copy image data to temporary file
o = BytesIO()
if compression == "raw":
# To simplify access to the extracted file,
# prepend a PPM header
o.write(b"P5\n%d %d\n255\n" % self.size)
while True:
type, size = self.field()
if type != (8, 10):
break
while size > 0:
s = self.fp.read(min(size, 8192))
if not s:
break
o.write(s)
size -= len(s)
with Image.open(o) as _im:
_im.load()
self.im = _im.im
Image.register_open(IptcImageFile.format, IptcImageFile)
Image.register_extension(IptcImageFile.format, ".iim")
def getiptcinfo(im):
"""
Get IPTC information from TIFF, JPEG, or IPTC file.
:param im: An image containing IPTC data.
:returns: A dictionary containing IPTC information, or None if
no IPTC information block was found.
"""
from . import JpegImagePlugin, TiffImagePlugin
data = None
if isinstance(im, IptcImageFile):
# return info dictionary right away
return im.info
elif isinstance(im, JpegImagePlugin.JpegImageFile):
# extract the IPTC/NAA resource
photoshop = im.info.get("photoshop")
if photoshop:
data = photoshop.get(0x0404)
elif isinstance(im, TiffImagePlugin.TiffImageFile):
# get raw data from the IPTC/NAA tag (PhotoShop tags the data
# as 4-byte integers, so we cannot use the get method...)
try:
data = im.tag.tagdata[TiffImagePlugin.IPTC_NAA_CHUNK]
except (AttributeError, KeyError):
pass
if data is None:
return None # no properties
# create an IptcImagePlugin object without initializing it
class FakeImage:
pass
im = FakeImage()
im.__class__ = IptcImageFile
# parse the IPTC information chunk
im.info = {}
im.fp = BytesIO(data)
try:
im._open()
except (IndexError, KeyError):
pass # expected failure
return im.info

@ -1,398 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# JPEG2000 file handling
#
# History:
# 2014-03-12 ajh Created
# 2021-06-30 rogermb Extract dpi information from the 'resc' header box
#
# Copyright (c) 2014 Coriolis Systems Limited
# Copyright (c) 2014 Alastair Houghton
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import os
import struct
from . import Image, ImageFile, _binary
class BoxReader:
"""
A small helper class to read fields stored in JPEG2000 header boxes
and to easily step into and read sub-boxes.
"""
def __init__(self, fp, length=-1):
self.fp = fp
self.has_length = length >= 0
self.length = length
self.remaining_in_box = -1
def _can_read(self, num_bytes):
if self.has_length and self.fp.tell() + num_bytes > self.length:
# Outside box: ensure we don't read past the known file length
return False
if self.remaining_in_box >= 0:
# Inside box contents: ensure read does not go past box boundaries
return num_bytes <= self.remaining_in_box
else:
return True # No length known, just read
def _read_bytes(self, num_bytes):
if not self._can_read(num_bytes):
msg = "Not enough data in header"
raise SyntaxError(msg)
data = self.fp.read(num_bytes)
if len(data) < num_bytes:
msg = f"Expected to read {num_bytes} bytes but only got {len(data)}."
raise OSError(msg)
if self.remaining_in_box > 0:
self.remaining_in_box -= num_bytes
return data
def read_fields(self, field_format):
size = struct.calcsize(field_format)
data = self._read_bytes(size)
return struct.unpack(field_format, data)
def read_boxes(self):
size = self.remaining_in_box
data = self._read_bytes(size)
return BoxReader(io.BytesIO(data), size)
def has_next_box(self):
if self.has_length:
return self.fp.tell() + self.remaining_in_box < self.length
else:
return True
def next_box_type(self):
# Skip the rest of the box if it has not been read
if self.remaining_in_box > 0:
self.fp.seek(self.remaining_in_box, os.SEEK_CUR)
self.remaining_in_box = -1
# Read the length and type of the next box
lbox, tbox = self.read_fields(">I4s")
if lbox == 1:
lbox = self.read_fields(">Q")[0]
hlen = 16
else:
hlen = 8
if lbox < hlen or not self._can_read(lbox - hlen):
msg = "Invalid header length"
raise SyntaxError(msg)
self.remaining_in_box = lbox - hlen
return tbox
def _parse_codestream(fp):
"""Parse the JPEG 2000 codestream to extract the size and component
count from the SIZ marker segment, returning a PIL (size, mode) tuple."""
hdr = fp.read(2)
lsiz = _binary.i16be(hdr)
siz = hdr + fp.read(lsiz - 2)
lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, _, _, _, _, csiz = struct.unpack_from(
">HHIIIIIIIIH", siz
)
ssiz = [None] * csiz
xrsiz = [None] * csiz
yrsiz = [None] * csiz
for i in range(csiz):
ssiz[i], xrsiz[i], yrsiz[i] = struct.unpack_from(">BBB", siz, 36 + 3 * i)
size = (xsiz - xosiz, ysiz - yosiz)
if csiz == 1:
if (yrsiz[0] & 0x7F) > 8:
mode = "I;16"
else:
mode = "L"
elif csiz == 2:
mode = "LA"
elif csiz == 3:
mode = "RGB"
elif csiz == 4:
mode = "RGBA"
else:
mode = None
return size, mode
def _res_to_dpi(num, denom, exp):
"""Convert JPEG2000's (numerator, denominator, exponent-base-10) resolution,
calculated as (num / denom) * 10^exp and stored in dots per meter,
to floating-point dots per inch."""
if denom != 0:
return (254 * num * (10**exp)) / (10000 * denom)
def _parse_jp2_header(fp):
"""Parse the JP2 header box to extract size, component count,
color space information, and optionally DPI information,
returning a (size, mode, mimetype, dpi) tuple."""
# Find the JP2 header box
reader = BoxReader(fp)
header = None
mimetype = None
while reader.has_next_box():
tbox = reader.next_box_type()
if tbox == b"jp2h":
header = reader.read_boxes()
break
elif tbox == b"ftyp":
if reader.read_fields(">4s")[0] == b"jpx ":
mimetype = "image/jpx"
size = None
mode = None
bpc = None
nc = None
dpi = None # 2-tuple of DPI info, or None
while header.has_next_box():
tbox = header.next_box_type()
if tbox == b"ihdr":
height, width, nc, bpc = header.read_fields(">IIHB")
size = (width, height)
if nc == 1 and (bpc & 0x7F) > 8:
mode = "I;16"
elif nc == 1:
mode = "L"
elif nc == 2:
mode = "LA"
elif nc == 3:
mode = "RGB"
elif nc == 4:
mode = "RGBA"
elif tbox == b"res ":
res = header.read_boxes()
while res.has_next_box():
tres = res.next_box_type()
if tres == b"resc":
vrcn, vrcd, hrcn, hrcd, vrce, hrce = res.read_fields(">HHHHBB")
hres = _res_to_dpi(hrcn, hrcd, hrce)
vres = _res_to_dpi(vrcn, vrcd, vrce)
if hres is not None and vres is not None:
dpi = (hres, vres)
break
if size is None or mode is None:
msg = "Malformed JP2 header"
raise SyntaxError(msg)
return size, mode, mimetype, dpi
##
# Image plugin for JPEG2000 images.
class Jpeg2KImageFile(ImageFile.ImageFile):
format = "JPEG2000"
format_description = "JPEG 2000 (ISO 15444)"
def _open(self):
sig = self.fp.read(4)
if sig == b"\xff\x4f\xff\x51":
self.codec = "j2k"
self._size, self._mode = _parse_codestream(self.fp)
else:
sig = sig + self.fp.read(8)
if sig == b"\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a":
self.codec = "jp2"
header = _parse_jp2_header(self.fp)
self._size, self._mode, self.custom_mimetype, dpi = header
if dpi is not None:
self.info["dpi"] = dpi
if self.fp.read(12).endswith(b"jp2c\xff\x4f\xff\x51"):
self._parse_comment()
else:
msg = "not a JPEG 2000 file"
raise SyntaxError(msg)
if self.size is None or self.mode is None:
msg = "unable to determine size/mode"
raise SyntaxError(msg)
self._reduce = 0
self.layers = 0
fd = -1
length = -1
try:
fd = self.fp.fileno()
length = os.fstat(fd).st_size
except Exception:
fd = -1
try:
pos = self.fp.tell()
self.fp.seek(0, io.SEEK_END)
length = self.fp.tell()
self.fp.seek(pos)
except Exception:
length = -1
self.tile = [
(
"jpeg2k",
(0, 0) + self.size,
0,
(self.codec, self._reduce, self.layers, fd, length),
)
]
def _parse_comment(self):
hdr = self.fp.read(2)
length = _binary.i16be(hdr)
self.fp.seek(length - 2, os.SEEK_CUR)
while True:
marker = self.fp.read(2)
if not marker:
break
typ = marker[1]
if typ in (0x90, 0xD9):
# Start of tile or end of codestream
break
hdr = self.fp.read(2)
length = _binary.i16be(hdr)
if typ == 0x64:
# Comment
self.info["comment"] = self.fp.read(length - 2)[2:]
break
else:
self.fp.seek(length - 2, os.SEEK_CUR)
@property
def reduce(self):
# https://github.com/python-pillow/Pillow/issues/4343 found that the
# new Image 'reduce' method was shadowed by this plugin's 'reduce'
# property. This attempts to allow for both scenarios
return self._reduce or super().reduce
@reduce.setter
def reduce(self, value):
self._reduce = value
def load(self):
if self.tile and self._reduce:
power = 1 << self._reduce
adjust = power >> 1
self._size = (
int((self.size[0] + adjust) / power),
int((self.size[1] + adjust) / power),
)
# Update the reduce and layers settings
t = self.tile[0]
t3 = (t[3][0], self._reduce, self.layers, t[3][3], t[3][4])
self.tile = [(t[0], (0, 0) + self.size, t[2], t3)]
return ImageFile.ImageFile.load(self)
def _accept(prefix):
return (
prefix[:4] == b"\xff\x4f\xff\x51"
or prefix[:12] == b"\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a"
)
# ------------------------------------------------------------
# Save support
def _save(im, fp, filename):
# Get the keyword arguments
info = im.encoderinfo
if filename.endswith(".j2k") or info.get("no_jp2", False):
kind = "j2k"
else:
kind = "jp2"
offset = info.get("offset", None)
tile_offset = info.get("tile_offset", None)
tile_size = info.get("tile_size", None)
quality_mode = info.get("quality_mode", "rates")
quality_layers = info.get("quality_layers", None)
if quality_layers is not None and not (
isinstance(quality_layers, (list, tuple))
and all(
isinstance(quality_layer, (int, float)) for quality_layer in quality_layers
)
):
msg = "quality_layers must be a sequence of numbers"
raise ValueError(msg)
num_resolutions = info.get("num_resolutions", 0)
cblk_size = info.get("codeblock_size", None)
precinct_size = info.get("precinct_size", None)
irreversible = info.get("irreversible", False)
progression = info.get("progression", "LRCP")
cinema_mode = info.get("cinema_mode", "no")
mct = info.get("mct", 0)
signed = info.get("signed", False)
comment = info.get("comment")
if isinstance(comment, str):
comment = comment.encode()
plt = info.get("plt", False)
fd = -1
if hasattr(fp, "fileno"):
try:
fd = fp.fileno()
except Exception:
fd = -1
im.encoderconfig = (
offset,
tile_offset,
tile_size,
quality_mode,
quality_layers,
num_resolutions,
cblk_size,
precinct_size,
irreversible,
progression,
cinema_mode,
mct,
signed,
fd,
comment,
plt,
)
ImageFile._save(im, fp, [("jpeg2k", (0, 0) + im.size, 0, kind)])
# ------------------------------------------------------------
# Registry stuff
Image.register_open(Jpeg2KImageFile.format, Jpeg2KImageFile, _accept)
Image.register_save(Jpeg2KImageFile.format, _save)
Image.register_extensions(
Jpeg2KImageFile.format, [".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c"]
)
Image.register_mime(Jpeg2KImageFile.format, "image/jp2")

@ -1,868 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# JPEG (JFIF) file handling
#
# See "Digital Compression and Coding of Continuous-Tone Still Images,
# Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1)
#
# History:
# 1995-09-09 fl Created
# 1995-09-13 fl Added full parser
# 1996-03-25 fl Added hack to use the IJG command line utilities
# 1996-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug
# 1996-05-28 fl Added draft support, JFIF version (0.1)
# 1996-12-30 fl Added encoder options, added progression property (0.2)
# 1997-08-27 fl Save mode 1 images as BW (0.3)
# 1998-07-12 fl Added YCbCr to draft and save methods (0.4)
# 1998-10-19 fl Don't hang on files using 16-bit DQT's (0.4.1)
# 2001-04-16 fl Extract DPI settings from JFIF files (0.4.2)
# 2002-07-01 fl Skip pad bytes before markers; identify Exif files (0.4.3)
# 2003-04-25 fl Added experimental EXIF decoder (0.5)
# 2003-06-06 fl Added experimental EXIF GPSinfo decoder
# 2003-09-13 fl Extract COM markers
# 2009-09-06 fl Added icc_profile support (from Florian Hoech)
# 2009-03-06 fl Changed CMYK handling; always use Adobe polarity (0.6)
# 2009-03-08 fl Added subsampling support (from Justin Huff).
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-1996 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import array
import io
import math
import os
import struct
import subprocess
import sys
import tempfile
import warnings
from . import Image, ImageFile
from ._binary import i16be as i16
from ._binary import i32be as i32
from ._binary import o8
from ._binary import o16be as o16
from .JpegPresets import presets
#
# Parser
def Skip(self, marker):
n = i16(self.fp.read(2)) - 2
ImageFile._safe_read(self.fp, n)
def APP(self, marker):
#
# Application marker. Store these in the APP dictionary.
# Also look for well-known application markers.
n = i16(self.fp.read(2)) - 2
s = ImageFile._safe_read(self.fp, n)
app = "APP%d" % (marker & 15)
self.app[app] = s # compatibility
self.applist.append((app, s))
if marker == 0xFFE0 and s[:4] == b"JFIF":
# extract JFIF information
self.info["jfif"] = version = i16(s, 5) # version
self.info["jfif_version"] = divmod(version, 256)
# extract JFIF properties
try:
jfif_unit = s[7]
jfif_density = i16(s, 8), i16(s, 10)
except Exception:
pass
else:
if jfif_unit == 1:
self.info["dpi"] = jfif_density
self.info["jfif_unit"] = jfif_unit
self.info["jfif_density"] = jfif_density
elif marker == 0xFFE1 and s[:6] == b"Exif\0\0":
# extract EXIF information
if "exif" in self.info:
self.info["exif"] += s[6:]
else:
self.info["exif"] = s
self._exif_offset = self.fp.tell() - n + 6
elif marker == 0xFFE2 and s[:5] == b"FPXR\0":
# extract FlashPix information (incomplete)
self.info["flashpix"] = s # FIXME: value will change
elif marker == 0xFFE2 and s[:12] == b"ICC_PROFILE\0":
# Since an ICC profile can be larger than the maximum size of
# a JPEG marker (64K), we need provisions to split it into
# multiple markers. The format defined by the ICC specifies
# one or more APP2 markers containing the following data:
# Identifying string ASCII "ICC_PROFILE\0" (12 bytes)
# Marker sequence number 1, 2, etc (1 byte)
# Number of markers Total of APP2's used (1 byte)
# Profile data (remainder of APP2 data)
# Decoders should use the marker sequence numbers to
# reassemble the profile, rather than assuming that the APP2
# markers appear in the correct sequence.
self.icclist.append(s)
elif marker == 0xFFED and s[:14] == b"Photoshop 3.0\x00":
# parse the image resource block
offset = 14
photoshop = self.info.setdefault("photoshop", {})
while s[offset : offset + 4] == b"8BIM":
try:
offset += 4
# resource code
code = i16(s, offset)
offset += 2
# resource name (usually empty)
name_len = s[offset]
# name = s[offset+1:offset+1+name_len]
offset += 1 + name_len
offset += offset & 1 # align
# resource data block
size = i32(s, offset)
offset += 4
data = s[offset : offset + size]
if code == 0x03ED: # ResolutionInfo
data = {
"XResolution": i32(data, 0) / 65536,
"DisplayedUnitsX": i16(data, 4),
"YResolution": i32(data, 8) / 65536,
"DisplayedUnitsY": i16(data, 12),
}
photoshop[code] = data
offset += size
offset += offset & 1 # align
except struct.error:
break # insufficient data
elif marker == 0xFFEE and s[:5] == b"Adobe":
self.info["adobe"] = i16(s, 5)
# extract Adobe custom properties
try:
adobe_transform = s[11]
except IndexError:
pass
else:
self.info["adobe_transform"] = adobe_transform
elif marker == 0xFFE2 and s[:4] == b"MPF\0":
# extract MPO information
self.info["mp"] = s[4:]
# offset is current location minus buffer size
# plus constant header size
self.info["mpoffset"] = self.fp.tell() - n + 4
# If DPI isn't in JPEG header, fetch from EXIF
if "dpi" not in self.info and "exif" in self.info:
try:
exif = self.getexif()
resolution_unit = exif[0x0128]
x_resolution = exif[0x011A]
try:
dpi = float(x_resolution[0]) / x_resolution[1]
except TypeError:
dpi = x_resolution
if math.isnan(dpi):
msg = "DPI is not a number"
raise ValueError(msg)
if resolution_unit == 3: # cm
# 1 dpcm = 2.54 dpi
dpi *= 2.54
self.info["dpi"] = dpi, dpi
except (
struct.error,
KeyError,
SyntaxError,
TypeError,
ValueError,
ZeroDivisionError,
):
# struct.error for truncated EXIF
# KeyError for dpi not included
# SyntaxError for invalid/unreadable EXIF
# ValueError or TypeError for dpi being an invalid float
# ZeroDivisionError for invalid dpi rational value
self.info["dpi"] = 72, 72
def COM(self, marker):
#
# Comment marker. Store these in the APP dictionary.
n = i16(self.fp.read(2)) - 2
s = ImageFile._safe_read(self.fp, n)
self.info["comment"] = s
self.app["COM"] = s # compatibility
self.applist.append(("COM", s))
def SOF(self, marker):
#
# Start of frame marker. Defines the size and mode of the
# image. JPEG is colour blind, so we use some simple
# heuristics to map the number of layers to an appropriate
# mode. Note that this could be made a bit brighter, by
# looking for JFIF and Adobe APP markers.
n = i16(self.fp.read(2)) - 2
s = ImageFile._safe_read(self.fp, n)
self._size = i16(s, 3), i16(s, 1)
self.bits = s[0]
if self.bits != 8:
msg = f"cannot handle {self.bits}-bit layers"
raise SyntaxError(msg)
self.layers = s[5]
if self.layers == 1:
self._mode = "L"
elif self.layers == 3:
self._mode = "RGB"
elif self.layers == 4:
self._mode = "CMYK"
else:
msg = f"cannot handle {self.layers}-layer images"
raise SyntaxError(msg)
if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
self.info["progressive"] = self.info["progression"] = 1
if self.icclist:
# fixup icc profile
self.icclist.sort() # sort by sequence number
if self.icclist[0][13] == len(self.icclist):
profile = [p[14:] for p in self.icclist]
icc_profile = b"".join(profile)
else:
icc_profile = None # wrong number of fragments
self.info["icc_profile"] = icc_profile
self.icclist = []
for i in range(6, len(s), 3):
t = s[i : i + 3]
# 4-tuples: id, vsamp, hsamp, qtable
self.layer.append((t[0], t[1] // 16, t[1] & 15, t[2]))
def DQT(self, marker):
#
# Define quantization table. Note that there might be more
# than one table in each marker.
# FIXME: The quantization tables can be used to estimate the
# compression quality.
n = i16(self.fp.read(2)) - 2
s = ImageFile._safe_read(self.fp, n)
while len(s):
v = s[0]
precision = 1 if (v // 16 == 0) else 2 # in bytes
qt_length = 1 + precision * 64
if len(s) < qt_length:
msg = "bad quantization table marker"
raise SyntaxError(msg)
data = array.array("B" if precision == 1 else "H", s[1:qt_length])
if sys.byteorder == "little" and precision > 1:
data.byteswap() # the values are always big-endian
self.quantization[v & 15] = [data[i] for i in zigzag_index]
s = s[qt_length:]
#
# JPEG marker table
MARKER = {
0xFFC0: ("SOF0", "Baseline DCT", SOF),
0xFFC1: ("SOF1", "Extended Sequential DCT", SOF),
0xFFC2: ("SOF2", "Progressive DCT", SOF),
0xFFC3: ("SOF3", "Spatial lossless", SOF),
0xFFC4: ("DHT", "Define Huffman table", Skip),
0xFFC5: ("SOF5", "Differential sequential DCT", SOF),
0xFFC6: ("SOF6", "Differential progressive DCT", SOF),
0xFFC7: ("SOF7", "Differential spatial", SOF),
0xFFC8: ("JPG", "Extension", None),
0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF),
0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF),
0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF),
0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip),
0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF),
0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF),
0xFFCF: ("SOF15", "Differential spatial (AC)", SOF),
0xFFD0: ("RST0", "Restart 0", None),
0xFFD1: ("RST1", "Restart 1", None),
0xFFD2: ("RST2", "Restart 2", None),
0xFFD3: ("RST3", "Restart 3", None),
0xFFD4: ("RST4", "Restart 4", None),
0xFFD5: ("RST5", "Restart 5", None),
0xFFD6: ("RST6", "Restart 6", None),
0xFFD7: ("RST7", "Restart 7", None),
0xFFD8: ("SOI", "Start of image", None),
0xFFD9: ("EOI", "End of image", None),
0xFFDA: ("SOS", "Start of scan", Skip),
0xFFDB: ("DQT", "Define quantization table", DQT),
0xFFDC: ("DNL", "Define number of lines", Skip),
0xFFDD: ("DRI", "Define restart interval", Skip),
0xFFDE: ("DHP", "Define hierarchical progression", SOF),
0xFFDF: ("EXP", "Expand reference component", Skip),
0xFFE0: ("APP0", "Application segment 0", APP),
0xFFE1: ("APP1", "Application segment 1", APP),
0xFFE2: ("APP2", "Application segment 2", APP),
0xFFE3: ("APP3", "Application segment 3", APP),
0xFFE4: ("APP4", "Application segment 4", APP),
0xFFE5: ("APP5", "Application segment 5", APP),
0xFFE6: ("APP6", "Application segment 6", APP),
0xFFE7: ("APP7", "Application segment 7", APP),
0xFFE8: ("APP8", "Application segment 8", APP),
0xFFE9: ("APP9", "Application segment 9", APP),
0xFFEA: ("APP10", "Application segment 10", APP),
0xFFEB: ("APP11", "Application segment 11", APP),
0xFFEC: ("APP12", "Application segment 12", APP),
0xFFED: ("APP13", "Application segment 13", APP),
0xFFEE: ("APP14", "Application segment 14", APP),
0xFFEF: ("APP15", "Application segment 15", APP),
0xFFF0: ("JPG0", "Extension 0", None),
0xFFF1: ("JPG1", "Extension 1", None),
0xFFF2: ("JPG2", "Extension 2", None),
0xFFF3: ("JPG3", "Extension 3", None),
0xFFF4: ("JPG4", "Extension 4", None),
0xFFF5: ("JPG5", "Extension 5", None),
0xFFF6: ("JPG6", "Extension 6", None),
0xFFF7: ("JPG7", "Extension 7", None),
0xFFF8: ("JPG8", "Extension 8", None),
0xFFF9: ("JPG9", "Extension 9", None),
0xFFFA: ("JPG10", "Extension 10", None),
0xFFFB: ("JPG11", "Extension 11", None),
0xFFFC: ("JPG12", "Extension 12", None),
0xFFFD: ("JPG13", "Extension 13", None),
0xFFFE: ("COM", "Comment", COM),
}
def _accept(prefix):
# Magic number was taken from https://en.wikipedia.org/wiki/JPEG
return prefix[:3] == b"\xFF\xD8\xFF"
##
# Image plugin for JPEG and JFIF images.
class JpegImageFile(ImageFile.ImageFile):
format = "JPEG"
format_description = "JPEG (ISO 10918)"
def _open(self):
s = self.fp.read(3)
if not _accept(s):
msg = "not a JPEG file"
raise SyntaxError(msg)
s = b"\xFF"
# Create attributes
self.bits = self.layers = 0
# JPEG specifics (internal)
self.layer = []
self.huffman_dc = {}
self.huffman_ac = {}
self.quantization = {}
self.app = {} # compatibility
self.applist = []
self.icclist = []
while True:
i = s[0]
if i == 0xFF:
s = s + self.fp.read(1)
i = i16(s)
else:
# Skip non-0xFF junk
s = self.fp.read(1)
continue
if i in MARKER:
name, description, handler = MARKER[i]
if handler is not None:
handler(self, i)
if i == 0xFFDA: # start of scan
rawmode = self.mode
if self.mode == "CMYK":
rawmode = "CMYK;I" # assume adobe conventions
self.tile = [("jpeg", (0, 0) + self.size, 0, (rawmode, ""))]
# self.__offset = self.fp.tell()
break
s = self.fp.read(1)
elif i in {0, 0xFFFF}:
# padded marker or junk; move on
s = b"\xff"
elif i == 0xFF00: # Skip extraneous data (escaped 0xFF)
s = self.fp.read(1)
else:
msg = "no marker found"
raise SyntaxError(msg)
def load_read(self, read_bytes):
"""
internal: read more image data
For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
so libjpeg can finish decoding
"""
s = self.fp.read(read_bytes)
if not s and ImageFile.LOAD_TRUNCATED_IMAGES and not hasattr(self, "_ended"):
# Premature EOF.
# Pretend file is finished adding EOI marker
self._ended = True
return b"\xFF\xD9"
return s
def draft(self, mode, size):
if len(self.tile) != 1:
return
# Protect from second call
if self.decoderconfig:
return
d, e, o, a = self.tile[0]
scale = 1
original_size = self.size
if a[0] == "RGB" and mode in ["L", "YCbCr"]:
self._mode = mode
a = mode, ""
if size:
scale = min(self.size[0] // size[0], self.size[1] // size[1])
for s in [8, 4, 2, 1]:
if scale >= s:
break
e = (
e[0],
e[1],
(e[2] - e[0] + s - 1) // s + e[0],
(e[3] - e[1] + s - 1) // s + e[1],
)
self._size = ((self.size[0] + s - 1) // s, (self.size[1] + s - 1) // s)
scale = s
self.tile = [(d, e, o, a)]
self.decoderconfig = (scale, 0)
box = (0, 0, original_size[0] / scale, original_size[1] / scale)
return self.mode, box
def load_djpeg(self):
# ALTERNATIVE: handle JPEGs via the IJG command line utilities
f, path = tempfile.mkstemp()
os.close(f)
if os.path.exists(self.filename):
subprocess.check_call(["djpeg", "-outfile", path, self.filename])
else:
try:
os.unlink(path)
except OSError:
pass
msg = "Invalid Filename"
raise ValueError(msg)
try:
with Image.open(path) as _im:
_im.load()
self.im = _im.im
finally:
try:
os.unlink(path)
except OSError:
pass
self._mode = self.im.mode
self._size = self.im.size
self.tile = []
def _getexif(self):
return _getexif(self)
def _getmp(self):
return _getmp(self)
def getxmp(self):
"""
Returns a dictionary containing the XMP tags.
Requires defusedxml to be installed.
:returns: XMP tags in a dictionary.
"""
for segment, content in self.applist:
if segment == "APP1":
marker, xmp_tags = content.split(b"\x00")[:2]
if marker == b"http://ns.adobe.com/xap/1.0/":
return self._getxmp(xmp_tags)
return {}
def _getexif(self):
if "exif" not in self.info:
return None
return self.getexif()._get_merged_dict()
def _getmp(self):
# Extract MP information. This method was inspired by the "highly
# experimental" _getexif version that's been in use for years now,
# itself based on the ImageFileDirectory class in the TIFF plugin.
# The MP record essentially consists of a TIFF file embedded in a JPEG
# application marker.
try:
data = self.info["mp"]
except KeyError:
return None
file_contents = io.BytesIO(data)
head = file_contents.read(8)
endianness = ">" if head[:4] == b"\x4d\x4d\x00\x2a" else "<"
# process dictionary
from . import TiffImagePlugin
try:
info = TiffImagePlugin.ImageFileDirectory_v2(head)
file_contents.seek(info.next)
info.load(file_contents)
mp = dict(info)
except Exception as e:
msg = "malformed MP Index (unreadable directory)"
raise SyntaxError(msg) from e
# it's an error not to have a number of images
try:
quant = mp[0xB001]
except KeyError as e:
msg = "malformed MP Index (no number of images)"
raise SyntaxError(msg) from e
# get MP entries
mpentries = []
try:
rawmpentries = mp[0xB002]
for entrynum in range(0, quant):
unpackedentry = struct.unpack_from(
f"{endianness}LLLHH", rawmpentries, entrynum * 16
)
labels = ("Attribute", "Size", "DataOffset", "EntryNo1", "EntryNo2")
mpentry = dict(zip(labels, unpackedentry))
mpentryattr = {
"DependentParentImageFlag": bool(mpentry["Attribute"] & (1 << 31)),
"DependentChildImageFlag": bool(mpentry["Attribute"] & (1 << 30)),
"RepresentativeImageFlag": bool(mpentry["Attribute"] & (1 << 29)),
"Reserved": (mpentry["Attribute"] & (3 << 27)) >> 27,
"ImageDataFormat": (mpentry["Attribute"] & (7 << 24)) >> 24,
"MPType": mpentry["Attribute"] & 0x00FFFFFF,
}
if mpentryattr["ImageDataFormat"] == 0:
mpentryattr["ImageDataFormat"] = "JPEG"
else:
msg = "unsupported picture format in MPO"
raise SyntaxError(msg)
mptypemap = {
0x000000: "Undefined",
0x010001: "Large Thumbnail (VGA Equivalent)",
0x010002: "Large Thumbnail (Full HD Equivalent)",
0x020001: "Multi-Frame Image (Panorama)",
0x020002: "Multi-Frame Image: (Disparity)",
0x020003: "Multi-Frame Image: (Multi-Angle)",
0x030000: "Baseline MP Primary Image",
}
mpentryattr["MPType"] = mptypemap.get(mpentryattr["MPType"], "Unknown")
mpentry["Attribute"] = mpentryattr
mpentries.append(mpentry)
mp[0xB002] = mpentries
except KeyError as e:
msg = "malformed MP Index (bad MP Entry)"
raise SyntaxError(msg) from e
# Next we should try and parse the individual image unique ID list;
# we don't because I've never seen this actually used in a real MPO
# file and so can't test it.
return mp
# --------------------------------------------------------------------
# stuff to save JPEG files
RAWMODE = {
"1": "L",
"L": "L",
"RGB": "RGB",
"RGBX": "RGB",
"CMYK": "CMYK;I", # assume adobe conventions
"YCbCr": "YCbCr",
}
# fmt: off
zigzag_index = (
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63,
)
samplings = {
(1, 1, 1, 1, 1, 1): 0,
(2, 1, 1, 1, 1, 1): 1,
(2, 2, 1, 1, 1, 1): 2,
}
# fmt: on
def get_sampling(im):
# There's no subsampling when images have only 1 layer
# (grayscale images) or when they are CMYK (4 layers),
# so set subsampling to the default value.
#
# NOTE: currently Pillow can't encode JPEG to YCCK format.
# If YCCK support is added in the future, subsampling code will have
# to be updated (here and in JpegEncode.c) to deal with 4 layers.
if not hasattr(im, "layers") or im.layers in (1, 4):
return -1
sampling = im.layer[0][1:3] + im.layer[1][1:3] + im.layer[2][1:3]
return samplings.get(sampling, -1)
def _save(im, fp, filename):
if im.width == 0 or im.height == 0:
msg = "cannot write empty image as JPEG"
raise ValueError(msg)
try:
rawmode = RAWMODE[im.mode]
except KeyError as e:
msg = f"cannot write mode {im.mode} as JPEG"
raise OSError(msg) from e
info = im.encoderinfo
dpi = [round(x) for x in info.get("dpi", (0, 0))]
quality = info.get("quality", -1)
subsampling = info.get("subsampling", -1)
qtables = info.get("qtables")
if quality == "keep":
quality = -1
subsampling = "keep"
qtables = "keep"
elif quality in presets:
preset = presets[quality]
quality = -1
subsampling = preset.get("subsampling", -1)
qtables = preset.get("quantization")
elif not isinstance(quality, int):
msg = "Invalid quality setting"
raise ValueError(msg)
else:
if subsampling in presets:
subsampling = presets[subsampling].get("subsampling", -1)
if isinstance(qtables, str) and qtables in presets:
qtables = presets[qtables].get("quantization")
if subsampling == "4:4:4":
subsampling = 0
elif subsampling == "4:2:2":
subsampling = 1
elif subsampling == "4:2:0":
subsampling = 2
elif subsampling == "4:1:1":
# For compatibility. Before Pillow 4.3, 4:1:1 actually meant 4:2:0.
# Set 4:2:0 if someone is still using that value.
subsampling = 2
elif subsampling == "keep":
if im.format != "JPEG":
msg = "Cannot use 'keep' when original image is not a JPEG"
raise ValueError(msg)
subsampling = get_sampling(im)
def validate_qtables(qtables):
if qtables is None:
return qtables
if isinstance(qtables, str):
try:
lines = [
int(num)
for line in qtables.splitlines()
for num in line.split("#", 1)[0].split()
]
except ValueError as e:
msg = "Invalid quantization table"
raise ValueError(msg) from e
else:
qtables = [lines[s : s + 64] for s in range(0, len(lines), 64)]
if isinstance(qtables, (tuple, list, dict)):
if isinstance(qtables, dict):
qtables = [
qtables[key] for key in range(len(qtables)) if key in qtables
]
elif isinstance(qtables, tuple):
qtables = list(qtables)
if not (0 < len(qtables) < 5):
msg = "None or too many quantization tables"
raise ValueError(msg)
for idx, table in enumerate(qtables):
try:
if len(table) != 64:
msg = "Invalid quantization table"
raise TypeError(msg)
table = array.array("H", table)
except TypeError as e:
msg = "Invalid quantization table"
raise ValueError(msg) from e
else:
qtables[idx] = list(table)
return qtables
if qtables == "keep":
if im.format != "JPEG":
msg = "Cannot use 'keep' when original image is not a JPEG"
raise ValueError(msg)
qtables = getattr(im, "quantization", None)
qtables = validate_qtables(qtables)
extra = info.get("extra", b"")
MAX_BYTES_IN_MARKER = 65533
icc_profile = info.get("icc_profile")
if icc_profile:
ICC_OVERHEAD_LEN = 14
MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN
markers = []
while icc_profile:
markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER])
icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:]
i = 1
for marker in markers:
size = o16(2 + ICC_OVERHEAD_LEN + len(marker))
extra += (
b"\xFF\xE2"
+ size
+ b"ICC_PROFILE\0"
+ o8(i)
+ o8(len(markers))
+ marker
)
i += 1
comment = info.get("comment", im.info.get("comment"))
# "progressive" is the official name, but older documentation
# says "progression"
# FIXME: issue a warning if the wrong form is used (post-1.1.7)
progressive = info.get("progressive", False) or info.get("progression", False)
optimize = info.get("optimize", False)
exif = info.get("exif", b"")
if isinstance(exif, Image.Exif):
exif = exif.tobytes()
if len(exif) > MAX_BYTES_IN_MARKER:
msg = "EXIF data is too long"
raise ValueError(msg)
# get keyword arguments
im.encoderconfig = (
quality,
progressive,
info.get("smooth", 0),
optimize,
info.get("keep_rgb", False),
info.get("streamtype", 0),
dpi[0],
dpi[1],
subsampling,
info.get("restart_marker_blocks", 0),
info.get("restart_marker_rows", 0),
qtables,
comment,
extra,
exif,
)
# if we optimize, libjpeg needs a buffer big enough to hold the whole image
# in a shot. Guessing on the size, at im.size bytes. (raw pixel size is
# channels*size, this is a value that's been used in a django patch.
# https://github.com/matthewwithanm/django-imagekit/issues/50
bufsize = 0
if optimize or progressive:
# CMYK can be bigger
if im.mode == "CMYK":
bufsize = 4 * im.size[0] * im.size[1]
# keep sets quality to -1, but the actual value may be high.
elif quality >= 95 or quality == -1:
bufsize = 2 * im.size[0] * im.size[1]
else:
bufsize = im.size[0] * im.size[1]
if exif:
bufsize += len(exif) + 5
if extra:
bufsize += len(extra) + 1
else:
# The EXIF info needs to be written as one block, + APP1, + one spare byte.
# Ensure that our buffer is big enough. Same with the icc_profile block.
bufsize = max(bufsize, len(exif) + 5, len(extra) + 1)
ImageFile._save(im, fp, [("jpeg", (0, 0) + im.size, 0, rawmode)], bufsize)
def _save_cjpeg(im, fp, filename):
# ALTERNATIVE: handle JPEGs via the IJG command line utilities.
tempfile = im._dump()
subprocess.check_call(["cjpeg", "-outfile", filename, tempfile])
try:
os.unlink(tempfile)
except OSError:
pass
##
# Factory for making JPEG and MPO instances
def jpeg_factory(fp=None, filename=None):
im = JpegImageFile(fp, filename)
try:
mpheader = im._getmp()
if mpheader[45057] > 1:
# It's actually an MPO
from .MpoImagePlugin import MpoImageFile
# Don't reload everything, just convert it.
im = MpoImageFile.adopt(im, mpheader)
except (TypeError, IndexError):
# It is really a JPEG
pass
except SyntaxError:
warnings.warn(
"Image appears to be a malformed MPO file, it will be "
"interpreted as a base JPEG file"
)
return im
# ---------------------------------------------------------------------
# Registry stuff
Image.register_open(JpegImageFile.format, jpeg_factory, _accept)
Image.register_save(JpegImageFile.format, _save)
Image.register_extensions(JpegImageFile.format, [".jfif", ".jpe", ".jpg", ".jpeg"])
Image.register_mime(JpegImageFile.format, "image/jpeg")

@ -1,241 +0,0 @@
"""
JPEG quality settings equivalent to the Photoshop settings.
Can be used when saving JPEG files.
The following presets are available by default:
``web_low``, ``web_medium``, ``web_high``, ``web_very_high``, ``web_maximum``,
``low``, ``medium``, ``high``, ``maximum``.
More presets can be added to the :py:data:`presets` dict if needed.
To apply the preset, specify::
quality="preset_name"
To apply only the quantization table::
qtables="preset_name"
To apply only the subsampling setting::
subsampling="preset_name"
Example::
im.save("image_name.jpg", quality="web_high")
Subsampling
-----------
Subsampling is the practice of encoding images by implementing less resolution
for chroma information than for luma information.
(ref.: https://en.wikipedia.org/wiki/Chroma_subsampling)
Possible subsampling values are 0, 1 and 2 that correspond to 4:4:4, 4:2:2 and
4:2:0.
You can get the subsampling of a JPEG with the
:func:`.JpegImagePlugin.get_sampling` function.
In JPEG compressed data a JPEG marker is used instead of an EXIF tag.
(ref.: https://exiv2.org/tags.html)
Quantization tables
-------------------
They are values use by the DCT (Discrete cosine transform) to remove
*unnecessary* information from the image (the lossy part of the compression).
(ref.: https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices,
https://en.wikipedia.org/wiki/JPEG#Quantization)
You can get the quantization tables of a JPEG with::
im.quantization
This will return a dict with a number of lists. You can pass this dict
directly as the qtables argument when saving a JPEG.
The quantization table format in presets is a list with sublists. These formats
are interchangeable.
Libjpeg ref.:
https://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html
"""
from __future__ import annotations
# fmt: off
presets = {
'web_low': {'subsampling': 2, # "4:2:0"
'quantization': [
[20, 16, 25, 39, 50, 46, 62, 68,
16, 18, 23, 38, 38, 53, 65, 68,
25, 23, 31, 38, 53, 65, 68, 68,
39, 38, 38, 53, 65, 68, 68, 68,
50, 38, 53, 65, 68, 68, 68, 68,
46, 53, 65, 68, 68, 68, 68, 68,
62, 65, 68, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 68, 68, 68],
[21, 25, 32, 38, 54, 68, 68, 68,
25, 28, 24, 38, 54, 68, 68, 68,
32, 24, 32, 43, 66, 68, 68, 68,
38, 38, 43, 53, 68, 68, 68, 68,
54, 54, 66, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 68, 68, 68]
]},
'web_medium': {'subsampling': 2, # "4:2:0"
'quantization': [
[16, 11, 11, 16, 23, 27, 31, 30,
11, 12, 12, 15, 20, 23, 23, 30,
11, 12, 13, 16, 23, 26, 35, 47,
16, 15, 16, 23, 26, 37, 47, 64,
23, 20, 23, 26, 39, 51, 64, 64,
27, 23, 26, 37, 51, 64, 64, 64,
31, 23, 35, 47, 64, 64, 64, 64,
30, 30, 47, 64, 64, 64, 64, 64],
[17, 15, 17, 21, 20, 26, 38, 48,
15, 19, 18, 17, 20, 26, 35, 43,
17, 18, 20, 22, 26, 30, 46, 53,
21, 17, 22, 28, 30, 39, 53, 64,
20, 20, 26, 30, 39, 48, 64, 64,
26, 26, 30, 39, 48, 63, 64, 64,
38, 35, 46, 53, 64, 64, 64, 64,
48, 43, 53, 64, 64, 64, 64, 64]
]},
'web_high': {'subsampling': 0, # "4:4:4"
'quantization': [
[6, 4, 4, 6, 9, 11, 12, 16,
4, 5, 5, 6, 8, 10, 12, 12,
4, 5, 5, 6, 10, 12, 14, 19,
6, 6, 6, 11, 12, 15, 19, 28,
9, 8, 10, 12, 16, 20, 27, 31,
11, 10, 12, 15, 20, 27, 31, 31,
12, 12, 14, 19, 27, 31, 31, 31,
16, 12, 19, 28, 31, 31, 31, 31],
[7, 7, 13, 24, 26, 31, 31, 31,
7, 12, 16, 21, 31, 31, 31, 31,
13, 16, 17, 31, 31, 31, 31, 31,
24, 21, 31, 31, 31, 31, 31, 31,
26, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31]
]},
'web_very_high': {'subsampling': 0, # "4:4:4"
'quantization': [
[2, 2, 2, 2, 3, 4, 5, 6,
2, 2, 2, 2, 3, 4, 5, 6,
2, 2, 2, 2, 4, 5, 7, 9,
2, 2, 2, 4, 5, 7, 9, 12,
3, 3, 4, 5, 8, 10, 12, 12,
4, 4, 5, 7, 10, 12, 12, 12,
5, 5, 7, 9, 12, 12, 12, 12,
6, 6, 9, 12, 12, 12, 12, 12],
[3, 3, 5, 9, 13, 15, 15, 15,
3, 4, 6, 11, 14, 12, 12, 12,
5, 6, 9, 14, 12, 12, 12, 12,
9, 11, 14, 12, 12, 12, 12, 12,
13, 14, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12]
]},
'web_maximum': {'subsampling': 0, # "4:4:4"
'quantization': [
[1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2,
1, 1, 1, 1, 1, 1, 2, 2,
1, 1, 1, 1, 1, 2, 2, 3,
1, 1, 1, 1, 2, 2, 3, 3,
1, 1, 1, 2, 2, 3, 3, 3,
1, 1, 2, 2, 3, 3, 3, 3],
[1, 1, 1, 2, 2, 3, 3, 3,
1, 1, 1, 2, 3, 3, 3, 3,
1, 1, 1, 3, 3, 3, 3, 3,
2, 2, 3, 3, 3, 3, 3, 3,
2, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3]
]},
'low': {'subsampling': 2, # "4:2:0"
'quantization': [
[18, 14, 14, 21, 30, 35, 34, 17,
14, 16, 16, 19, 26, 23, 12, 12,
14, 16, 17, 21, 23, 12, 12, 12,
21, 19, 21, 23, 12, 12, 12, 12,
30, 26, 23, 12, 12, 12, 12, 12,
35, 23, 12, 12, 12, 12, 12, 12,
34, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12],
[20, 19, 22, 27, 20, 20, 17, 17,
19, 25, 23, 14, 14, 12, 12, 12,
22, 23, 14, 14, 12, 12, 12, 12,
27, 14, 14, 12, 12, 12, 12, 12,
20, 14, 12, 12, 12, 12, 12, 12,
20, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12]
]},
'medium': {'subsampling': 2, # "4:2:0"
'quantization': [
[12, 8, 8, 12, 17, 21, 24, 17,
8, 9, 9, 11, 15, 19, 12, 12,
8, 9, 10, 12, 19, 12, 12, 12,
12, 11, 12, 21, 12, 12, 12, 12,
17, 15, 19, 12, 12, 12, 12, 12,
21, 19, 12, 12, 12, 12, 12, 12,
24, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12],
[13, 11, 13, 16, 20, 20, 17, 17,
11, 14, 14, 14, 14, 12, 12, 12,
13, 14, 14, 14, 12, 12, 12, 12,
16, 14, 14, 12, 12, 12, 12, 12,
20, 14, 12, 12, 12, 12, 12, 12,
20, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12]
]},
'high': {'subsampling': 0, # "4:4:4"
'quantization': [
[6, 4, 4, 6, 9, 11, 12, 16,
4, 5, 5, 6, 8, 10, 12, 12,
4, 5, 5, 6, 10, 12, 12, 12,
6, 6, 6, 11, 12, 12, 12, 12,
9, 8, 10, 12, 12, 12, 12, 12,
11, 10, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12,
16, 12, 12, 12, 12, 12, 12, 12],
[7, 7, 13, 24, 20, 20, 17, 17,
7, 12, 16, 14, 14, 12, 12, 12,
13, 16, 14, 14, 12, 12, 12, 12,
24, 14, 14, 12, 12, 12, 12, 12,
20, 14, 12, 12, 12, 12, 12, 12,
20, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12,
17, 12, 12, 12, 12, 12, 12, 12]
]},
'maximum': {'subsampling': 0, # "4:4:4"
'quantization': [
[2, 2, 2, 2, 3, 4, 5, 6,
2, 2, 2, 2, 3, 4, 5, 6,
2, 2, 2, 2, 4, 5, 7, 9,
2, 2, 2, 4, 5, 7, 9, 12,
3, 3, 4, 5, 8, 10, 12, 12,
4, 4, 5, 7, 10, 12, 12, 12,
5, 5, 7, 9, 12, 12, 12, 12,
6, 6, 9, 12, 12, 12, 12, 12],
[3, 3, 5, 9, 13, 15, 15, 15,
3, 4, 6, 10, 14, 12, 12, 12,
5, 6, 9, 14, 12, 12, 12, 12,
9, 10, 14, 12, 12, 12, 12, 12,
13, 14, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12,
15, 12, 12, 12, 12, 12, 12, 12]
]},
}
# fmt: on

@ -1,76 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# Basic McIdas support for PIL
#
# History:
# 1997-05-05 fl Created (8-bit images only)
# 2009-03-08 fl Added 16/32-bit support.
#
# Thanks to Richard Jones and Craig Swank for specs and samples.
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import struct
from . import Image, ImageFile
def _accept(s):
return s[:8] == b"\x00\x00\x00\x00\x00\x00\x00\x04"
##
# Image plugin for McIdas area images.
class McIdasImageFile(ImageFile.ImageFile):
format = "MCIDAS"
format_description = "McIdas area file"
def _open(self):
# parse area file directory
s = self.fp.read(256)
if not _accept(s) or len(s) != 256:
msg = "not an McIdas area file"
raise SyntaxError(msg)
self.area_descriptor_raw = s
self.area_descriptor = w = [0] + list(struct.unpack("!64i", s))
# get mode
if w[11] == 1:
mode = rawmode = "L"
elif w[11] == 2:
# FIXME: add memory map support
mode = "I"
rawmode = "I;16B"
elif w[11] == 4:
# FIXME: add memory map support
mode = "I"
rawmode = "I;32B"
else:
msg = "unsupported McIdas format"
raise SyntaxError(msg)
self._mode = mode
self._size = w[10], w[9]
offset = w[34] + w[15]
stride = w[15] + w[10] * w[11] * w[14]
self.tile = [("raw", (0, 0) + self.size, offset, (rawmode, stride, 1))]
# --------------------------------------------------------------------
# registry
Image.register_open(McIdasImageFile.format, McIdasImageFile, _accept)
# no default extension

@ -1,107 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# Microsoft Image Composer support for PIL
#
# Notes:
# uses TiffImagePlugin.py to read the actual image streams
#
# History:
# 97-01-20 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import olefile
from . import Image, TiffImagePlugin
#
# --------------------------------------------------------------------
def _accept(prefix):
return prefix[:8] == olefile.MAGIC
##
# Image plugin for Microsoft's Image Composer file format.
class MicImageFile(TiffImagePlugin.TiffImageFile):
format = "MIC"
format_description = "Microsoft Image Composer"
_close_exclusive_fp_after_loading = False
def _open(self):
# read the OLE directory and see if this is a likely
# to be a Microsoft Image Composer file
try:
self.ole = olefile.OleFileIO(self.fp)
except OSError as e:
msg = "not an MIC file; invalid OLE file"
raise SyntaxError(msg) from e
# find ACI subfiles with Image members (maybe not the
# best way to identify MIC files, but what the... ;-)
self.images = [
path
for path in self.ole.listdir()
if path[1:] and path[0][-4:] == ".ACI" and path[1] == "Image"
]
# if we didn't find any images, this is probably not
# an MIC file.
if not self.images:
msg = "not an MIC file; no image entries"
raise SyntaxError(msg)
self.frame = None
self._n_frames = len(self.images)
self.is_animated = self._n_frames > 1
self.__fp = self.fp
self.seek(0)
def seek(self, frame):
if not self._seek_check(frame):
return
try:
filename = self.images[frame]
except IndexError as e:
msg = "no such frame"
raise EOFError(msg) from e
self.fp = self.ole.openstream(filename)
TiffImagePlugin.TiffImageFile._open(self)
self.frame = frame
def tell(self):
return self.frame
def close(self):
self.__fp.close()
self.ole.close()
super().close()
def __exit__(self, *args):
self.__fp.close()
self.ole.close()
super().__exit__()
#
# --------------------------------------------------------------------
Image.register_open(MicImageFile.format, MicImageFile, _accept)
Image.register_extension(MicImageFile.format, ".mic")

@ -1,82 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# MPEG file handling
#
# History:
# 95-09-09 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1995.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
from ._binary import i8
#
# Bitstream parser
class BitStream:
def __init__(self, fp):
self.fp = fp
self.bits = 0
self.bitbuffer = 0
def next(self):
return i8(self.fp.read(1))
def peek(self, bits):
while self.bits < bits:
c = self.next()
if c < 0:
self.bits = 0
continue
self.bitbuffer = (self.bitbuffer << 8) + c
self.bits += 8
return self.bitbuffer >> (self.bits - bits) & (1 << bits) - 1
def skip(self, bits):
while self.bits < bits:
self.bitbuffer = (self.bitbuffer << 8) + i8(self.fp.read(1))
self.bits += 8
self.bits = self.bits - bits
def read(self, bits):
v = self.peek(bits)
self.bits = self.bits - bits
return v
##
# Image plugin for MPEG streams. This plugin can identify a stream,
# but it cannot read it.
class MpegImageFile(ImageFile.ImageFile):
format = "MPEG"
format_description = "MPEG"
def _open(self):
s = BitStream(self.fp)
if s.read(32) != 0x1B3:
msg = "not an MPEG file"
raise SyntaxError(msg)
self._mode = "RGB"
self._size = s.read(12), s.read(12)
# --------------------------------------------------------------------
# Registry stuff
Image.register_open(MpegImageFile.format, MpegImageFile)
Image.register_extensions(MpegImageFile.format, [".mpg", ".mpeg"])
Image.register_mime(MpegImageFile.format, "video/mpeg")

@ -1,195 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# MPO file handling
#
# See "Multi-Picture Format" (CIPA DC-007-Translation 2009, Standard of the
# Camera & Imaging Products Association)
#
# The multi-picture object combines multiple JPEG images (with a modified EXIF
# data format) into a single file. While it can theoretically be used much like
# a GIF animation, it is commonly used to represent 3D photographs and is (as
# of this writing) the most commonly used format by 3D cameras.
#
# History:
# 2014-03-13 Feneric Created
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import itertools
import os
import struct
from . import (
ExifTags,
Image,
ImageFile,
ImageSequence,
JpegImagePlugin,
TiffImagePlugin,
)
from ._binary import i16be as i16
from ._binary import o32le
def _save(im, fp, filename):
JpegImagePlugin._save(im, fp, filename)
def _save_all(im, fp, filename):
append_images = im.encoderinfo.get("append_images", [])
if not append_images:
try:
animated = im.is_animated
except AttributeError:
animated = False
if not animated:
_save(im, fp, filename)
return
mpf_offset = 28
offsets = []
for imSequence in itertools.chain([im], append_images):
for im_frame in ImageSequence.Iterator(imSequence):
if not offsets:
# APP2 marker
im_frame.encoderinfo["extra"] = (
b"\xFF\xE2" + struct.pack(">H", 6 + 82) + b"MPF\0" + b" " * 82
)
exif = im_frame.encoderinfo.get("exif")
if isinstance(exif, Image.Exif):
exif = exif.tobytes()
im_frame.encoderinfo["exif"] = exif
if exif:
mpf_offset += 4 + len(exif)
JpegImagePlugin._save(im_frame, fp, filename)
offsets.append(fp.tell())
else:
im_frame.save(fp, "JPEG")
offsets.append(fp.tell() - offsets[-1])
ifd = TiffImagePlugin.ImageFileDirectory_v2()
ifd[0xB000] = b"0100"
ifd[0xB001] = len(offsets)
mpentries = b""
data_offset = 0
for i, size in enumerate(offsets):
if i == 0:
mptype = 0x030000 # Baseline MP Primary Image
else:
mptype = 0x000000 # Undefined
mpentries += struct.pack("<LLLHH", mptype, size, data_offset, 0, 0)
if i == 0:
data_offset -= mpf_offset
data_offset += size
ifd[0xB002] = mpentries
fp.seek(mpf_offset)
fp.write(b"II\x2A\x00" + o32le(8) + ifd.tobytes(8))
fp.seek(0, os.SEEK_END)
##
# Image plugin for MPO images.
class MpoImageFile(JpegImagePlugin.JpegImageFile):
format = "MPO"
format_description = "MPO (CIPA DC-007)"
_close_exclusive_fp_after_loading = False
def _open(self):
self.fp.seek(0) # prep the fp in order to pass the JPEG test
JpegImagePlugin.JpegImageFile._open(self)
self._after_jpeg_open()
def _after_jpeg_open(self, mpheader=None):
self._initial_size = self.size
self.mpinfo = mpheader if mpheader is not None else self._getmp()
self.n_frames = self.mpinfo[0xB001]
self.__mpoffsets = [
mpent["DataOffset"] + self.info["mpoffset"] for mpent in self.mpinfo[0xB002]
]
self.__mpoffsets[0] = 0
# Note that the following assertion will only be invalid if something
# gets broken within JpegImagePlugin.
assert self.n_frames == len(self.__mpoffsets)
del self.info["mpoffset"] # no longer needed
self.is_animated = self.n_frames > 1
self._fp = self.fp # FIXME: hack
self._fp.seek(self.__mpoffsets[0]) # get ready to read first frame
self.__frame = 0
self.offset = 0
# for now we can only handle reading and individual frame extraction
self.readonly = 1
def load_seek(self, pos):
self._fp.seek(pos)
def seek(self, frame):
if not self._seek_check(frame):
return
self.fp = self._fp
self.offset = self.__mpoffsets[frame]
self.fp.seek(self.offset + 2) # skip SOI marker
segment = self.fp.read(2)
if not segment:
msg = "No data found for frame"
raise ValueError(msg)
self._size = self._initial_size
if i16(segment) == 0xFFE1: # APP1
n = i16(self.fp.read(2)) - 2
self.info["exif"] = ImageFile._safe_read(self.fp, n)
self._reload_exif()
mptype = self.mpinfo[0xB002][frame]["Attribute"]["MPType"]
if mptype.startswith("Large Thumbnail"):
exif = self.getexif().get_ifd(ExifTags.IFD.Exif)
if 40962 in exif and 40963 in exif:
self._size = (exif[40962], exif[40963])
elif "exif" in self.info:
del self.info["exif"]
self._reload_exif()
self.tile = [("jpeg", (0, 0) + self.size, self.offset, (self.mode, ""))]
self.__frame = frame
def tell(self):
return self.__frame
@staticmethod
def adopt(jpeg_instance, mpheader=None):
"""
Transform the instance of JpegImageFile into
an instance of MpoImageFile.
After the call, the JpegImageFile is extended
to be an MpoImageFile.
This is essentially useful when opening a JPEG
file that reveals itself as an MPO, to avoid
double call to _open.
"""
jpeg_instance.__class__ = MpoImageFile
jpeg_instance._after_jpeg_open(mpheader)
return jpeg_instance
# ---------------------------------------------------------------------
# Registry stuff
# Note that since MPO shares a factory with JPEG, we do not need to do a
# separate registration for it here.
# Image.register_open(MpoImageFile.format,
# JpegImagePlugin.jpeg_factory, _accept)
Image.register_save(MpoImageFile.format, _save)
Image.register_save_all(MpoImageFile.format, _save_all)
Image.register_extension(MpoImageFile.format, ".mpo")
Image.register_mime(MpoImageFile.format, "image/mpo")

@ -1,195 +0,0 @@
#
# The Python Imaging Library.
#
# MSP file handling
#
# This is the format used by the Paint program in Windows 1 and 2.
#
# History:
# 95-09-05 fl Created
# 97-01-03 fl Read/write MSP images
# 17-02-21 es Fixed RLE interpretation
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1995-97.
# Copyright (c) Eric Soroos 2017.
#
# See the README file for information on usage and redistribution.
#
# More info on this format: https://archive.org/details/gg243631
# Page 313:
# Figure 205. Windows Paint Version 1: "DanM" Format
# Figure 206. Windows Paint Version 2: "LinS" Format. Used in Windows V2.03
#
# See also: https://www.fileformat.info/format/mspaint/egff.htm
from __future__ import annotations
import io
import struct
from . import Image, ImageFile
from ._binary import i16le as i16
from ._binary import o16le as o16
#
# read MSP files
def _accept(prefix):
return prefix[:4] in [b"DanM", b"LinS"]
##
# Image plugin for Windows MSP images. This plugin supports both
# uncompressed (Windows 1.0).
class MspImageFile(ImageFile.ImageFile):
format = "MSP"
format_description = "Windows Paint"
def _open(self):
# Header
s = self.fp.read(32)
if not _accept(s):
msg = "not an MSP file"
raise SyntaxError(msg)
# Header checksum
checksum = 0
for i in range(0, 32, 2):
checksum = checksum ^ i16(s, i)
if checksum != 0:
msg = "bad MSP checksum"
raise SyntaxError(msg)
self._mode = "1"
self._size = i16(s, 4), i16(s, 6)
if s[:4] == b"DanM":
self.tile = [("raw", (0, 0) + self.size, 32, ("1", 0, 1))]
else:
self.tile = [("MSP", (0, 0) + self.size, 32, None)]
class MspDecoder(ImageFile.PyDecoder):
# The algo for the MSP decoder is from
# https://www.fileformat.info/format/mspaint/egff.htm
# cc-by-attribution -- That page references is taken from the
# Encyclopedia of Graphics File Formats and is licensed by
# O'Reilly under the Creative Common/Attribution license
#
# For RLE encoded files, the 32byte header is followed by a scan
# line map, encoded as one 16bit word of encoded byte length per
# line.
#
# NOTE: the encoded length of the line can be 0. This was not
# handled in the previous version of this encoder, and there's no
# mention of how to handle it in the documentation. From the few
# examples I've seen, I've assumed that it is a fill of the
# background color, in this case, white.
#
#
# Pseudocode of the decoder:
# Read a BYTE value as the RunType
# If the RunType value is zero
# Read next byte as the RunCount
# Read the next byte as the RunValue
# Write the RunValue byte RunCount times
# If the RunType value is non-zero
# Use this value as the RunCount
# Read and write the next RunCount bytes literally
#
# e.g.:
# 0x00 03 ff 05 00 01 02 03 04
# would yield the bytes:
# 0xff ff ff 00 01 02 03 04
#
# which are then interpreted as a bit packed mode '1' image
_pulls_fd = True
def decode(self, buffer):
img = io.BytesIO()
blank_line = bytearray((0xFF,) * ((self.state.xsize + 7) // 8))
try:
self.fd.seek(32)
rowmap = struct.unpack_from(
f"<{self.state.ysize}H", self.fd.read(self.state.ysize * 2)
)
except struct.error as e:
msg = "Truncated MSP file in row map"
raise OSError(msg) from e
for x, rowlen in enumerate(rowmap):
try:
if rowlen == 0:
img.write(blank_line)
continue
row = self.fd.read(rowlen)
if len(row) != rowlen:
msg = f"Truncated MSP file, expected {rowlen} bytes on row {x}"
raise OSError(msg)
idx = 0
while idx < rowlen:
runtype = row[idx]
idx += 1
if runtype == 0:
(runcount, runval) = struct.unpack_from("Bc", row, idx)
img.write(runval * runcount)
idx += 2
else:
runcount = runtype
img.write(row[idx : idx + runcount])
idx += runcount
except struct.error as e:
msg = f"Corrupted MSP file in row {x}"
raise OSError(msg) from e
self.set_as_raw(img.getvalue(), ("1", 0, 1))
return -1, 0
Image.register_decoder("MSP", MspDecoder)
#
# write MSP files (uncompressed only)
def _save(im, fp, filename):
if im.mode != "1":
msg = f"cannot write mode {im.mode} as MSP"
raise OSError(msg)
# create MSP header
header = [0] * 16
header[0], header[1] = i16(b"Da"), i16(b"nM") # version 1
header[2], header[3] = im.size
header[4], header[5] = 1, 1
header[6], header[7] = 1, 1
header[8], header[9] = im.size
checksum = 0
for h in header:
checksum = checksum ^ h
header[12] = checksum # FIXME: is this the right field?
# header
for h in header:
fp.write(o16(h))
# image body
ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 32, ("1", 0, 1))])
#
# registry
Image.register_open(MspImageFile.format, MspImageFile, _accept)
Image.register_save(MspImageFile.format, _save)
Image.register_extension(MspImageFile.format, ".msp")

@ -1,230 +0,0 @@
#
# The Python Imaging Library
# $Id$
#
# Simple PostScript graphics interface
#
# History:
# 1996-04-20 fl Created
# 1999-01-10 fl Added gsave/grestore to image method
# 2005-05-04 fl Fixed floating point issue in image (from Eric Etheridge)
#
# Copyright (c) 1997-2005 by Secret Labs AB. All rights reserved.
# Copyright (c) 1996 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import sys
from . import EpsImagePlugin
##
# Simple PostScript graphics interface.
class PSDraw:
"""
Sets up printing to the given file. If ``fp`` is omitted,
``sys.stdout.buffer`` or ``sys.stdout`` is assumed.
"""
def __init__(self, fp=None):
if not fp:
try:
fp = sys.stdout.buffer
except AttributeError:
fp = sys.stdout
self.fp = fp
def begin_document(self, id=None):
"""Set up printing of a document. (Write PostScript DSC header.)"""
# FIXME: incomplete
self.fp.write(
b"%!PS-Adobe-3.0\n"
b"save\n"
b"/showpage { } def\n"
b"%%EndComments\n"
b"%%BeginDocument\n"
)
# self.fp.write(ERROR_PS) # debugging!
self.fp.write(EDROFF_PS)
self.fp.write(VDI_PS)
self.fp.write(b"%%EndProlog\n")
self.isofont = {}
def end_document(self):
"""Ends printing. (Write PostScript DSC footer.)"""
self.fp.write(b"%%EndDocument\nrestore showpage\n%%End\n")
if hasattr(self.fp, "flush"):
self.fp.flush()
def setfont(self, font, size):
"""
Selects which font to use.
:param font: A PostScript font name
:param size: Size in points.
"""
font = bytes(font, "UTF-8")
if font not in self.isofont:
# reencode font
self.fp.write(b"/PSDraw-%s ISOLatin1Encoding /%s E\n" % (font, font))
self.isofont[font] = 1
# rough
self.fp.write(b"/F0 %d /PSDraw-%s F\n" % (size, font))
def line(self, xy0, xy1):
"""
Draws a line between the two points. Coordinates are given in
PostScript point coordinates (72 points per inch, (0, 0) is the lower
left corner of the page).
"""
self.fp.write(b"%d %d %d %d Vl\n" % (*xy0, *xy1))
def rectangle(self, box):
"""
Draws a rectangle.
:param box: A tuple of four integers, specifying left, bottom, width and
height.
"""
self.fp.write(b"%d %d M 0 %d %d Vr\n" % box)
def text(self, xy, text):
"""
Draws text at the given position. You must use
:py:meth:`~PIL.PSDraw.PSDraw.setfont` before calling this method.
"""
text = bytes(text, "UTF-8")
text = b"\\(".join(text.split(b"("))
text = b"\\)".join(text.split(b")"))
xy += (text,)
self.fp.write(b"%d %d M (%s) S\n" % xy)
def image(self, box, im, dpi=None):
"""Draw a PIL image, centered in the given box."""
# default resolution depends on mode
if not dpi:
if im.mode == "1":
dpi = 200 # fax
else:
dpi = 100 # grayscale
# image size (on paper)
x = im.size[0] * 72 / dpi
y = im.size[1] * 72 / dpi
# max allowed size
xmax = float(box[2] - box[0])
ymax = float(box[3] - box[1])
if x > xmax:
y = y * xmax / x
x = xmax
if y > ymax:
x = x * ymax / y
y = ymax
dx = (xmax - x) / 2 + box[0]
dy = (ymax - y) / 2 + box[1]
self.fp.write(b"gsave\n%f %f translate\n" % (dx, dy))
if (x, y) != im.size:
# EpsImagePlugin._save prints the image at (0,0,xsize,ysize)
sx = x / im.size[0]
sy = y / im.size[1]
self.fp.write(b"%f %f scale\n" % (sx, sy))
EpsImagePlugin._save(im, self.fp, None, 0)
self.fp.write(b"\ngrestore\n")
# --------------------------------------------------------------------
# PostScript driver
#
# EDROFF.PS -- PostScript driver for Edroff 2
#
# History:
# 94-01-25 fl: created (edroff 2.04)
#
# Copyright (c) Fredrik Lundh 1994.
#
EDROFF_PS = b"""\
/S { show } bind def
/P { moveto show } bind def
/M { moveto } bind def
/X { 0 rmoveto } bind def
/Y { 0 exch rmoveto } bind def
/E { findfont
dup maxlength dict begin
{
1 index /FID ne { def } { pop pop } ifelse
} forall
/Encoding exch def
dup /FontName exch def
currentdict end definefont pop
} bind def
/F { findfont exch scalefont dup setfont
[ exch /setfont cvx ] cvx bind def
} bind def
"""
#
# VDI.PS -- PostScript driver for VDI meta commands
#
# History:
# 94-01-25 fl: created (edroff 2.04)
#
# Copyright (c) Fredrik Lundh 1994.
#
VDI_PS = b"""\
/Vm { moveto } bind def
/Va { newpath arcn stroke } bind def
/Vl { moveto lineto stroke } bind def
/Vc { newpath 0 360 arc closepath } bind def
/Vr { exch dup 0 rlineto
exch dup 0 exch rlineto
exch neg 0 rlineto
0 exch neg rlineto
setgray fill } bind def
/Tm matrix def
/Ve { Tm currentmatrix pop
translate scale newpath 0 0 .5 0 360 arc closepath
Tm setmatrix
} bind def
/Vf { currentgray exch setgray fill setgray } bind def
"""
#
# ERROR.PS -- Error handler
#
# History:
# 89-11-21 fl: created (pslist 1.10)
#
ERROR_PS = b"""\
/landscape false def
/errorBUF 200 string def
/errorNL { currentpoint 10 sub exch pop 72 exch moveto } def
errordict begin /handleerror {
initmatrix /Courier findfont 10 scalefont setfont
newpath 72 720 moveto $error begin /newerror false def
(PostScript Error) show errorNL errorNL
(Error: ) show
/errorname load errorBUF cvs show errorNL errorNL
(Command: ) show
/command load dup type /stringtype ne { errorBUF cvs } if show
errorNL errorNL
(VMstatus: ) show
vmstatus errorBUF cvs show ( bytes available, ) show
errorBUF cvs show ( bytes used at level ) show
errorBUF cvs show errorNL errorNL
(Operand stargck: ) show errorNL /ostargck load {
dup type /stringtype ne { errorBUF cvs } if 72 0 rmoveto show errorNL
} forall errorNL
(Execution stargck: ) show errorNL /estargck load {
dup type /stringtype ne { errorBUF cvs } if 72 0 rmoveto show errorNL
} forall
end showpage
} def end
"""

@ -1,52 +0,0 @@
#
# Python Imaging Library
# $Id$
#
# stuff to read simple, teragon-style palette files
#
# History:
# 97-08-23 fl Created
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from ._binary import o8
class PaletteFile:
"""File handler for Teragon-style palette files."""
rawmode = "RGB"
def __init__(self, fp):
self.palette = [(i, i, i) for i in range(256)]
while True:
s = fp.readline()
if not s:
break
if s[:1] == b"#":
continue
if len(s) > 100:
msg = "bad palette file"
raise SyntaxError(msg)
v = [int(x) for x in s.split()]
try:
[i, r, g, b] = v
except ValueError:
[i, r] = v
g = b = r
if 0 <= i <= 255:
self.palette[i] = o8(r) + o8(g) + o8(b)
self.palette = b"".join(self.palette)
def getpalette(self):
return self.palette, self.rawmode

@ -1,226 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
##
# Image plugin for Palm pixmap images (output only).
##
from __future__ import annotations
from . import Image, ImageFile
from ._binary import o8
from ._binary import o16be as o16b
# fmt: off
_Palm8BitColormapValues = (
(255, 255, 255), (255, 204, 255), (255, 153, 255), (255, 102, 255),
(255, 51, 255), (255, 0, 255), (255, 255, 204), (255, 204, 204),
(255, 153, 204), (255, 102, 204), (255, 51, 204), (255, 0, 204),
(255, 255, 153), (255, 204, 153), (255, 153, 153), (255, 102, 153),
(255, 51, 153), (255, 0, 153), (204, 255, 255), (204, 204, 255),
(204, 153, 255), (204, 102, 255), (204, 51, 255), (204, 0, 255),
(204, 255, 204), (204, 204, 204), (204, 153, 204), (204, 102, 204),
(204, 51, 204), (204, 0, 204), (204, 255, 153), (204, 204, 153),
(204, 153, 153), (204, 102, 153), (204, 51, 153), (204, 0, 153),
(153, 255, 255), (153, 204, 255), (153, 153, 255), (153, 102, 255),
(153, 51, 255), (153, 0, 255), (153, 255, 204), (153, 204, 204),
(153, 153, 204), (153, 102, 204), (153, 51, 204), (153, 0, 204),
(153, 255, 153), (153, 204, 153), (153, 153, 153), (153, 102, 153),
(153, 51, 153), (153, 0, 153), (102, 255, 255), (102, 204, 255),
(102, 153, 255), (102, 102, 255), (102, 51, 255), (102, 0, 255),
(102, 255, 204), (102, 204, 204), (102, 153, 204), (102, 102, 204),
(102, 51, 204), (102, 0, 204), (102, 255, 153), (102, 204, 153),
(102, 153, 153), (102, 102, 153), (102, 51, 153), (102, 0, 153),
(51, 255, 255), (51, 204, 255), (51, 153, 255), (51, 102, 255),
(51, 51, 255), (51, 0, 255), (51, 255, 204), (51, 204, 204),
(51, 153, 204), (51, 102, 204), (51, 51, 204), (51, 0, 204),
(51, 255, 153), (51, 204, 153), (51, 153, 153), (51, 102, 153),
(51, 51, 153), (51, 0, 153), (0, 255, 255), (0, 204, 255),
(0, 153, 255), (0, 102, 255), (0, 51, 255), (0, 0, 255),
(0, 255, 204), (0, 204, 204), (0, 153, 204), (0, 102, 204),
(0, 51, 204), (0, 0, 204), (0, 255, 153), (0, 204, 153),
(0, 153, 153), (0, 102, 153), (0, 51, 153), (0, 0, 153),
(255, 255, 102), (255, 204, 102), (255, 153, 102), (255, 102, 102),
(255, 51, 102), (255, 0, 102), (255, 255, 51), (255, 204, 51),
(255, 153, 51), (255, 102, 51), (255, 51, 51), (255, 0, 51),
(255, 255, 0), (255, 204, 0), (255, 153, 0), (255, 102, 0),
(255, 51, 0), (255, 0, 0), (204, 255, 102), (204, 204, 102),
(204, 153, 102), (204, 102, 102), (204, 51, 102), (204, 0, 102),
(204, 255, 51), (204, 204, 51), (204, 153, 51), (204, 102, 51),
(204, 51, 51), (204, 0, 51), (204, 255, 0), (204, 204, 0),
(204, 153, 0), (204, 102, 0), (204, 51, 0), (204, 0, 0),
(153, 255, 102), (153, 204, 102), (153, 153, 102), (153, 102, 102),
(153, 51, 102), (153, 0, 102), (153, 255, 51), (153, 204, 51),
(153, 153, 51), (153, 102, 51), (153, 51, 51), (153, 0, 51),
(153, 255, 0), (153, 204, 0), (153, 153, 0), (153, 102, 0),
(153, 51, 0), (153, 0, 0), (102, 255, 102), (102, 204, 102),
(102, 153, 102), (102, 102, 102), (102, 51, 102), (102, 0, 102),
(102, 255, 51), (102, 204, 51), (102, 153, 51), (102, 102, 51),
(102, 51, 51), (102, 0, 51), (102, 255, 0), (102, 204, 0),
(102, 153, 0), (102, 102, 0), (102, 51, 0), (102, 0, 0),
(51, 255, 102), (51, 204, 102), (51, 153, 102), (51, 102, 102),
(51, 51, 102), (51, 0, 102), (51, 255, 51), (51, 204, 51),
(51, 153, 51), (51, 102, 51), (51, 51, 51), (51, 0, 51),
(51, 255, 0), (51, 204, 0), (51, 153, 0), (51, 102, 0),
(51, 51, 0), (51, 0, 0), (0, 255, 102), (0, 204, 102),
(0, 153, 102), (0, 102, 102), (0, 51, 102), (0, 0, 102),
(0, 255, 51), (0, 204, 51), (0, 153, 51), (0, 102, 51),
(0, 51, 51), (0, 0, 51), (0, 255, 0), (0, 204, 0),
(0, 153, 0), (0, 102, 0), (0, 51, 0), (17, 17, 17),
(34, 34, 34), (68, 68, 68), (85, 85, 85), (119, 119, 119),
(136, 136, 136), (170, 170, 170), (187, 187, 187), (221, 221, 221),
(238, 238, 238), (192, 192, 192), (128, 0, 0), (128, 0, 128),
(0, 128, 0), (0, 128, 128), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0))
# fmt: on
# so build a prototype image to be used for palette resampling
def build_prototype_image():
image = Image.new("L", (1, len(_Palm8BitColormapValues)))
image.putdata(list(range(len(_Palm8BitColormapValues))))
palettedata = ()
for colormapValue in _Palm8BitColormapValues:
palettedata += colormapValue
palettedata += (0, 0, 0) * (256 - len(_Palm8BitColormapValues))
image.putpalette(palettedata)
return image
Palm8BitColormapImage = build_prototype_image()
# OK, we now have in Palm8BitColormapImage,
# a "P"-mode image with the right palette
#
# --------------------------------------------------------------------
_FLAGS = {"custom-colormap": 0x4000, "is-compressed": 0x8000, "has-transparent": 0x2000}
_COMPRESSION_TYPES = {"none": 0xFF, "rle": 0x01, "scanline": 0x00}
#
# --------------------------------------------------------------------
##
# (Internal) Image save plugin for the Palm format.
def _save(im, fp, filename):
if im.mode == "P":
# we assume this is a color Palm image with the standard colormap,
# unless the "info" dict has a "custom-colormap" field
rawmode = "P"
bpp = 8
version = 1
elif im.mode == "L":
if im.encoderinfo.get("bpp") in (1, 2, 4):
# this is 8-bit grayscale, so we shift it to get the high-order bits,
# and invert it because
# Palm does grayscale from white (0) to black (1)
bpp = im.encoderinfo["bpp"]
im = im.point(
lambda x, shift=8 - bpp, maxval=(1 << bpp) - 1: maxval - (x >> shift)
)
elif im.info.get("bpp") in (1, 2, 4):
# here we assume that even though the inherent mode is 8-bit grayscale,
# only the lower bpp bits are significant.
# We invert them to match the Palm.
bpp = im.info["bpp"]
im = im.point(lambda x, maxval=(1 << bpp) - 1: maxval - (x & maxval))
else:
msg = f"cannot write mode {im.mode} as Palm"
raise OSError(msg)
# we ignore the palette here
im.mode = "P"
rawmode = "P;" + str(bpp)
version = 1
elif im.mode == "1":
# monochrome -- write it inverted, as is the Palm standard
rawmode = "1;I"
bpp = 1
version = 0
else:
msg = f"cannot write mode {im.mode} as Palm"
raise OSError(msg)
#
# make sure image data is available
im.load()
# write header
cols = im.size[0]
rows = im.size[1]
rowbytes = int((cols + (16 // bpp - 1)) / (16 // bpp)) * 2
transparent_index = 0
compression_type = _COMPRESSION_TYPES["none"]
flags = 0
if im.mode == "P" and "custom-colormap" in im.info:
flags = flags & _FLAGS["custom-colormap"]
colormapsize = 4 * 256 + 2
colormapmode = im.palette.mode
colormap = im.getdata().getpalette()
else:
colormapsize = 0
if "offset" in im.info:
offset = (rowbytes * rows + 16 + 3 + colormapsize) // 4
else:
offset = 0
fp.write(o16b(cols) + o16b(rows) + o16b(rowbytes) + o16b(flags))
fp.write(o8(bpp))
fp.write(o8(version))
fp.write(o16b(offset))
fp.write(o8(transparent_index))
fp.write(o8(compression_type))
fp.write(o16b(0)) # reserved by Palm
# now write colormap if necessary
if colormapsize > 0:
fp.write(o16b(256))
for i in range(256):
fp.write(o8(i))
if colormapmode == "RGB":
fp.write(
o8(colormap[3 * i])
+ o8(colormap[3 * i + 1])
+ o8(colormap[3 * i + 2])
)
elif colormapmode == "RGBA":
fp.write(
o8(colormap[4 * i])
+ o8(colormap[4 * i + 1])
+ o8(colormap[4 * i + 2])
)
# now convert data to raw form
ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 0, (rawmode, rowbytes, 1))])
if hasattr(fp, "flush"):
fp.flush()
#
# --------------------------------------------------------------------
Image.register_save("Palm", _save)
Image.register_extension("Palm", ".palm")
Image.register_mime("Palm", "image/palm")

@ -1,62 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# PCD file handling
#
# History:
# 96-05-10 fl Created
# 96-05-27 fl Added draft mode (128x192, 256x384)
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
##
# Image plugin for PhotoCD images. This plugin only reads the 768x512
# image from the file; higher resolutions are encoded in a proprietary
# encoding.
class PcdImageFile(ImageFile.ImageFile):
format = "PCD"
format_description = "Kodak PhotoCD"
def _open(self):
# rough
self.fp.seek(2048)
s = self.fp.read(2048)
if s[:4] != b"PCD_":
msg = "not a PCD file"
raise SyntaxError(msg)
orientation = s[1538] & 3
self.tile_post_rotate = None
if orientation == 1:
self.tile_post_rotate = 90
elif orientation == 3:
self.tile_post_rotate = -90
self._mode = "RGB"
self._size = 768, 512 # FIXME: not correct for rotated images!
self.tile = [("pcd", (0, 0) + self.size, 96 * 2048, None)]
def load_end(self):
if self.tile_post_rotate:
# Handle rotated PCDs
self.im = self.im.rotate(self.tile_post_rotate)
self._size = self.im.size
#
# registry
Image.register_open(PcdImageFile.format, PcdImageFile)
Image.register_extension(PcdImageFile.format, ".pcd")

@ -1,254 +0,0 @@
#
# THIS IS WORK IN PROGRESS
#
# The Python Imaging Library
# $Id$
#
# portable compiled font file parser
#
# history:
# 1997-08-19 fl created
# 2003-09-13 fl fixed loading of unicode fonts
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1997-2003 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
from typing import BinaryIO, Callable
from . import FontFile, Image
from ._binary import i8
from ._binary import i16be as b16
from ._binary import i16le as l16
from ._binary import i32be as b32
from ._binary import i32le as l32
# --------------------------------------------------------------------
# declarations
PCF_MAGIC = 0x70636601 # "\x01fcp"
PCF_PROPERTIES = 1 << 0
PCF_ACCELERATORS = 1 << 1
PCF_METRICS = 1 << 2
PCF_BITMAPS = 1 << 3
PCF_INK_METRICS = 1 << 4
PCF_BDF_ENCODINGS = 1 << 5
PCF_SWIDTHS = 1 << 6
PCF_GLYPH_NAMES = 1 << 7
PCF_BDF_ACCELERATORS = 1 << 8
BYTES_PER_ROW: list[Callable[[int], int]] = [
lambda bits: ((bits + 7) >> 3),
lambda bits: ((bits + 15) >> 3) & ~1,
lambda bits: ((bits + 31) >> 3) & ~3,
lambda bits: ((bits + 63) >> 3) & ~7,
]
def sz(s: bytes, o: int) -> bytes:
return s[o : s.index(b"\0", o)]
class PcfFontFile(FontFile.FontFile):
"""Font file plugin for the X11 PCF format."""
name = "name"
def __init__(self, fp: BinaryIO, charset_encoding: str = "iso8859-1"):
self.charset_encoding = charset_encoding
magic = l32(fp.read(4))
if magic != PCF_MAGIC:
msg = "not a PCF file"
raise SyntaxError(msg)
super().__init__()
count = l32(fp.read(4))
self.toc = {}
for i in range(count):
type = l32(fp.read(4))
self.toc[type] = l32(fp.read(4)), l32(fp.read(4)), l32(fp.read(4))
self.fp = fp
self.info = self._load_properties()
metrics = self._load_metrics()
bitmaps = self._load_bitmaps(metrics)
encoding = self._load_encoding()
#
# create glyph structure
for ch, ix in enumerate(encoding):
if ix is not None:
(
xsize,
ysize,
left,
right,
width,
ascent,
descent,
attributes,
) = metrics[ix]
self.glyph[ch] = (
(width, 0),
(left, descent - ysize, xsize + left, descent),
(0, 0, xsize, ysize),
bitmaps[ix],
)
def _getformat(
self, tag: int
) -> tuple[BinaryIO, int, Callable[[bytes], int], Callable[[bytes], int]]:
format, size, offset = self.toc[tag]
fp = self.fp
fp.seek(offset)
format = l32(fp.read(4))
if format & 4:
i16, i32 = b16, b32
else:
i16, i32 = l16, l32
return fp, format, i16, i32
def _load_properties(self) -> dict[bytes, bytes | int]:
#
# font properties
properties = {}
fp, format, i16, i32 = self._getformat(PCF_PROPERTIES)
nprops = i32(fp.read(4))
# read property description
p = [(i32(fp.read(4)), i8(fp.read(1)), i32(fp.read(4))) for _ in range(nprops)]
if nprops & 3:
fp.seek(4 - (nprops & 3), io.SEEK_CUR) # pad
data = fp.read(i32(fp.read(4)))
for k, s, v in p:
property_value: bytes | int = sz(data, v) if s else v
properties[sz(data, k)] = property_value
return properties
def _load_metrics(self) -> list[tuple[int, int, int, int, int, int, int, int]]:
#
# font metrics
metrics: list[tuple[int, int, int, int, int, int, int, int]] = []
fp, format, i16, i32 = self._getformat(PCF_METRICS)
append = metrics.append
if (format & 0xFF00) == 0x100:
# "compressed" metrics
for i in range(i16(fp.read(2))):
left = i8(fp.read(1)) - 128
right = i8(fp.read(1)) - 128
width = i8(fp.read(1)) - 128
ascent = i8(fp.read(1)) - 128
descent = i8(fp.read(1)) - 128
xsize = right - left
ysize = ascent + descent
append((xsize, ysize, left, right, width, ascent, descent, 0))
else:
# "jumbo" metrics
for i in range(i32(fp.read(4))):
left = i16(fp.read(2))
right = i16(fp.read(2))
width = i16(fp.read(2))
ascent = i16(fp.read(2))
descent = i16(fp.read(2))
attributes = i16(fp.read(2))
xsize = right - left
ysize = ascent + descent
append((xsize, ysize, left, right, width, ascent, descent, attributes))
return metrics
def _load_bitmaps(
self, metrics: list[tuple[int, int, int, int, int, int, int, int]]
) -> list[Image.Image]:
#
# bitmap data
fp, format, i16, i32 = self._getformat(PCF_BITMAPS)
nbitmaps = i32(fp.read(4))
if nbitmaps != len(metrics):
msg = "Wrong number of bitmaps"
raise OSError(msg)
offsets = [i32(fp.read(4)) for _ in range(nbitmaps)]
bitmap_sizes = [i32(fp.read(4)) for _ in range(4)]
# byteorder = format & 4 # non-zero => MSB
bitorder = format & 8 # non-zero => MSB
padindex = format & 3
bitmapsize = bitmap_sizes[padindex]
offsets.append(bitmapsize)
data = fp.read(bitmapsize)
pad = BYTES_PER_ROW[padindex]
mode = "1;R"
if bitorder:
mode = "1"
bitmaps = []
for i in range(nbitmaps):
xsize, ysize = metrics[i][:2]
b, e = offsets[i : i + 2]
bitmaps.append(
Image.frombytes("1", (xsize, ysize), data[b:e], "raw", mode, pad(xsize))
)
return bitmaps
def _load_encoding(self) -> list[int | None]:
fp, format, i16, i32 = self._getformat(PCF_BDF_ENCODINGS)
first_col, last_col = i16(fp.read(2)), i16(fp.read(2))
first_row, last_row = i16(fp.read(2)), i16(fp.read(2))
i16(fp.read(2)) # default
nencoding = (last_col - first_col + 1) * (last_row - first_row + 1)
# map character code to bitmap index
encoding: list[int | None] = [None] * min(256, nencoding)
encoding_offsets = [i16(fp.read(2)) for _ in range(nencoding)]
for i in range(first_col, len(encoding)):
try:
encoding_offset = encoding_offsets[
ord(bytearray([i]).decode(self.charset_encoding))
]
if encoding_offset != 0xFFFF:
encoding[i] = encoding_offset
except UnicodeDecodeError:
# character is not supported in selected encoding
pass
return encoding

@ -1,222 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# PCX file handling
#
# This format was originally used by ZSoft's popular PaintBrush
# program for the IBM PC. It is also supported by many MS-DOS and
# Windows applications, including the Windows PaintBrush program in
# Windows 3.
#
# history:
# 1995-09-01 fl Created
# 1996-05-20 fl Fixed RGB support
# 1997-01-03 fl Fixed 2-bit and 4-bit support
# 1999-02-03 fl Fixed 8-bit support (broken in 1.0b1)
# 1999-02-07 fl Added write support
# 2002-06-09 fl Made 2-bit and 4-bit support a bit more robust
# 2002-07-30 fl Seek from to current position, not beginning of file
# 2003-06-03 fl Extract DPI settings (info["dpi"])
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-2003 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import io
import logging
from . import Image, ImageFile, ImagePalette
from ._binary import i16le as i16
from ._binary import o8
from ._binary import o16le as o16
logger = logging.getLogger(__name__)
def _accept(prefix):
return prefix[0] == 10 and prefix[1] in [0, 2, 3, 5]
##
# Image plugin for Paintbrush images.
class PcxImageFile(ImageFile.ImageFile):
format = "PCX"
format_description = "Paintbrush"
def _open(self):
# header
s = self.fp.read(128)
if not _accept(s):
msg = "not a PCX file"
raise SyntaxError(msg)
# image
bbox = i16(s, 4), i16(s, 6), i16(s, 8) + 1, i16(s, 10) + 1
if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]:
msg = "bad PCX image size"
raise SyntaxError(msg)
logger.debug("BBox: %s %s %s %s", *bbox)
# format
version = s[1]
bits = s[3]
planes = s[65]
provided_stride = i16(s, 66)
logger.debug(
"PCX version %s, bits %s, planes %s, stride %s",
version,
bits,
planes,
provided_stride,
)
self.info["dpi"] = i16(s, 12), i16(s, 14)
if bits == 1 and planes == 1:
mode = rawmode = "1"
elif bits == 1 and planes in (2, 4):
mode = "P"
rawmode = "P;%dL" % planes
self.palette = ImagePalette.raw("RGB", s[16:64])
elif version == 5 and bits == 8 and planes == 1:
mode = rawmode = "L"
# FIXME: hey, this doesn't work with the incremental loader !!!
self.fp.seek(-769, io.SEEK_END)
s = self.fp.read(769)
if len(s) == 769 and s[0] == 12:
# check if the palette is linear grayscale
for i in range(256):
if s[i * 3 + 1 : i * 3 + 4] != o8(i) * 3:
mode = rawmode = "P"
break
if mode == "P":
self.palette = ImagePalette.raw("RGB", s[1:])
self.fp.seek(128)
elif version == 5 and bits == 8 and planes == 3:
mode = "RGB"
rawmode = "RGB;L"
else:
msg = "unknown PCX mode"
raise OSError(msg)
self._mode = mode
self._size = bbox[2] - bbox[0], bbox[3] - bbox[1]
# Don't trust the passed in stride.
# Calculate the approximate position for ourselves.
# CVE-2020-35653
stride = (self._size[0] * bits + 7) // 8
# While the specification states that this must be even,
# not all images follow this
if provided_stride != stride:
stride += stride % 2
bbox = (0, 0) + self.size
logger.debug("size: %sx%s", *self.size)
self.tile = [("pcx", bbox, self.fp.tell(), (rawmode, planes * stride))]
# --------------------------------------------------------------------
# save PCX files
SAVE = {
# mode: (version, bits, planes, raw mode)
"1": (2, 1, 1, "1"),
"L": (5, 8, 1, "L"),
"P": (5, 8, 1, "P"),
"RGB": (5, 8, 3, "RGB;L"),
}
def _save(im, fp, filename):
try:
version, bits, planes, rawmode = SAVE[im.mode]
except KeyError as e:
msg = f"Cannot save {im.mode} images as PCX"
raise ValueError(msg) from e
# bytes per plane
stride = (im.size[0] * bits + 7) // 8
# stride should be even
stride += stride % 2
# Stride needs to be kept in sync with the PcxEncode.c version.
# Ideally it should be passed in in the state, but the bytes value
# gets overwritten.
logger.debug(
"PcxImagePlugin._save: xwidth: %d, bits: %d, stride: %d",
im.size[0],
bits,
stride,
)
# under windows, we could determine the current screen size with
# "Image.core.display_mode()[1]", but I think that's overkill...
screen = im.size
dpi = 100, 100
# PCX header
fp.write(
o8(10)
+ o8(version)
+ o8(1)
+ o8(bits)
+ o16(0)
+ o16(0)
+ o16(im.size[0] - 1)
+ o16(im.size[1] - 1)
+ o16(dpi[0])
+ o16(dpi[1])
+ b"\0" * 24
+ b"\xFF" * 24
+ b"\0"
+ o8(planes)
+ o16(stride)
+ o16(1)
+ o16(screen[0])
+ o16(screen[1])
+ b"\0" * 54
)
assert fp.tell() == 128
ImageFile._save(im, fp, [("pcx", (0, 0) + im.size, 0, (rawmode, bits * planes))])
if im.mode == "P":
# colour palette
fp.write(o8(12))
palette = im.im.getpalette("RGB", "RGB")
palette += b"\x00" * (768 - len(palette))
fp.write(palette) # 768 bytes
elif im.mode == "L":
# grayscale palette
fp.write(o8(12))
for i in range(256):
fp.write(o8(i) * 3)
# --------------------------------------------------------------------
# registry
Image.register_open(PcxImageFile.format, PcxImageFile, _accept)
Image.register_save(PcxImageFile.format, _save)
Image.register_extension(PcxImageFile.format, ".pcx")
Image.register_mime(PcxImageFile.format, "image/x-pcx")

@ -1,303 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# PDF (Acrobat) file handling
#
# History:
# 1996-07-16 fl Created
# 1997-01-18 fl Fixed header
# 2004-02-21 fl Fixes for 1/L/CMYK images, etc.
# 2004-02-24 fl Fixes for 1 and P images.
#
# Copyright (c) 1997-2004 by Secret Labs AB. All rights reserved.
# Copyright (c) 1996-1997 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
##
# Image plugin for PDF images (output only).
##
from __future__ import annotations
import io
import math
import os
import time
from . import Image, ImageFile, ImageSequence, PdfParser, __version__, features
#
# --------------------------------------------------------------------
# object ids:
# 1. catalogue
# 2. pages
# 3. image
# 4. page
# 5. page contents
def _save_all(im, fp, filename):
_save(im, fp, filename, save_all=True)
##
# (Internal) Image save plugin for the PDF format.
def _write_image(im, filename, existing_pdf, image_refs):
# FIXME: Should replace ASCIIHexDecode with RunLengthDecode
# (packbits) or LZWDecode (tiff/lzw compression). Note that
# PDF 1.2 also supports Flatedecode (zip compression).
params = None
decode = None
#
# Get image characteristics
width, height = im.size
dict_obj = {"BitsPerComponent": 8}
if im.mode == "1":
if features.check("libtiff"):
filter = "CCITTFaxDecode"
dict_obj["BitsPerComponent"] = 1
params = PdfParser.PdfArray(
[
PdfParser.PdfDict(
{
"K": -1,
"BlackIs1": True,
"Columns": width,
"Rows": height,
}
)
]
)
else:
filter = "DCTDecode"
dict_obj["ColorSpace"] = PdfParser.PdfName("DeviceGray")
procset = "ImageB" # grayscale
elif im.mode == "L":
filter = "DCTDecode"
# params = f"<< /Predictor 15 /Columns {width-2} >>"
dict_obj["ColorSpace"] = PdfParser.PdfName("DeviceGray")
procset = "ImageB" # grayscale
elif im.mode == "LA":
filter = "JPXDecode"
# params = f"<< /Predictor 15 /Columns {width-2} >>"
procset = "ImageB" # grayscale
dict_obj["SMaskInData"] = 1
elif im.mode == "P":
filter = "ASCIIHexDecode"
palette = im.getpalette()
dict_obj["ColorSpace"] = [
PdfParser.PdfName("Indexed"),
PdfParser.PdfName("DeviceRGB"),
len(palette) // 3 - 1,
PdfParser.PdfBinary(palette),
]
procset = "ImageI" # indexed color
if "transparency" in im.info:
smask = im.convert("LA").getchannel("A")
smask.encoderinfo = {}
image_ref = _write_image(smask, filename, existing_pdf, image_refs)[0]
dict_obj["SMask"] = image_ref
elif im.mode == "RGB":
filter = "DCTDecode"
dict_obj["ColorSpace"] = PdfParser.PdfName("DeviceRGB")
procset = "ImageC" # color images
elif im.mode == "RGBA":
filter = "JPXDecode"
procset = "ImageC" # color images
dict_obj["SMaskInData"] = 1
elif im.mode == "CMYK":
filter = "DCTDecode"
dict_obj["ColorSpace"] = PdfParser.PdfName("DeviceCMYK")
procset = "ImageC" # color images
decode = [1, 0, 1, 0, 1, 0, 1, 0]
else:
msg = f"cannot save mode {im.mode}"
raise ValueError(msg)
#
# image
op = io.BytesIO()
if filter == "ASCIIHexDecode":
ImageFile._save(im, op, [("hex", (0, 0) + im.size, 0, im.mode)])
elif filter == "CCITTFaxDecode":
im.save(
op,
"TIFF",
compression="group4",
# use a single strip
strip_size=math.ceil(width / 8) * height,
)
elif filter == "DCTDecode":
Image.SAVE["JPEG"](im, op, filename)
elif filter == "JPXDecode":
del dict_obj["BitsPerComponent"]
Image.SAVE["JPEG2000"](im, op, filename)
else:
msg = f"unsupported PDF filter ({filter})"
raise ValueError(msg)
stream = op.getvalue()
if filter == "CCITTFaxDecode":
stream = stream[8:]
filter = PdfParser.PdfArray([PdfParser.PdfName(filter)])
else:
filter = PdfParser.PdfName(filter)
image_ref = image_refs.pop(0)
existing_pdf.write_obj(
image_ref,
stream=stream,
Type=PdfParser.PdfName("XObject"),
Subtype=PdfParser.PdfName("Image"),
Width=width, # * 72.0 / x_resolution,
Height=height, # * 72.0 / y_resolution,
Filter=filter,
Decode=decode,
DecodeParms=params,
**dict_obj,
)
return image_ref, procset
def _save(im, fp, filename, save_all=False):
is_appending = im.encoderinfo.get("append", False)
if is_appending:
existing_pdf = PdfParser.PdfParser(f=fp, filename=filename, mode="r+b")
else:
existing_pdf = PdfParser.PdfParser(f=fp, filename=filename, mode="w+b")
dpi = im.encoderinfo.get("dpi")
if dpi:
x_resolution = dpi[0]
y_resolution = dpi[1]
else:
x_resolution = y_resolution = im.encoderinfo.get("resolution", 72.0)
info = {
"title": None
if is_appending
else os.path.splitext(os.path.basename(filename))[0],
"author": None,
"subject": None,
"keywords": None,
"creator": None,
"producer": None,
"creationDate": None if is_appending else time.gmtime(),
"modDate": None if is_appending else time.gmtime(),
}
for k, default in info.items():
v = im.encoderinfo.get(k) if k in im.encoderinfo else default
if v:
existing_pdf.info[k[0].upper() + k[1:]] = v
#
# make sure image data is available
im.load()
existing_pdf.start_writing()
existing_pdf.write_header()
existing_pdf.write_comment(f"created by Pillow {__version__} PDF driver")
#
# pages
ims = [im]
if save_all:
append_images = im.encoderinfo.get("append_images", [])
for append_im in append_images:
append_im.encoderinfo = im.encoderinfo.copy()
ims.append(append_im)
number_of_pages = 0
image_refs = []
page_refs = []
contents_refs = []
for im in ims:
im_number_of_pages = 1
if save_all:
try:
im_number_of_pages = im.n_frames
except AttributeError:
# Image format does not have n_frames.
# It is a single frame image
pass
number_of_pages += im_number_of_pages
for i in range(im_number_of_pages):
image_refs.append(existing_pdf.next_object_id(0))
if im.mode == "P" and "transparency" in im.info:
image_refs.append(existing_pdf.next_object_id(0))
page_refs.append(existing_pdf.next_object_id(0))
contents_refs.append(existing_pdf.next_object_id(0))
existing_pdf.pages.append(page_refs[-1])
#
# catalog and list of pages
existing_pdf.write_catalog()
page_number = 0
for im_sequence in ims:
im_pages = ImageSequence.Iterator(im_sequence) if save_all else [im_sequence]
for im in im_pages:
image_ref, procset = _write_image(im, filename, existing_pdf, image_refs)
#
# page
existing_pdf.write_page(
page_refs[page_number],
Resources=PdfParser.PdfDict(
ProcSet=[PdfParser.PdfName("PDF"), PdfParser.PdfName(procset)],
XObject=PdfParser.PdfDict(image=image_ref),
),
MediaBox=[
0,
0,
im.width * 72.0 / x_resolution,
im.height * 72.0 / y_resolution,
],
Contents=contents_refs[page_number],
)
#
# page contents
page_contents = b"q %f 0 0 %f 0 0 cm /image Do Q\n" % (
im.width * 72.0 / x_resolution,
im.height * 72.0 / y_resolution,
)
existing_pdf.write_obj(contents_refs[page_number], stream=page_contents)
page_number += 1
#
# trailer
existing_pdf.write_xref_and_trailer()
if hasattr(fp, "flush"):
fp.flush()
existing_pdf.close()
#
# --------------------------------------------------------------------
Image.register_save("PDF", _save)
Image.register_save_all("PDF", _save_all)
Image.register_extension("PDF", ".pdf")
Image.register_mime("PDF", "application/pdf")

@ -1,998 +0,0 @@
from __future__ import annotations
import calendar
import codecs
import collections
import mmap
import os
import re
import time
import zlib
# see 7.9.2.2 Text String Type on page 86 and D.3 PDFDocEncoding Character Set
# on page 656
def encode_text(s):
return codecs.BOM_UTF16_BE + s.encode("utf_16_be")
PDFDocEncoding = {
0x16: "\u0017",
0x18: "\u02D8",
0x19: "\u02C7",
0x1A: "\u02C6",
0x1B: "\u02D9",
0x1C: "\u02DD",
0x1D: "\u02DB",
0x1E: "\u02DA",
0x1F: "\u02DC",
0x80: "\u2022",
0x81: "\u2020",
0x82: "\u2021",
0x83: "\u2026",
0x84: "\u2014",
0x85: "\u2013",
0x86: "\u0192",
0x87: "\u2044",
0x88: "\u2039",
0x89: "\u203A",
0x8A: "\u2212",
0x8B: "\u2030",
0x8C: "\u201E",
0x8D: "\u201C",
0x8E: "\u201D",
0x8F: "\u2018",
0x90: "\u2019",
0x91: "\u201A",
0x92: "\u2122",
0x93: "\uFB01",
0x94: "\uFB02",
0x95: "\u0141",
0x96: "\u0152",
0x97: "\u0160",
0x98: "\u0178",
0x99: "\u017D",
0x9A: "\u0131",
0x9B: "\u0142",
0x9C: "\u0153",
0x9D: "\u0161",
0x9E: "\u017E",
0xA0: "\u20AC",
}
def decode_text(b):
if b[: len(codecs.BOM_UTF16_BE)] == codecs.BOM_UTF16_BE:
return b[len(codecs.BOM_UTF16_BE) :].decode("utf_16_be")
else:
return "".join(PDFDocEncoding.get(byte, chr(byte)) for byte in b)
class PdfFormatError(RuntimeError):
"""An error that probably indicates a syntactic or semantic error in the
PDF file structure"""
pass
def check_format_condition(condition, error_message):
if not condition:
raise PdfFormatError(error_message)
class IndirectReference(
collections.namedtuple("IndirectReferenceTuple", ["object_id", "generation"])
):
def __str__(self):
return f"{self.object_id} {self.generation} R"
def __bytes__(self):
return self.__str__().encode("us-ascii")
def __eq__(self, other):
return (
other.__class__ is self.__class__
and other.object_id == self.object_id
and other.generation == self.generation
)
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash((self.object_id, self.generation))
class IndirectObjectDef(IndirectReference):
def __str__(self):
return f"{self.object_id} {self.generation} obj"
class XrefTable:
def __init__(self):
self.existing_entries = {} # object ID => (offset, generation)
self.new_entries = {} # object ID => (offset, generation)
self.deleted_entries = {0: 65536} # object ID => generation
self.reading_finished = False
def __setitem__(self, key, value):
if self.reading_finished:
self.new_entries[key] = value
else:
self.existing_entries[key] = value
if key in self.deleted_entries:
del self.deleted_entries[key]
def __getitem__(self, key):
try:
return self.new_entries[key]
except KeyError:
return self.existing_entries[key]
def __delitem__(self, key):
if key in self.new_entries:
generation = self.new_entries[key][1] + 1
del self.new_entries[key]
self.deleted_entries[key] = generation
elif key in self.existing_entries:
generation = self.existing_entries[key][1] + 1
self.deleted_entries[key] = generation
elif key in self.deleted_entries:
generation = self.deleted_entries[key]
else:
msg = (
"object ID " + str(key) + " cannot be deleted because it doesn't exist"
)
raise IndexError(msg)
def __contains__(self, key):
return key in self.existing_entries or key in self.new_entries
def __len__(self):
return len(
set(self.existing_entries.keys())
| set(self.new_entries.keys())
| set(self.deleted_entries.keys())
)
def keys(self):
return (
set(self.existing_entries.keys()) - set(self.deleted_entries.keys())
) | set(self.new_entries.keys())
def write(self, f):
keys = sorted(set(self.new_entries.keys()) | set(self.deleted_entries.keys()))
deleted_keys = sorted(set(self.deleted_entries.keys()))
startxref = f.tell()
f.write(b"xref\n")
while keys:
# find a contiguous sequence of object IDs
prev = None
for index, key in enumerate(keys):
if prev is None or prev + 1 == key:
prev = key
else:
contiguous_keys = keys[:index]
keys = keys[index:]
break
else:
contiguous_keys = keys
keys = None
f.write(b"%d %d\n" % (contiguous_keys[0], len(contiguous_keys)))
for object_id in contiguous_keys:
if object_id in self.new_entries:
f.write(b"%010d %05d n \n" % self.new_entries[object_id])
else:
this_deleted_object_id = deleted_keys.pop(0)
check_format_condition(
object_id == this_deleted_object_id,
f"expected the next deleted object ID to be {object_id}, "
f"instead found {this_deleted_object_id}",
)
try:
next_in_linked_list = deleted_keys[0]
except IndexError:
next_in_linked_list = 0
f.write(
b"%010d %05d f \n"
% (next_in_linked_list, self.deleted_entries[object_id])
)
return startxref
class PdfName:
def __init__(self, name):
if isinstance(name, PdfName):
self.name = name.name
elif isinstance(name, bytes):
self.name = name
else:
self.name = name.encode("us-ascii")
def name_as_str(self):
return self.name.decode("us-ascii")
def __eq__(self, other):
return (
isinstance(other, PdfName) and other.name == self.name
) or other == self.name
def __hash__(self):
return hash(self.name)
def __repr__(self):
return f"PdfName({repr(self.name)})"
@classmethod
def from_pdf_stream(cls, data):
return cls(PdfParser.interpret_name(data))
allowed_chars = set(range(33, 127)) - {ord(c) for c in "#%/()<>[]{}"}
def __bytes__(self):
result = bytearray(b"/")
for b in self.name:
if b in self.allowed_chars:
result.append(b)
else:
result.extend(b"#%02X" % b)
return bytes(result)
class PdfArray(list):
def __bytes__(self):
return b"[ " + b" ".join(pdf_repr(x) for x in self) + b" ]"
class PdfDict(collections.UserDict):
def __setattr__(self, key, value):
if key == "data":
collections.UserDict.__setattr__(self, key, value)
else:
self[key.encode("us-ascii")] = value
def __getattr__(self, key):
try:
value = self[key.encode("us-ascii")]
except KeyError as e:
raise AttributeError(key) from e
if isinstance(value, bytes):
value = decode_text(value)
if key.endswith("Date"):
if value.startswith("D:"):
value = value[2:]
relationship = "Z"
if len(value) > 17:
relationship = value[14]
offset = int(value[15:17]) * 60
if len(value) > 20:
offset += int(value[18:20])
format = "%Y%m%d%H%M%S"[: len(value) - 2]
value = time.strptime(value[: len(format) + 2], format)
if relationship in ["+", "-"]:
offset *= 60
if relationship == "+":
offset *= -1
value = time.gmtime(calendar.timegm(value) + offset)
return value
def __bytes__(self):
out = bytearray(b"<<")
for key, value in self.items():
if value is None:
continue
value = pdf_repr(value)
out.extend(b"\n")
out.extend(bytes(PdfName(key)))
out.extend(b" ")
out.extend(value)
out.extend(b"\n>>")
return bytes(out)
class PdfBinary:
def __init__(self, data):
self.data = data
def __bytes__(self):
return b"<%s>" % b"".join(b"%02X" % b for b in self.data)
class PdfStream:
def __init__(self, dictionary, buf):
self.dictionary = dictionary
self.buf = buf
def decode(self):
try:
filter = self.dictionary.Filter
except AttributeError:
return self.buf
if filter == b"FlateDecode":
try:
expected_length = self.dictionary.DL
except AttributeError:
expected_length = self.dictionary.Length
return zlib.decompress(self.buf, bufsize=int(expected_length))
else:
msg = f"stream filter {repr(self.dictionary.Filter)} unknown/unsupported"
raise NotImplementedError(msg)
def pdf_repr(x):
if x is True:
return b"true"
elif x is False:
return b"false"
elif x is None:
return b"null"
elif isinstance(x, (PdfName, PdfDict, PdfArray, PdfBinary)):
return bytes(x)
elif isinstance(x, (int, float)):
return str(x).encode("us-ascii")
elif isinstance(x, time.struct_time):
return b"(D:" + time.strftime("%Y%m%d%H%M%SZ", x).encode("us-ascii") + b")"
elif isinstance(x, dict):
return bytes(PdfDict(x))
elif isinstance(x, list):
return bytes(PdfArray(x))
elif isinstance(x, str):
return pdf_repr(encode_text(x))
elif isinstance(x, bytes):
# XXX escape more chars? handle binary garbage
x = x.replace(b"\\", b"\\\\")
x = x.replace(b"(", b"\\(")
x = x.replace(b")", b"\\)")
return b"(" + x + b")"
else:
return bytes(x)
class PdfParser:
"""Based on
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
Supports PDF up to 1.4
"""
def __init__(self, filename=None, f=None, buf=None, start_offset=0, mode="rb"):
if buf and f:
msg = "specify buf or f or filename, but not both buf and f"
raise RuntimeError(msg)
self.filename = filename
self.buf = buf
self.f = f
self.start_offset = start_offset
self.should_close_buf = False
self.should_close_file = False
if filename is not None and f is None:
self.f = f = open(filename, mode)
self.should_close_file = True
if f is not None:
self.buf = buf = self.get_buf_from_file(f)
self.should_close_buf = True
if not filename and hasattr(f, "name"):
self.filename = f.name
self.cached_objects = {}
if buf:
self.read_pdf_info()
else:
self.file_size_total = self.file_size_this = 0
self.root = PdfDict()
self.root_ref = None
self.info = PdfDict()
self.info_ref = None
self.page_tree_root = {}
self.pages = []
self.orig_pages = []
self.pages_ref = None
self.last_xref_section_offset = None
self.trailer_dict = {}
self.xref_table = XrefTable()
self.xref_table.reading_finished = True
if f:
self.seek_end()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
return False # do not suppress exceptions
def start_writing(self):
self.close_buf()
self.seek_end()
def close_buf(self):
try:
self.buf.close()
except AttributeError:
pass
self.buf = None
def close(self):
if self.should_close_buf:
self.close_buf()
if self.f is not None and self.should_close_file:
self.f.close()
self.f = None
def seek_end(self):
self.f.seek(0, os.SEEK_END)
def write_header(self):
self.f.write(b"%PDF-1.4\n")
def write_comment(self, s):
self.f.write(f"% {s}\n".encode())
def write_catalog(self):
self.del_root()
self.root_ref = self.next_object_id(self.f.tell())
self.pages_ref = self.next_object_id(0)
self.rewrite_pages()
self.write_obj(self.root_ref, Type=PdfName(b"Catalog"), Pages=self.pages_ref)
self.write_obj(
self.pages_ref,
Type=PdfName(b"Pages"),
Count=len(self.pages),
Kids=self.pages,
)
return self.root_ref
def rewrite_pages(self):
pages_tree_nodes_to_delete = []
for i, page_ref in enumerate(self.orig_pages):
page_info = self.cached_objects[page_ref]
del self.xref_table[page_ref.object_id]
pages_tree_nodes_to_delete.append(page_info[PdfName(b"Parent")])
if page_ref not in self.pages:
# the page has been deleted
continue
# make dict keys into strings for passing to write_page
stringified_page_info = {}
for key, value in page_info.items():
# key should be a PdfName
stringified_page_info[key.name_as_str()] = value
stringified_page_info["Parent"] = self.pages_ref
new_page_ref = self.write_page(None, **stringified_page_info)
for j, cur_page_ref in enumerate(self.pages):
if cur_page_ref == page_ref:
# replace the page reference with the new one
self.pages[j] = new_page_ref
# delete redundant Pages tree nodes from xref table
for pages_tree_node_ref in pages_tree_nodes_to_delete:
while pages_tree_node_ref:
pages_tree_node = self.cached_objects[pages_tree_node_ref]
if pages_tree_node_ref.object_id in self.xref_table:
del self.xref_table[pages_tree_node_ref.object_id]
pages_tree_node_ref = pages_tree_node.get(b"Parent", None)
self.orig_pages = []
def write_xref_and_trailer(self, new_root_ref=None):
if new_root_ref:
self.del_root()
self.root_ref = new_root_ref
if self.info:
self.info_ref = self.write_obj(None, self.info)
start_xref = self.xref_table.write(self.f)
num_entries = len(self.xref_table)
trailer_dict = {b"Root": self.root_ref, b"Size": num_entries}
if self.last_xref_section_offset is not None:
trailer_dict[b"Prev"] = self.last_xref_section_offset
if self.info:
trailer_dict[b"Info"] = self.info_ref
self.last_xref_section_offset = start_xref
self.f.write(
b"trailer\n"
+ bytes(PdfDict(trailer_dict))
+ b"\nstartxref\n%d\n%%%%EOF" % start_xref
)
def write_page(self, ref, *objs, **dict_obj):
if isinstance(ref, int):
ref = self.pages[ref]
if "Type" not in dict_obj:
dict_obj["Type"] = PdfName(b"Page")
if "Parent" not in dict_obj:
dict_obj["Parent"] = self.pages_ref
return self.write_obj(ref, *objs, **dict_obj)
def write_obj(self, ref, *objs, **dict_obj):
f = self.f
if ref is None:
ref = self.next_object_id(f.tell())
else:
self.xref_table[ref.object_id] = (f.tell(), ref.generation)
f.write(bytes(IndirectObjectDef(*ref)))
stream = dict_obj.pop("stream", None)
if stream is not None:
dict_obj["Length"] = len(stream)
if dict_obj:
f.write(pdf_repr(dict_obj))
for obj in objs:
f.write(pdf_repr(obj))
if stream is not None:
f.write(b"stream\n")
f.write(stream)
f.write(b"\nendstream\n")
f.write(b"endobj\n")
return ref
def del_root(self):
if self.root_ref is None:
return
del self.xref_table[self.root_ref.object_id]
del self.xref_table[self.root[b"Pages"].object_id]
@staticmethod
def get_buf_from_file(f):
if hasattr(f, "getbuffer"):
return f.getbuffer()
elif hasattr(f, "getvalue"):
return f.getvalue()
else:
try:
return mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
except ValueError: # cannot mmap an empty file
return b""
def read_pdf_info(self):
self.file_size_total = len(self.buf)
self.file_size_this = self.file_size_total - self.start_offset
self.read_trailer()
self.root_ref = self.trailer_dict[b"Root"]
self.info_ref = self.trailer_dict.get(b"Info", None)
self.root = PdfDict(self.read_indirect(self.root_ref))
if self.info_ref is None:
self.info = PdfDict()
else:
self.info = PdfDict(self.read_indirect(self.info_ref))
check_format_condition(b"Type" in self.root, "/Type missing in Root")
check_format_condition(
self.root[b"Type"] == b"Catalog", "/Type in Root is not /Catalog"
)
check_format_condition(b"Pages" in self.root, "/Pages missing in Root")
check_format_condition(
isinstance(self.root[b"Pages"], IndirectReference),
"/Pages in Root is not an indirect reference",
)
self.pages_ref = self.root[b"Pages"]
self.page_tree_root = self.read_indirect(self.pages_ref)
self.pages = self.linearize_page_tree(self.page_tree_root)
# save the original list of page references
# in case the user modifies, adds or deletes some pages
# and we need to rewrite the pages and their list
self.orig_pages = self.pages[:]
def next_object_id(self, offset=None):
try:
# TODO: support reuse of deleted objects
reference = IndirectReference(max(self.xref_table.keys()) + 1, 0)
except ValueError:
reference = IndirectReference(1, 0)
if offset is not None:
self.xref_table[reference.object_id] = (offset, 0)
return reference
delimiter = rb"[][()<>{}/%]"
delimiter_or_ws = rb"[][()<>{}/%\000\011\012\014\015\040]"
whitespace = rb"[\000\011\012\014\015\040]"
whitespace_or_hex = rb"[\000\011\012\014\015\0400-9a-fA-F]"
whitespace_optional = whitespace + b"*"
whitespace_mandatory = whitespace + b"+"
# No "\012" aka "\n" or "\015" aka "\r":
whitespace_optional_no_nl = rb"[\000\011\014\040]*"
newline_only = rb"[\r\n]+"
newline = whitespace_optional_no_nl + newline_only + whitespace_optional_no_nl
re_trailer_end = re.compile(
whitespace_mandatory
+ rb"trailer"
+ whitespace_optional
+ rb"<<(.*>>)"
+ newline
+ rb"startxref"
+ newline
+ rb"([0-9]+)"
+ newline
+ rb"%%EOF"
+ whitespace_optional
+ rb"$",
re.DOTALL,
)
re_trailer_prev = re.compile(
whitespace_optional
+ rb"trailer"
+ whitespace_optional
+ rb"<<(.*?>>)"
+ newline
+ rb"startxref"
+ newline
+ rb"([0-9]+)"
+ newline
+ rb"%%EOF"
+ whitespace_optional,
re.DOTALL,
)
def read_trailer(self):
search_start_offset = len(self.buf) - 16384
if search_start_offset < self.start_offset:
search_start_offset = self.start_offset
m = self.re_trailer_end.search(self.buf, search_start_offset)
check_format_condition(m, "trailer end not found")
# make sure we found the LAST trailer
last_match = m
while m:
last_match = m
m = self.re_trailer_end.search(self.buf, m.start() + 16)
if not m:
m = last_match
trailer_data = m.group(1)
self.last_xref_section_offset = int(m.group(2))
self.trailer_dict = self.interpret_trailer(trailer_data)
self.xref_table = XrefTable()
self.read_xref_table(xref_section_offset=self.last_xref_section_offset)
if b"Prev" in self.trailer_dict:
self.read_prev_trailer(self.trailer_dict[b"Prev"])
def read_prev_trailer(self, xref_section_offset):
trailer_offset = self.read_xref_table(xref_section_offset=xref_section_offset)
m = self.re_trailer_prev.search(
self.buf[trailer_offset : trailer_offset + 16384]
)
check_format_condition(m, "previous trailer not found")
trailer_data = m.group(1)
check_format_condition(
int(m.group(2)) == xref_section_offset,
"xref section offset in previous trailer doesn't match what was expected",
)
trailer_dict = self.interpret_trailer(trailer_data)
if b"Prev" in trailer_dict:
self.read_prev_trailer(trailer_dict[b"Prev"])
re_whitespace_optional = re.compile(whitespace_optional)
re_name = re.compile(
whitespace_optional
+ rb"/([!-$&'*-.0-;=?-Z\\^-z|~]+)(?="
+ delimiter_or_ws
+ rb")"
)
re_dict_start = re.compile(whitespace_optional + rb"<<")
re_dict_end = re.compile(whitespace_optional + rb">>" + whitespace_optional)
@classmethod
def interpret_trailer(cls, trailer_data):
trailer = {}
offset = 0
while True:
m = cls.re_name.match(trailer_data, offset)
if not m:
m = cls.re_dict_end.match(trailer_data, offset)
check_format_condition(
m and m.end() == len(trailer_data),
"name not found in trailer, remaining data: "
+ repr(trailer_data[offset:]),
)
break
key = cls.interpret_name(m.group(1))
value, offset = cls.get_value(trailer_data, m.end())
trailer[key] = value
check_format_condition(
b"Size" in trailer and isinstance(trailer[b"Size"], int),
"/Size not in trailer or not an integer",
)
check_format_condition(
b"Root" in trailer and isinstance(trailer[b"Root"], IndirectReference),
"/Root not in trailer or not an indirect reference",
)
return trailer
re_hashes_in_name = re.compile(rb"([^#]*)(#([0-9a-fA-F]{2}))?")
@classmethod
def interpret_name(cls, raw, as_text=False):
name = b""
for m in cls.re_hashes_in_name.finditer(raw):
if m.group(3):
name += m.group(1) + bytearray.fromhex(m.group(3).decode("us-ascii"))
else:
name += m.group(1)
if as_text:
return name.decode("utf-8")
else:
return bytes(name)
re_null = re.compile(whitespace_optional + rb"null(?=" + delimiter_or_ws + rb")")
re_true = re.compile(whitespace_optional + rb"true(?=" + delimiter_or_ws + rb")")
re_false = re.compile(whitespace_optional + rb"false(?=" + delimiter_or_ws + rb")")
re_int = re.compile(
whitespace_optional + rb"([-+]?[0-9]+)(?=" + delimiter_or_ws + rb")"
)
re_real = re.compile(
whitespace_optional
+ rb"([-+]?([0-9]+\.[0-9]*|[0-9]*\.[0-9]+))(?="
+ delimiter_or_ws
+ rb")"
)
re_array_start = re.compile(whitespace_optional + rb"\[")
re_array_end = re.compile(whitespace_optional + rb"]")
re_string_hex = re.compile(
whitespace_optional + rb"<(" + whitespace_or_hex + rb"*)>"
)
re_string_lit = re.compile(whitespace_optional + rb"\(")
re_indirect_reference = re.compile(
whitespace_optional
+ rb"([-+]?[0-9]+)"
+ whitespace_mandatory
+ rb"([-+]?[0-9]+)"
+ whitespace_mandatory
+ rb"R(?="
+ delimiter_or_ws
+ rb")"
)
re_indirect_def_start = re.compile(
whitespace_optional
+ rb"([-+]?[0-9]+)"
+ whitespace_mandatory
+ rb"([-+]?[0-9]+)"
+ whitespace_mandatory
+ rb"obj(?="
+ delimiter_or_ws
+ rb")"
)
re_indirect_def_end = re.compile(
whitespace_optional + rb"endobj(?=" + delimiter_or_ws + rb")"
)
re_comment = re.compile(
rb"(" + whitespace_optional + rb"%[^\r\n]*" + newline + rb")*"
)
re_stream_start = re.compile(whitespace_optional + rb"stream\r?\n")
re_stream_end = re.compile(
whitespace_optional + rb"endstream(?=" + delimiter_or_ws + rb")"
)
@classmethod
def get_value(cls, data, offset, expect_indirect=None, max_nesting=-1):
if max_nesting == 0:
return None, None
m = cls.re_comment.match(data, offset)
if m:
offset = m.end()
m = cls.re_indirect_def_start.match(data, offset)
if m:
check_format_condition(
int(m.group(1)) > 0,
"indirect object definition: object ID must be greater than 0",
)
check_format_condition(
int(m.group(2)) >= 0,
"indirect object definition: generation must be non-negative",
)
check_format_condition(
expect_indirect is None
or expect_indirect
== IndirectReference(int(m.group(1)), int(m.group(2))),
"indirect object definition different than expected",
)
object, offset = cls.get_value(data, m.end(), max_nesting=max_nesting - 1)
if offset is None:
return object, None
m = cls.re_indirect_def_end.match(data, offset)
check_format_condition(m, "indirect object definition end not found")
return object, m.end()
check_format_condition(
not expect_indirect, "indirect object definition not found"
)
m = cls.re_indirect_reference.match(data, offset)
if m:
check_format_condition(
int(m.group(1)) > 0,
"indirect object reference: object ID must be greater than 0",
)
check_format_condition(
int(m.group(2)) >= 0,
"indirect object reference: generation must be non-negative",
)
return IndirectReference(int(m.group(1)), int(m.group(2))), m.end()
m = cls.re_dict_start.match(data, offset)
if m:
offset = m.end()
result = {}
m = cls.re_dict_end.match(data, offset)
while not m:
key, offset = cls.get_value(data, offset, max_nesting=max_nesting - 1)
if offset is None:
return result, None
value, offset = cls.get_value(data, offset, max_nesting=max_nesting - 1)
result[key] = value
if offset is None:
return result, None
m = cls.re_dict_end.match(data, offset)
offset = m.end()
m = cls.re_stream_start.match(data, offset)
if m:
try:
stream_len = int(result[b"Length"])
except (TypeError, KeyError, ValueError) as e:
msg = "bad or missing Length in stream dict (%r)" % result.get(
b"Length", None
)
raise PdfFormatError(msg) from e
stream_data = data[m.end() : m.end() + stream_len]
m = cls.re_stream_end.match(data, m.end() + stream_len)
check_format_condition(m, "stream end not found")
offset = m.end()
result = PdfStream(PdfDict(result), stream_data)
else:
result = PdfDict(result)
return result, offset
m = cls.re_array_start.match(data, offset)
if m:
offset = m.end()
result = []
m = cls.re_array_end.match(data, offset)
while not m:
value, offset = cls.get_value(data, offset, max_nesting=max_nesting - 1)
result.append(value)
if offset is None:
return result, None
m = cls.re_array_end.match(data, offset)
return result, m.end()
m = cls.re_null.match(data, offset)
if m:
return None, m.end()
m = cls.re_true.match(data, offset)
if m:
return True, m.end()
m = cls.re_false.match(data, offset)
if m:
return False, m.end()
m = cls.re_name.match(data, offset)
if m:
return PdfName(cls.interpret_name(m.group(1))), m.end()
m = cls.re_int.match(data, offset)
if m:
return int(m.group(1)), m.end()
m = cls.re_real.match(data, offset)
if m:
# XXX Decimal instead of float???
return float(m.group(1)), m.end()
m = cls.re_string_hex.match(data, offset)
if m:
# filter out whitespace
hex_string = bytearray(
b for b in m.group(1) if b in b"0123456789abcdefABCDEF"
)
if len(hex_string) % 2 == 1:
# append a 0 if the length is not even - yes, at the end
hex_string.append(ord(b"0"))
return bytearray.fromhex(hex_string.decode("us-ascii")), m.end()
m = cls.re_string_lit.match(data, offset)
if m:
return cls.get_literal_string(data, m.end())
# return None, offset # fallback (only for debugging)
msg = "unrecognized object: " + repr(data[offset : offset + 32])
raise PdfFormatError(msg)
re_lit_str_token = re.compile(
rb"(\\[nrtbf()\\])|(\\[0-9]{1,3})|(\\(\r\n|\r|\n))|(\r\n|\r|\n)|(\()|(\))"
)
escaped_chars = {
b"n": b"\n",
b"r": b"\r",
b"t": b"\t",
b"b": b"\b",
b"f": b"\f",
b"(": b"(",
b")": b")",
b"\\": b"\\",
ord(b"n"): b"\n",
ord(b"r"): b"\r",
ord(b"t"): b"\t",
ord(b"b"): b"\b",
ord(b"f"): b"\f",
ord(b"("): b"(",
ord(b")"): b")",
ord(b"\\"): b"\\",
}
@classmethod
def get_literal_string(cls, data, offset):
nesting_depth = 0
result = bytearray()
for m in cls.re_lit_str_token.finditer(data, offset):
result.extend(data[offset : m.start()])
if m.group(1):
result.extend(cls.escaped_chars[m.group(1)[1]])
elif m.group(2):
result.append(int(m.group(2)[1:], 8))
elif m.group(3):
pass
elif m.group(5):
result.extend(b"\n")
elif m.group(6):
result.extend(b"(")
nesting_depth += 1
elif m.group(7):
if nesting_depth == 0:
return bytes(result), m.end()
result.extend(b")")
nesting_depth -= 1
offset = m.end()
msg = "unfinished literal string"
raise PdfFormatError(msg)
re_xref_section_start = re.compile(whitespace_optional + rb"xref" + newline)
re_xref_subsection_start = re.compile(
whitespace_optional
+ rb"([0-9]+)"
+ whitespace_mandatory
+ rb"([0-9]+)"
+ whitespace_optional
+ newline_only
)
re_xref_entry = re.compile(rb"([0-9]{10}) ([0-9]{5}) ([fn])( \r| \n|\r\n)")
def read_xref_table(self, xref_section_offset):
subsection_found = False
m = self.re_xref_section_start.match(
self.buf, xref_section_offset + self.start_offset
)
check_format_condition(m, "xref section start not found")
offset = m.end()
while True:
m = self.re_xref_subsection_start.match(self.buf, offset)
if not m:
check_format_condition(
subsection_found, "xref subsection start not found"
)
break
subsection_found = True
offset = m.end()
first_object = int(m.group(1))
num_objects = int(m.group(2))
for i in range(first_object, first_object + num_objects):
m = self.re_xref_entry.match(self.buf, offset)
check_format_condition(m, "xref entry not found")
offset = m.end()
is_free = m.group(3) == b"f"
if not is_free:
generation = int(m.group(2))
new_entry = (int(m.group(1)), generation)
if i not in self.xref_table:
self.xref_table[i] = new_entry
return offset
def read_indirect(self, ref, max_nesting=-1):
offset, generation = self.xref_table[ref[0]]
check_format_condition(
generation == ref[1],
f"expected to find generation {ref[1]} for object ID {ref[0]} in xref "
f"table, instead found generation {generation} at offset {offset}",
)
value = self.get_value(
self.buf,
offset + self.start_offset,
expect_indirect=IndirectReference(*ref),
max_nesting=max_nesting,
)[0]
self.cached_objects[ref] = value
return value
def linearize_page_tree(self, node=None):
if node is None:
node = self.page_tree_root
check_format_condition(
node[b"Type"] == b"Pages", "/Type of page tree node is not /Pages"
)
pages = []
for kid in node[b"Kids"]:
kid_object = self.read_indirect(kid)
if kid_object[b"Type"] == b"Page":
pages.append(kid)
else:
pages.extend(self.linearize_page_tree(node=kid_object))
return pages

@ -1,70 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# PIXAR raster support for PIL
#
# history:
# 97-01-29 fl Created
#
# notes:
# This is incomplete; it is based on a few samples created with
# Photoshop 2.5 and 3.0, and a summary description provided by
# Greg Coats <gcoats@labiris.er.usgs.gov>. Hopefully, "L" and
# "RGBA" support will be added in future versions.
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1997.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
from ._binary import i16le as i16
#
# helpers
def _accept(prefix):
return prefix[:4] == b"\200\350\000\000"
##
# Image plugin for PIXAR raster images.
class PixarImageFile(ImageFile.ImageFile):
format = "PIXAR"
format_description = "PIXAR raster image"
def _open(self):
# assuming a 4-byte magic label
s = self.fp.read(4)
if not _accept(s):
msg = "not a PIXAR file"
raise SyntaxError(msg)
# read rest of header
s = s + self.fp.read(508)
self._size = i16(s, 418), i16(s, 416)
# get channel/depth descriptions
mode = i16(s, 424), i16(s, 426)
if mode == (14, 2):
self._mode = "RGB"
# FIXME: to be continued...
# create tile descriptor (assuming "dumped")
self.tile = [("raw", (0, 0) + self.size, 1024, (self.mode, 0, 1))]
#
# --------------------------------------------------------------------
Image.register_open(PixarImageFile.format, PixarImageFile, _accept)
Image.register_extension(PixarImageFile.format, ".pxr")

@ -1,344 +0,0 @@
#
# The Python Imaging Library.
# $Id$
#
# PPM support for PIL
#
# History:
# 96-03-24 fl Created
# 98-03-06 fl Write RGBA images (as RGB, that is)
#
# Copyright (c) Secret Labs AB 1997-98.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image, ImageFile
from ._binary import i16be as i16
from ._binary import o8
from ._binary import o32le as o32
#
# --------------------------------------------------------------------
b_whitespace = b"\x20\x09\x0a\x0b\x0c\x0d"
MODES = {
# standard
b"P1": "1",
b"P2": "L",
b"P3": "RGB",
b"P4": "1",
b"P5": "L",
b"P6": "RGB",
# extensions
b"P0CMYK": "CMYK",
# PIL extensions (for test purposes only)
b"PyP": "P",
b"PyRGBA": "RGBA",
b"PyCMYK": "CMYK",
}
def _accept(prefix):
return prefix[0:1] == b"P" and prefix[1] in b"0123456y"
##
# Image plugin for PBM, PGM, and PPM images.
class PpmImageFile(ImageFile.ImageFile):
format = "PPM"
format_description = "Pbmplus image"
def _read_magic(self):
magic = b""
# read until whitespace or longest available magic number
for _ in range(6):
c = self.fp.read(1)
if not c or c in b_whitespace:
break
magic += c
return magic
def _read_token(self):
token = b""
while len(token) <= 10: # read until next whitespace or limit of 10 characters
c = self.fp.read(1)
if not c:
break
elif c in b_whitespace: # token ended
if not token:
# skip whitespace at start
continue
break
elif c == b"#":
# ignores rest of the line; stops at CR, LF or EOF
while self.fp.read(1) not in b"\r\n":
pass
continue
token += c
if not token:
# Token was not even 1 byte
msg = "Reached EOF while reading header"
raise ValueError(msg)
elif len(token) > 10:
msg = f"Token too long in file header: {token.decode()}"
raise ValueError(msg)
return token
def _open(self):
magic_number = self._read_magic()
try:
mode = MODES[magic_number]
except KeyError:
msg = "not a PPM file"
raise SyntaxError(msg)
if magic_number in (b"P1", b"P4"):
self.custom_mimetype = "image/x-portable-bitmap"
elif magic_number in (b"P2", b"P5"):
self.custom_mimetype = "image/x-portable-graymap"
elif magic_number in (b"P3", b"P6"):
self.custom_mimetype = "image/x-portable-pixmap"
maxval = None
decoder_name = "raw"
if magic_number in (b"P1", b"P2", b"P3"):
decoder_name = "ppm_plain"
for ix in range(3):
token = int(self._read_token())
if ix == 0: # token is the x size
xsize = token
elif ix == 1: # token is the y size
ysize = token
if mode == "1":
self._mode = "1"
rawmode = "1;I"
break
else:
self._mode = rawmode = mode
elif ix == 2: # token is maxval
maxval = token
if not 0 < maxval < 65536:
msg = "maxval must be greater than 0 and less than 65536"
raise ValueError(msg)
if maxval > 255 and mode == "L":
self._mode = "I"
if decoder_name != "ppm_plain":
# If maxval matches a bit depth, use the raw decoder directly
if maxval == 65535 and mode == "L":
rawmode = "I;16B"
elif maxval != 255:
decoder_name = "ppm"
args = (rawmode, 0, 1) if decoder_name == "raw" else (rawmode, maxval)
self._size = xsize, ysize
self.tile = [(decoder_name, (0, 0, xsize, ysize), self.fp.tell(), args)]
#
# --------------------------------------------------------------------
class PpmPlainDecoder(ImageFile.PyDecoder):
_pulls_fd = True
def _read_block(self):
return self.fd.read(ImageFile.SAFEBLOCK)
def _find_comment_end(self, block, start=0):
a = block.find(b"\n", start)
b = block.find(b"\r", start)
return min(a, b) if a * b > 0 else max(a, b) # lowest nonnegative index (or -1)
def _ignore_comments(self, block):
if self._comment_spans:
# Finish current comment
while block:
comment_end = self._find_comment_end(block)
if comment_end != -1:
# Comment ends in this block
# Delete tail of comment
block = block[comment_end + 1 :]
break
else:
# Comment spans whole block
# So read the next block, looking for the end
block = self._read_block()
# Search for any further comments
self._comment_spans = False
while True:
comment_start = block.find(b"#")
if comment_start == -1:
# No comment found
break
comment_end = self._find_comment_end(block, comment_start)
if comment_end != -1:
# Comment ends in this block
# Delete comment
block = block[:comment_start] + block[comment_end + 1 :]
else:
# Comment continues to next block(s)
block = block[:comment_start]
self._comment_spans = True
break
return block
def _decode_bitonal(self):
"""
This is a separate method because in the plain PBM format, all data tokens are
exactly one byte, so the inter-token whitespace is optional.
"""
data = bytearray()
total_bytes = self.state.xsize * self.state.ysize
while len(data) != total_bytes:
block = self._read_block() # read next block
if not block:
# eof
break
block = self._ignore_comments(block)
tokens = b"".join(block.split())
for token in tokens:
if token not in (48, 49):
msg = b"Invalid token for this mode: %s" % bytes([token])
raise ValueError(msg)
data = (data + tokens)[:total_bytes]
invert = bytes.maketrans(b"01", b"\xFF\x00")
return data.translate(invert)
def _decode_blocks(self, maxval):
data = bytearray()
max_len = 10
out_byte_count = 4 if self.mode == "I" else 1
out_max = 65535 if self.mode == "I" else 255
bands = Image.getmodebands(self.mode)
total_bytes = self.state.xsize * self.state.ysize * bands * out_byte_count
half_token = False
while len(data) != total_bytes:
block = self._read_block() # read next block
if not block:
if half_token:
block = bytearray(b" ") # flush half_token
else:
# eof
break
block = self._ignore_comments(block)
if half_token:
block = half_token + block # stitch half_token to new block
half_token = False
tokens = block.split()
if block and not block[-1:].isspace(): # block might split token
half_token = tokens.pop() # save half token for later
if len(half_token) > max_len: # prevent buildup of half_token
msg = (
b"Token too long found in data: %s" % half_token[: max_len + 1]
)
raise ValueError(msg)
for token in tokens:
if len(token) > max_len:
msg = b"Token too long found in data: %s" % token[: max_len + 1]
raise ValueError(msg)
value = int(token)
if value > maxval:
msg = f"Channel value too large for this mode: {value}"
raise ValueError(msg)
value = round(value / maxval * out_max)
data += o32(value) if self.mode == "I" else o8(value)
if len(data) == total_bytes: # finished!
break
return data
def decode(self, buffer):
self._comment_spans = False
if self.mode == "1":
data = self._decode_bitonal()
rawmode = "1;8"
else:
maxval = self.args[-1]
data = self._decode_blocks(maxval)
rawmode = "I;32" if self.mode == "I" else self.mode
self.set_as_raw(bytes(data), rawmode)
return -1, 0
class PpmDecoder(ImageFile.PyDecoder):
_pulls_fd = True
def decode(self, buffer):
data = bytearray()
maxval = self.args[-1]
in_byte_count = 1 if maxval < 256 else 2
out_byte_count = 4 if self.mode == "I" else 1
out_max = 65535 if self.mode == "I" else 255
bands = Image.getmodebands(self.mode)
while len(data) < self.state.xsize * self.state.ysize * bands * out_byte_count:
pixels = self.fd.read(in_byte_count * bands)
if len(pixels) < in_byte_count * bands:
# eof
break
for b in range(bands):
value = (
pixels[b] if in_byte_count == 1 else i16(pixels, b * in_byte_count)
)
value = min(out_max, round(value / maxval * out_max))
data += o32(value) if self.mode == "I" else o8(value)
rawmode = "I;32" if self.mode == "I" else self.mode
self.set_as_raw(bytes(data), rawmode)
return -1, 0
#
# --------------------------------------------------------------------
def _save(im, fp, filename):
if im.mode == "1":
rawmode, head = "1;I", b"P4"
elif im.mode == "L":
rawmode, head = "L", b"P5"
elif im.mode == "I":
rawmode, head = "I;16B", b"P5"
elif im.mode in ("RGB", "RGBA"):
rawmode, head = "RGB", b"P6"
else:
msg = f"cannot write mode {im.mode} as PPM"
raise OSError(msg)
fp.write(head + b"\n%d %d\n" % im.size)
if head == b"P6":
fp.write(b"255\n")
elif head == b"P5":
if rawmode == "L":
fp.write(b"255\n")
else:
fp.write(b"65535\n")
ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 0, (rawmode, 0, 1))])
#
# --------------------------------------------------------------------
Image.register_open(PpmImageFile.format, PpmImageFile, _accept)
Image.register_save(PpmImageFile.format, _save)
Image.register_decoder("ppm", PpmDecoder)
Image.register_decoder("ppm_plain", PpmPlainDecoder)
Image.register_extensions(PpmImageFile.format, [".pbm", ".pgm", ".ppm", ".pnm"])
Image.register_mime(PpmImageFile.format, "image/x-portable-anymap")

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save